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Abstract

In this article, we present a graph-based method using a cubic template for volumetric segmentation of vertebrae in
magnetic resonance imaging (MRI) acquisitions. The user can define the degree of deviation from a regular cube via a
smoothness value D. The Cube-Cut algorithm generates a directed graph with two terminal nodes (s-t-network), where the
nodes of the graph correspond to a cubic-shaped subset of the image’s voxels. The weightings of the graph’s terminal
edges, which connect every node with a virtual source s or a virtual sink t, represent the affinity of a voxel to the vertebra
(source) and to the background (sink). Furthermore, a set of infinite weighted and non-terminal edges implements the
smoothness term. After graph construction, a minimal s-t-cut is calculated within polynomial computation time, which splits
the nodes into two disjoint units. Subsequently, the segmentation result is determined out of the source-set. A quantitative
evaluation of a C++ implementation of the algorithm resulted in an average Dice Similarity Coefficient (DSC) of 81.33% and
a running time of less than a minute.
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Introduction

Lumbar stenosis (LS), a narrowing of any part of the lumbar

spinal canal with encroachment on the neural structures by

surrounding bone and soft tissue [1,2] is the most frequent reason

for surgery in patients over 65 years of age [1]. While MR imaging

(MRI) is considered particularly purposive for the visualization of

the soft tissue, X-ray computer tomography (CT) is seen as the

method of choice for preoperatively evaluating bone anatomy [3].

CT, however, exposes the patient to carcinogenic radiation while

the magnetic field in MR imaging is harmless.

Sometimes, degenerative spondylolisthesis, an asymptomatic

slipping forward of one lumbar vertebra on another one with an

intact neural arch, can be linked to LS [1] (Figure 1). Similar to

LS, degenerative spondylolisthesis primarily occurs in elderly

patients, and a combination of MRI and CT is also applied for

preoperative evaluations in this case. A shift towards a more

frequent application of MRI, even for morphological evaluations

of the bone structure, would result in less radiation exposure [3],

which is also what motivates this work.

Several features of the spinal anatomy can be distinguished by

their different grey values in an MR image. In most T1- and T2-

weighted image slices, normal adult vertebral body bone marrow

can be differentiated from the outer boundaries of the vertebral

body by a homogeneously lighter grey value [4]. This is because

the outer, compact cortical bone, which coats the vertebral body,

results in a much darker color/lower grey value than the

cancellous, spongy inner part. Thus, the grey-value difference

between a voxel in the vertebral body and a voxel on the outer

boundaries (e.g. cortical bone) is higher than the difference

between two voxels inside the vertebral body.

This, however, does not apply to slices that depict the pedicles.

Figure 2 shows that the pedicles of the vertebral arch are not

considered part of the vertebral body. Nevertheless, since they are

connected to the vertebral body, they belong to its outer

boundaries. However, unlike the cortical bone, they define a

weak, homogeneous object-background transition region. Fur-

thermore, in Figure 3, instead of the cortical bone, the

cerebrospinal fluid (CSF, surrounding the red arrow), which

causes the high grey value of the spinal canal in T2-weighted

images [4], defines parts of the outer boundary of the vertebral

body. This is due to noise and signal distortion, resulting in an

overlapping. Due to signal distortion and noise, as well as

anatomical structures like the pedicles and occasional voxel

outliers, the vertebral body cannot be defined by sharp boundaries

in all MR image slices - a challenge every segmentation algorithm

has to address.

Several approaches for vertebra segmentation have been

proposed in the literature [6–21]. Some of them [6–11] belong

to the 2D approaches and others [12–21] belong to the 3D

approaches. As we present a novel volumetric approach in this

contribution, the following state-of-the-art paragraphs introduce

the 3D approaches in greater detail. [12–18] all use some kind of

shape constraints and the shapes in [12,15,18] rely on training

data. In contrast, [19] is a free-form segmentation approach which

uses balloon forces. At the end of this background section, we

discuss a training-based model which detects and labels interver-

tebral disks in MR images [21].
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Klinder et al. [12] use articulated shape models for spine

segmentation. Their approach considers not only individual

objects (vertebrae) one at a time, but also object constellations

from a more global perspective. A constellation is presented as a

consecution of local vertebra coordinate systems, whereas the

individual morphology of a vertebra is encoded into a triangulated

surface model. Performing non-rigid deformations, the processing

of an individual object happens simultaneously to the processing of

all other objects, allowing different deformation processes to

interact. Klinder et al. explain that in the course of this, the model

is attracted to image features but that the attraction is also

constrained by a former learned shape. For their method, the

authors report a segmentation accuracy of 1.0 mm in average for

ten thoracic CT images.

Hoad and Martel [13] describe a three-step algorithm, which

segments bone from soft tissue in MR images of the spine. In the

first step, the vertebral bodies are segmented, in the second step

the posterior structures are segmented, and in the third step,

manual corrections are made. The authors explain that in the

three different stages, they combine thresholded region growing

with morphological filtering and masking using set shapes. For

evaluation, they registered the segmented data to a physical model

of a spine which they obtained using CT scans. Hoad and Martel

report that their method produces segmentation results equally

suitable for registration as the gold standard CT data and they

regard their algorithm as robust. Furthermore, they point out that

different threshold levels, within visually acceptable intervals, had

very little effect on the registration results. The authors conclude

that in general, the accuracy of the registration relies on the

similarity between actual and automatically generated surfaces as

well as the precision of the digitized points used for the

registration.

Štern et al. [14] make use of superquadrics to deterministically

model volumetric shapes of vertebral bodies which they then align

with vertebrae in 3D CT scans and MR images, for segmentation.

All in all, they introduce 29 parameters to the superquadric

function to obtain a vertebral-shaped geometrical model. In case

the user wants to incorporate certain pathological deformations,

further parameters have to be introduced. The parameters are

then automatically optimized in order to achieve the most

accurate alignment of the model with the vertebral body in the

CT or MRI data. The optimization is driven by a combination of

intensity gradient information with image intensity appearance of

the bone structures and surrounding soft tissues. The method is

initialized with a single point inside the vertebral body and was

tested on 75 vertebrae from CT scans and 75 vertebrae in MR

images. Štern et al. performed 100 segmentation experiments per

vertebra by randomly displacing the initial 3D model from the

ground truth pose and considered the subsequent segmentation

successful if the mean radial Euclidian distance of the final 3D

model from the ground truth points was less than 3 mm. For their

experiments, they report an overall mean radial Euclidian distance

(6standard deviation) between the final 3D models and the

ground truth points of 1.1760.33 mm for CT images (success rate

94.5%) and 1.8560.47 mm for MR images (success rate 88.6%).

Aslan et al. [15] describe a graph-based method for the

volumetric segmentation of vertebral bodies which incorporates

shape priors. The authors obtain the required shape information

from a training set of manually segmented vertebral bodies in CT

data: After aligning the manual segmentation results, they

determine an object region that describes the cross section of all

vertebral bodies, a variability volume, consisting of the remaining

Figure 1. T2-weighted MR image showing a degenerative
spondylolisthesis (red arrow) and a lumbar stenosis (green
arrow).
doi:10.1371/journal.pone.0093389.g001

Figure 2. Vertebral anatomy: (a) illustrates the anatomy of a vertebra from a coronal view (adopted from [5]), (b) shows a sagittal
T2-weighted MRI slice. The green arrow in the enlargement points to an area inside the vertebral body, whereas the red arrow points to the
cortical bone, the outer boundary.
doi:10.1371/journal.pone.0093389.g002
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target-structure voxels, and a background region. To detect shape

variations in the variability zone, Aslan et al. apply a distance

probabilistic model. Then, they construct an undirected, weighted

graph, implementing the 3D-shape prior through the edges’

capacities. In a final step, a minimum cost cut is performed,

partitioning the image’s voxel set into two disjoint units, namely

the target structure and the background.

Weese et al. [16] present shape constrained deformable models

for 3D medical image segmentation, which they apply to vertebra

CT acquisitions. Their hybrid approach combines the advantages

of an active shape model and an elastically deformable surface

model. The latter one is implemented as a surface mesh, whereby

its flexibility is constrained by the shape model, which also ensures

an optimal distribution of mesh vertices. In order to increase their

approach’s robustness against false object boundaries, Weese et al.

attract the deformable model to locally detected surfaces, using an

external energy. For validation, they compared the semi-automatic

segmentation results of their algorithm to manually segmented

vertebrae. In case of a proper manual placement of the mean

vertebra model, Weese et al. report a mean segmentation error of

0.93 mm with deviations around 4.5–7 mm in problematic areas.

Yao et al. [17] describe a method for the automatic segmen-

tation and partitioning of the spinal column. Their approach starts

with a simple thresholding to mask out bone voxels and

subsequently, it applies blob extraction, identifying the largest

connected blob as the initial spine segmentation. Yao et al. explain

that afterwards, a hybrid method based on the watershed

algorithm and directed graph search is employed to obtain the

spinal canal. They then use the spinal canal to position a vertebra

model which consists of four parts, namely the vertebral body,

spinous process, and left and right transverse processes. In the next

step, the initial model is deformed in a way such that a maximum

model-to-image match is achieved. In the last step they generate

curved planar reformations (CPRs) in sagittal and coronal

directions as well as they analyze aggregated intensity profiles

along the spinal cord in order to partition the spinal column into

the different vertebrae. For evaluation, the approach was tested on

71 CT scans and the authors state that the algorithm successfully

extracted and partitioned 69 spinal columns, with only 2 cases that

had one missed partition at the T1-T2 level.

Ghebreab and Smeulders [18] present an integral deformable

spine model for three-dimensional segmentation of spinal images.

They explain that their approach learns the representation of

vertebrae in CT scans from multiple continuous features registered

along vertebra boundaries in a given training set. Statistics are

encoded into a necklace model, which is coupled by string models

that provide detailed information on morphological variations in

the appearance of spinal structures from multiple continuous

features registered in the training set. Ghebreab and Smeulders

further state that on the necklace model, landmarks are

differentiated on their free dimensions and that, in order to

reduce complexity, the landmarks are used within a priority

segmentation scheme. For segmentation of new image data, the

necklace and the string models are employed to detect vertebral

structures interactively by means of elastic deformations. Gheb-

reab and Smeulder remark that this bears an analogy to a

marionette with strings constraining the deformations in a way

such that only movements within feasible solutions are allowed.

Zukić et al. [19], [20] present a fast and semi-automatic

approach for spine segmentation in routine clinical MR images. A

single vertebra is segmented based on multiple-feature boundary

classification and mesh inflation, and it starts with a simple point-

in-vertebra initialization. To prevent self-intersections, the infla-

tion retains a star-shaped geometry and the smoothness is

controlled via a constrained subdivision hierarchy. The main

spine direction is deduced by analyzing the shape of the first

vertebra and the locations of neighboring vertebral bodies are

estimated for further segmentation. Against manual reference

segmentations, the average Dice Similarity Coefficient (DSC)

[22,23] was 78% and a detection rate of 93%. The approach was

tested on eleven routine lumbar datasets with 92 segmented

vertebrae.

Kelm et al. [21] use iterated marginal space learning (MSL) to

detect and label intervertebral disks in MR images. Furthermore,

Figure 3. Object/background transition regions (red arrows). (a) shows a homogenous object/background transition. In (b), the spinal canal
(CSF) makes up parts of the vertebral body’s outer boundaries.
doi:10.1371/journal.pone.0093389.g003

Figure 4. Illustration of voxel labeling for the foreground (Ls)
and the background (Lt).
doi:10.1371/journal.pone.0093389.g004
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they claim that since their approach is learning-based, it can be

applied to CT scans, as well. In a first step (after roughly locating

the spine), their method uses an iterative extension of the MSL

method to determine candidate regions including the potential

targets’ positions, orientations, and scales. In a second step, Kelm

et al. use a global probabilistic spine model to detect the most

probable candidates among them. They report that experimental

validations of their method revealed 98.6% sensitivity, 7.3% false

positive detections, an average position error of 2.4 mm, an

angular error of 3.9u, and an overall processing time of 11.5

seconds.

Our approach to solve the problem of three-dimensional

vertebral body segmentation is a non-trivial enhancement of the

previously introduced two-dimensional graph-based segmentation

strategy Square-Cut [11], which uses a rectangle template to

segment vertebral bodies on single MRI-slices. Consequently, we

now use a cubic-shaped distribution of the graph’s nodes in the

three-dimensional case. Moreover, we developed, implemented

and evaluated far more complex three-dimensional neighborhood

relations which can be easily altered as they are implemented as a

function of a user-defined smoothness-term.

The rest of this contribution is organized as follows: Section 2

presents the methods behind the introduced algorithm, Section 3

presents the results of our experiments and Section 4 concludes the

paper and outlines areas for future work.

Methods

The new vertebral body segmentation algorithm presented here

will be referred to as Cube-Cut. Cube-Cut extends a two-

dimensional approach, previously introduced by Egger et al.

[11] to a third dimension (Note: initial results of Cube-Cut have

been presented on a workshop [24] and a German conference

[25]). This extension allows the volumetric segmentation of a

vertebral body with only one click, instead of just a two-

dimensional segmentation on a single slice. The introductory

paragraphs of this section first give a conceptual overview of the

basic features and the behavior of Cube-Cut. This conceptual

overview serves as a frame of reference for the more detailed

discussion of the actual implementation that follows at a later stage

and which introduces the reader to the concepts of a cubic-shaped

graph and the related smoothness-constraint. To keep it consis-

tent, the notation for the graph construction follows the notations

of previous graph-based publications [26–35], where possible.

Figure 5. Profile of two cube faces intersected by three rays (a) and a cubic voxel subset (b).
doi:10.1371/journal.pone.0093389.g005

Figure 6. Illustration of the different kinds of edges. (a) i-links: z-edges (black), xy-edges (blue). (b) o-links: s-links(green), t-links(red). (c) whole
graph.
doi:10.1371/journal.pone.0093389.g006
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2.1 Conceptual Overview
2.1.1 Labeling. Given a volumetric MR image P, Cube-Cut

first selects a subset P’(P of the image’s voxels and in a last step it

tags each voxel p[P’ with either one of the labels Ls or Lt [36]:

t : P0?fLs,Ltg ð1Þ

2.1.2 Penalties. The labeling of a voxel p[P’ involves two

penalties [36]:

N Dp(t(p))[R$0 is the penalty for assigning the label t(p) to p and

N Vp,p’(t(p),t(p’))[R$0 is the penalty for assigning t(p) to p when

t(p’) is the label of the voxel p’[P’.

D describes a voxel’s affinities to the labels Ls and Lt. For

example, the higher Dp(t(p) = Lt), the more p is affiliated with Ls. V

on the other hand reflects a voxel’s affiliation to another voxel. In

practice, Vp,p’(t(p), t(p’)) is greater than zero only if t(p)?t(p’). Thus,

V indirectly describes p’s affiliation with p’ by awarding a penalty

for tagging the two voxels with different labels: The higher Vp,p’,

the more p is affiliated with p’. Nevertheless, note that Vp,p’(t(p),

t(p’)) = 0 for t(p)?t(p’) does not necessarily mean that the two voxels

p and p’ can be tagged differently without penalty costs. If, for

instance, Vp,p’’(t(p), t(p’’)).0, for t(p)?t(p’’) and p’’[P’ and if

Vp’’,p’(t(p’’), t(p’)) .0 for t(p’’)?t(p’), then the penalty cost for

assigning different labels to p and p’ is at least min{Vp,p’’, Vp’’,p’}.

2.1.3 Return value. Cube-Cut tags the voxels in a way such

that the overall penalty cost is minimized. The overall cost is

described by (2). Cube-Cut thus returns the argument L which

minimizes.

E(L)~
X
p[P0

t(p)[L

Dp(t(p))z
X

p,p0[P0

t(p),t(p0)[L

Vp,p0 (t(p),t(p0)) ð2Þ

where L = {t(p)|p[P’} is a labeling of the subset P’ [36,37].

However, until now, the features above have been discussed

detached from the context of vertebral segmentation. The next

section will make the connection.

2.1.4 Object and background separation. Cube-Cut

selects P’ and implements D and V (on the basis of the

predetermined subset P’) in a way such that the returned labeling

is to be interpreted in the following manner (Figure 4):

N Cube-Cut assumes all voxels p[P’ for which t(p) = Ls inside the

vertebral body and

Figure 7. Illustration of the penalty effect. (a) shows a network
without i-links. (b) shows a network with an i-link. The red line depicts a
minimal cut.
doi:10.1371/journal.pone.0093389.g007

Figure 8. Illustration of the z-edges principle. (a) shows a ray without z-edges: The minimal s-t-cut (red) cuts the ray twice with a capacity of 0.
(b) shows the same ray with z-edges. The ray is only cut once. The capacity of the minimal s-t-cut is ‘ +5. (c) shows z-edges, embedded into an MR
image.
doi:10.1371/journal.pone.0093389.g008
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N all voxels p[P’ for which t(p) = Lt can be assumed outside the

vertebral body.

Hence, in a first step Cube-Cut selects a subset of voxels, and on

the basis of this subset, implements two penalty functions which

then determine a clustering of the subset into two disjoint units of

voxels. One unit describes the vertebral body while the other

describes the background (which may include other vertebrae).

The following paragraphs will describe the implementation of the

algorithm.

2.2 Implementation
2.2.1 Voxel subset. The voxels p[P’ are distributed along n

rays that expand from a user-defined seed point in the MR image.

Each ray consists of k equidistantly spread voxels, where for all

rays, the first voxel is always the user-defined seed point, so that

|P’| = n * (k - 1) +1. As the seed point, the number and the length

of the rays as well as the number of voxels per ray can be

determined by the user. It is assumed that each ray exceeds the

vertebral body. In the following, let pir[P’ denotes a voxel on ray r,

where 1# r # n and where the voxel pir is closer to the seed point

(p1 or p1r
) than pjr , if 1# i,j # k (Note: If only one ray is being

discussed, the indexing r might be omitted. Furthermore, from

now on, k will always denote the number of voxels per ray and n

the number of rays).

2.2.2 Cubic distribution. The rays expand in a way such

that all voxels of the same layer form a cube shape, so that if i = j ?
1 and m ? n, then the voxels pim and pjm lie on the surface of one

cube, which has the user-defined seed point as its center. Since

there are k voxels on each ray, there are k-1 different sized cubes

for which p1 is the center (Figure 5). On a cube’s face, the voxels

are distributed equidistantly and the volumes of the cubes increase

evenly. However, note that due to the theorem of intersecting

lines, the distance between two voxels on a cube’s face is less than

the distance of the corresponding voxels on a bigger cube.

2.2.3 Implementation of penalties and labeling. Cube-

Cut generates a network N = ((G = (V (G), E(G))), c, s, t), where G is

a directed, two-terminal graph and |V (G)| = |P’| +2. Each vertex

v[V(G)\{s,t} corresponds to exactly one voxel p[P’ and no two

vertices correspond to the same voxel. In the following, vp will

denote a mapping of the vertex v[V(G)\{s,t} onto its correspond-

ing voxel p[P’ and pv will describe the reverse mapping. The

source s and the sink t have no counterparts in P’ and thus they are

referred to as virtual nodes. In E(G), there exist two types of edges

[36], [38] (Figure 6):

Figure 9. Adverse effects on segmentation results (2-dimensional view). (a) shows an overrun in the upper part due to a violation of
condition (3). (b) shows a segmentation result affected by an outlier which causes a violation of condition (4). The cut happens too close to the seed
point (not shown) in the middle of the vertebra because there is a light area similar to the spinal canal.
doi:10.1371/journal.pone.0093389.g009

Figure 10. Effect of the coefficient w. In (b), w is applied on the s-weights in (a): The cut, with a capacity of ‘ +2.5, now happens closer to the
seed point. Note that the same cut in (b) would have cost ‘ +10 whereas the cut depicted in (b) has a capacity of only ‘ +5.
doi:10.1371/journal.pone.0093389.g010
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N i-links (inter-links) connect vertices v[V(G)\{s,t} with each

other. The i-links are further subdivided into z-edges and xy-

edges, where z-edges connect vertices corresponding to neigh-

boring voxels of the same ray (e.g. (vin ,v(iz1)n
), while xy-edges

connect vertices corresponding to voxels of different rays (e.g.

(vin ,vjm )).

N o-links (outward-links) connect all vertices v[V(G)\{s,t} with the

source s (s-links) and the sink t (t-links). Hence, there are two o-

links for each vertex.

The capacities of the i- and o-links reflect the penalty functions D

and V in the following manner (Figure 7):

Vv[V (G)\fs,tg : c(s,v)~Dp((t(vp)~Lt)),

Vv[V (G)\fs,tg : c(v,t)~Dp((t(vp)~Ls)),

V(v,v0)[E(G) : c(v,v0)~Vp,p0 (t(vp),t(v0p)):

ð3Þ

Note that the skew symmetry constraint does not have an effect

since by convention c(v, v’) = 0 is assumed, if (v, v’)/E E (G). After the

graph has been set up, Cube-Cut determines a minimal s-t-cut (S,

T) by deploying the Boykov-Kolmogorov algorithm [36] (http://

vision.csd.uwo.ca/code/, accessed: March 2014) and then it labels

P’ as follows:

Vvp[P0 : t(vp)
Ls if v[S;

Lt else:

�
ð4Þ

Since by definition, the capacity of a minimal s-t-cut is minimal

among all possible s-t-cuts, the labeling above minimizes (2).

2.2.4 Z-Edges: onetime cut per ray. Since each ray

intersects with the outer boundaries of the vertebral body only

once, a set of z-edges is introduced that ensures that each ray is

exactly cut one time by a minimal s-t-cut [38,39]:

Az~f(vir ,v(i{1)r ) 1j viƒk ^ 1ƒrƒng, ð5Þ

where n is the user-defined number of rays and k the total number

of voxels per ray, again (note: in what follows, vir will denote the

corresponding vertex of the ith voxel on ray r. Furthermore, if only

one ray is being discussed, the indexing r might be omitted). The

set of z-edges connects each vertex vi with its predecessor v(i-1) on the

same ray (Figure 8). The capacities of all z-edges are initialized to ‘.

Therefore, it costs ? each time a z-edge is cut.

By making sure that the seed point is in S and that the last voxel

on each ray is in T (see next section), a minimal s-t-cut (S, T) has to

cut each ray at least once. Yet, it does not cut any ray more than

once because that would cost at least 2??. This is why a ray is cut

exactly one time. The next section explains how Cube-Cut

encourages this cut to happen close in front of the vertebral body’s

outer boundaries.

2.2.5 O-links: marking the outer boundaries. A voxel pir

is characterized by (xir ,yir ,zir ,gir ) where xir ,yir ,zir[N0 denote the

voxel’s position in the image and gir[R§0 denotes its grey value

(note: simplified, voxel coordinates assumed). Cube-Cut investi-

gates a small cube ((x1, y1, z1), (x2, y2, z2)) around the user-

defined seed point (inside the vertebra) and determines its interval

of grey values I = [min(GV), max(GV)], where.

GV~fp4(x,y,z,g)jx1ƒxƒx2,y1ƒyƒy2,z1ƒzƒz2g ð6Þ

is the multi-set of all grey values within the cube and pi(?) is a

projection onto the ith element of a tuple. Furthermore, Cube-Cut

also iterates over the cube to determine an average grey value gavg

by

Figure 11. Courses of w(i,11) (green) and w(i,15) (red). The upper
part illustrates that w(i,k) reflects the position of the voxel pi on a ray
consisting of k uniformly distributed voxels. Note that that w is only
partially defined for the natural numbers but that Cube-Cut never calls
w with an argument in the undefined scope.
doi:10.1371/journal.pone.0093389.g011

Figure 12. A feasible surface and intersecting rays (transformed in x-direction for a better visibility). The green node depicts an outlier
as it would violate the smoothness constraint Dx = 1 if classed with the surface voxels.
doi:10.1371/journal.pone.0093389.g012
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gavg~
1

jGV j
:
ðx2

x1

ðy2

y1

ðz2

z1

p4(x,y,z,g)dx dy dz: ð7Þ

In the course of weighting the o-links, the interval I and the average

grey value gavg are used as frames of reference.

The following Pseudo-Code depicts the fundamental principle

of how Cube-Cut assigns capacities to the o-links (note: Each ray r

consists of k voxels):

0 c(s,v1)/?

1 c(v1,t)/0

2 assign(ray r)

3 Vpir~(xi,yi,zi,gi)[r\fp1r
g

4 if i~~k

5 c(s,vir )/0

6 c(vir ,t)/?

7 else if gi[I or abs(gavg{gi)ƒabs(gavg{gi{1)

8 c(s,vir )/abs(abs(gavg{gi){abs(gavg{gi{1))

9 c(vir ,t)/0

10 else

11 c(s,vir )/0

12 c(vir ,t)/abs(abs(gavg{gi){abs(gavg{gi{1))

The ?-weighting in line 0 ensures that the seed point is tagged

with Ls. The premise on which this is based is that the user defines

the seed point within the vertebral body (in the center).

Furthermore, it is assumed that the last voxel on each ray (pkr
)

lies outside the vertebra (since the user is supposed to define a ray

length that exceeds the vertebral body). To ensure that the last

voxels are tagged with Lt, the t-links (vkr
,t) are also ?-weighted

while for all rays c(s,vkr
) is consequently initialized to zero (line 4 -

6)

The capacities of all of the other, intermediate o-links reflect the

value difference between a voxel and its predecessor on the ray

(lines 8,9,11 & 12). This is in order to "mark" the outer boundaries.

As already mentioned above, the rays expand from the user-

defined seed point in the center of the vertebral body and they

eventually intersect with the outer boundaries. Ignoring occasional

outliers and homogeneous object/background transition regions

for now, the inner vertebral body is characterized by a

homogeneous set of voxel grey values, which are all higher or

lower than the grey values that make up the outer boundaries (e.g.

cortical bone, spinal canal, compare Introduction). Thus, on each

ray, the difference in value between the last voxel in the vertebral

body and the first voxel on the outer boundaries can be assumed

high.

Figure 13. Illustration of the xy-edges principle. (a) shows a minimal cut (thick lines) and the two possible continuations (dashed lines) within
the boundaries of a smoothness constraint D= 1. All other cuts would have a capacity greater than 7?‘. (b) shows the only possible continuation
within the boundaries of a D-value of 0, where the cut has a capacity of 3?‘.
doi:10.1371/journal.pone.0093389.g013

Figure 14. Topology of xy-edges for D = 0 (a) and D = 1 (b).
doi:10.1371/journal.pone.0093389.g014
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Taking the condition in line 7 into account, the outer

boundaries therefore implement high t-link capacities (line 12).

Note that this makes a cut right in front of the corresponding

vertices very probable. The next sections explain how peculiarities

and anomalies in vertebral MRI data sometimes prevent a cut

from happening right in front of the outer boundaries and how

Cube-Cut addresses these adverse effects.

2.2.6 Adverse effects on the segmentation result. A cut

right in front of the outer boundaries is a cut that separates the last

vertex that corresponds to a voxel which is still located inside the

vertebral body from the subsequent ones on the same ray. If, for

each ray, the cut takes place right in front of the outer boundaries

of the vertebral body, then Cube-Cut returns a satisfactory

segmentation result.

Let vir be the first vertex on a ray r that corresponds to a voxel

on the outer boundaries/background. If a minimal s-t-cut (S, T)

cuts the ray right in front of vir , so that v(i{1)r
[S and vir[T, then.

Xk{1

j~i

c(s,vjr )v
Xk{1

j~i

c(vjr ,t) ð8Þ

and

Vhvi : hw1[
Xi{1

j~h

c(vjr ,t)ƒ
Xi{1

j~h

c(s,vjr ) ð9Þ

For most rays, the two (minimum) conditions hold true and thus,

the cut takes place right in front of the outer boundaries. Equation

(8) usually holds true because the value difference between pir and

p(i{1)r is greater than the sum of the subsequent s-weights since

behind the outer boundaries, the rays mostly penetrate homoge-

neous areas dissimilar from the vertebral body (compare lines 7 &

8 of the pseudo code). Equation (9) holds true for most rays

because of the homogeneity of voxel grey values in the vertebral

body and their similarity to the close environment of the seed point

(compare lines 7, 8 & 12 of the pseudo code).

Nevertheless, there are exceptions. Figure 9 depicts such

exceptions. (a) clearly shows a 2-dimensional view of a segmen-

tation result that overruns the vertebral body in the upper part.

For the corresponding rays, equation (3) does not hold true. The

similarity between the vertebral and the intervertebral voxels, in

terms of their grey values, can easily be recognized. Furthermore,

there are minor variations of grey values in the intervertebral disc.

As a consequence, the condition in line 7 of the pseudo code

holds true for a sufficient number of background voxels on each of

the affected rays, which is why condition (8) is not satisfied. Thus,

the overrun occurs. Observe that the same applies to homoge-

neous object/background transition regions. Among others, Cube-

Cut tackles this problem by introducing a coefficient w, which

loads the s-weights according to their distance from the seed point

(see next section). Line 8 of the pseudo code is extended to:

c(s,vir )/w i,kð Þ:abs abs gavg{gi

� �
{abs gavg{gi{1

� �� �
:

Another phenomenon that negatively affects the segmentation

result is outliers. Outliers share all relevant properties (grey values)

that distinguish the vertebra’s boundaries except that they are part

of the inner vertebral body.

Figure 15. Segmentation result for D = 0 (left) and D = 2 (right).
doi:10.1371/journal.pone.0093389.g015

Figure 16. 3D segmentation result (left and middle image) and 2D segmentation result with the user-defined seed point in blue
(rightmost image).
doi:10.1371/journal.pone.0093389.g016
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To be specific, an outlier causes the violation of equation (9). On

the corresponding ray, the cut then happens too close to the seed

point (Figure 9 (b)). Cube-Cut decreases the possible adverse

effects due to outliers by imposing a smoothness constraint on the

segmentation result. In addition, the smoothness constraint also

addresses the problem of a violation of equation (8), as discussed

above. The next two sections present Cube-Cut’s problem-solving

approaches in detail. The first matter to be addressed will be the

loading of the s-capacities and then the smoothness constraint will

be discussed.

2.2.7 Loading the s-Capacities. The coefficient w(?) loads

an s-capacity according to the corresponding voxel’s (pir ) position on

the ray (Figure 10). For a ray r, consisting of k voxels, it is defined

as w(i,k) = mi+b, where k§i[Nw0 and m~{
1

k{1
and b = 1-m.

Observe that since the voxels are distributed uniformly on each

ray, w(i, k) = 1 for the seed point (pi = 1), w(?, k) = 0.5 for a voxel

that is half way on a ray (Figure 11) and w(?, k) = 0 for the last

voxel on each ray. A voxel far away from the seed point is more

likely to be outside the vertebral body.

Cube-Cut takes this into account by decreasing its s-capacity

accordingly, thereby reducing the risk of a cut being located

behind the outer boundaries of the vertebral body because.

Xk{1

j~i

c(s,vjr )w
Xk{1

j~i

w(j,k):c(s,vjr ) ð10Þ

As already mentioned above, the coefficient is not the only

measure Cube-Cut takes in order to counteract a violation of

condition (8): The smoothness constraint, which also addresses a

violation of condition (9), will be the subject matter in the next

section.

2.2.8 XY-edges: imposing a smoothness constraint. The

smoothness constraint is based on the optimal surface segmenta-

tion algorithm developed by Li et al. [38]. It is useful to first

Figure 17. Superimposition of a manual segmentation result and a Cube-Cut segmentation result.
doi:10.1371/journal.pone.0093389.g017
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discuss it conceptually, slightly detached from the context of

vertebral segmentation. A single, feasible surface in a volumetric

Image I = (X, Y, Z), where X, Y, Z5N0, can be characterized by a

bijection S : XY?Z, where XY(X|Y is a cohesive area. Li et al.

refer to a surface as feasible if two smoothness constraints are

satisfied:

V(x,y),(xz1,y)[XY : jS(x,y){S(xz1,y)jƒDx ð11Þ

and

V(x,y),(x,yz1)[XY : jS(x,y){S(x,yz1)jƒDy ð12Þ

Dx and Dy constrain the degree to which the surface "moves"

upwards or downwards in x- or y-direction within an interval of

one: S(x, y) and S(x+1, y) as well as S(x, y) and S(x, y+1) are

neighboring x- and y-positions. Thus, two neighbors on a feasible

surface cannot be arbitrarily distant from each other. Hereby, the

smoothness constraints assure what Li et al. refer to as "surface

connectivity". Observe that for a plane Dx =Dy = 0.

Now consider a number of equidistant rays that consist of the

same number of uniformly spread voxels and which all extend

parallel to the z-axis. The voxels that make up a ray do not

necessarily have to lie on neighboring positions in the image.

Furthermore, for convenience, assume that I is a binary image

with only two possible values for each voxel: ‘‘colored’’ xor

‘‘white’’. In addition, let all rays intersect with a colored surface

S(XY) in I, which means that each ray extends from XY and shares

exactly one colored voxel with the surface.

In this context, in which only a subset of the image’s voxels is

observed, the smoothness constraint has to be defined via the

neighborhood relations of the rays. Figure 12 shows four

neighboring rays in x-direction (same y-value for each voxel), which

extend parallel to the z-axis, as described above. Here, a

smoothness parameter Dx = 1 means that for a "colored" voxel

that is considered part of the surface, all voxels on adjacent rays

that are also classed with the surface voxels must lie on the same

"z-layer" or the next upper or lower one. An outlier in this context

is a colored voxel that exceeds the prescribed maximum distance.

Cube-Cut allows the user to impose a smoothness constraint on

the segmentation result. It interprets each of the six sides of a

vertebral body’s outer boundaries (from a sagittal view: front,

back, top, bottom, right, and left) as a feasible surface.

Furthermore, it takes into account that the six surfaces are

anatomically connected, which is why the neighborhood relations

overlap at the "edges" of the boundaries.

Cube-Cut implements the smoothness constraint D[N0 by

introducing a set of infinity-weighted xy-edges [38]:

Axy~f(vir ,v( maxf(i{D),1g)
r0

)gj(r,r0)[N4g ð13Þ

N4 denotes a 4-neighborhood and as already mentioned above,

the neighborhood relations overlap at the "edges" of the cubic

voxel subset that the algorithm observes.

The infinity-weighting of the xy-edges ensures that a minimal s-t-

cut cuts the rays in a way such that the vertebra is segmented

within the boundaries of the user-defined smoothness constraint D
(Figure 13). Note that for a given D-value, an 8-neighborhood

would increase the "stiffness" of the segmentation result.

For a smoothness constraint D= 0, any minimal s-t-cut results in

a regular, cubic segmentation result, whereas a D-value greater

Figure 18. Typical user initialization of GrowCut for this study. The Editor module is used to mark parts of the vertebra (green) and the
background (yellow) in an axial, sagittal and coronal plane.
doi:10.1371/journal.pone.0093389.g018
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zero allows a corresponding deviation. Figure 14 shows the

topology of the xy-edges for a D-value of zero and a D-value of one

and Figure 15 shows corresponding segmentation results,

illustrating the purpose of the cubic shaped voxel subset.

Results

A C++ implementation of Cube-Cut was tested within the

medical image processing platform MeVisLab 2.2.1 (www.

mevislab.de). We used two T2-weighted, volumetric, pathological

MR-images (5126512616 and 5126512610), both of which had

an anisotropic voxel spacing in x- and y-directions of 0.63

millimeters and 4.4 millimeters along the z-axis. We obtained

isotropic voxel sizing (2.01258 millimeters in all directions) by

resampling the two images, using the MeVisLab Resample3D-

module, which resulted in resolutions of 1596159635 and

1596159622 respectively. The first image contained a stenosis

and a spondylolisthesis; the second image showed a slipped disc.

In order to place the seed-point roughly in the center of the

vertebra, we scrolled through two-dimensional, sagittal image

slices. After Cube-Cut terminated, the triangulation was visually

evaluated. If overruns occurred, we decremented the smoothness-

constraint and/or replaced the seed-point accordingly, e.g. we

moved it in x-direction if the overrun occurred in y-direction. We

learned that once parameter settings were found for one vertebra

in a data set, these settings could also be successfully applied to

most of the other vertebrae in the same image. Figure 16 shows

volumetric and two-dimensional segmentation results.

The obtained segmentation results were then compared to ten

segmentation results obtained in a slice-by-slice manner, per-

formed by trained physicians. Table 1 presents the detailed results

for all ten cases and in addition the summary of results, with min,

max, mean m and standard deviation s. For visual inspection,

Figure 17 shows a superimposition of a pure manually segmented

and an automatically obtained (Cube-Cut) segmentation result.

Furthermore, the manual slice-by-slice segmentations have been

compared to segmentation results obtained using the GrowCut-

algorithm [40] (Table 2). For testing GrowCut with our datasets

we used an implementation that is freely available in the medical

platform (3D) Slicer (www.slicer.org). For initialization of the

GrowCut algorithm, strokes have been drawn inside and outside

the vertebral body on a two-dimensional, sagittal image, a two-

dimensional axial image and a two-dimensional coronal image

(Figure 18), as it has been done in [41], [42] and [43]. Table 2

presents the direct comparison of the manual slice-by-slice and a

GrowCut segmentation for the ten vertebrae from Table 1 with a

mean DSC-value of 80.61%.

It was found that it takes a trained physician 1066.65 minutes

to manually segment a vertebra in a slice-by-slice manner. On a

2.1 GHz 664-based PC with 4 GB RAM running the Microsoft

Windows 7 Home Premium (SP1) operating system, version

6.1.7601, the most expensive parameter settings took Cube-Cut

less than a minute (graph-construction, mincut computation and

triangulation) to terminate. The settings that resulted in a

maximum DSC of over 86% only took 19 seconds to execute.

Overall, we achieved a mean DSC-value of 81.33%.

Table 1. Direct comparison of manual slice-by-slice and Cube-Cut segmentation results for ten vertebrae via the Dice Similarity
Coefficient (DSC).

No. volume of vertebrae (mm3) number of voxels DSC (%)

manual automatic manual automatic

1 23860.6 26314.3 2927 3228 86.69

2 27423 27431.1 3364 3365 84.17

3 33830.4 28776.2 4150 3530 82.06

4 27121.4 23901 3327 2932 82.57

5 22165 17795.4 2719 2138 71.64

6 15423 16638 1892 2041 84.16

7 42658.9 33194.5 5233 4072 82.85

8 42715.9 35216.2 5240 4320 85.54

9 39903.5 29909.3 4895 3669 80.71

10 30594.1 18105.4 3753 2221 72.95

min 15.42 16.64 1892 2041 71.64

max 33.83 28.78 5240 4320 86.69

m+s 24.9766.15 23.4865.12 3750 3152 81.3365.07

doi:10.1371/journal.pone.0093389.t001

Table 2. Direct comparison of manual slice-by-slice and GrowCut segmentation results for ten vertebrae via the Dice Similarity
Coefficient (note: the cases 1–10 correspond to Table 1).

Case 1 2 3 4 5 6 7 8 9 10

DSC (%) 78.55 81.34 83.90 71.33 71.34 70.65 88.58 91.95 85.13 83.30

doi:10.1371/journal.pone.0093389.t002
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Conclusion

A novel approach towards the volumetric segmentation of

vertebral bodies was presented. Cube-Cut is a non-trivial, three-

dimensional extension of the previously introduced two-dimen-

sional segmentation strategy Square-Cut [11] and a proof of

concept implementation of the optimal surface segmentation

approach by Li et al. [38]. The introduced method is the first one

using a 3D-graph that is based on a cubic-shaped subset of non-

equidistant image voxels as well as a smoothness-constraint in

order to segment volumetric, cubic-like target-structures. The

possibility to approach a cubic template by changing the graph’s

topology as a function of the user-defined smoothness-term in real-

time effectively allows overcoming homogeneous object-back-

ground transition regions. In summary, the research highlights are:

N development of a specific graph-based algorithm for vertebral

body segmentation;

N algorithm bases on a cubic template which is a novelty in the

segmentation domain;

N scale-invariant segmentation by an optimal mincut through

cubic-shaped divergences;

N physicians performed slice-by-slice segmentations to obtain

ground truth boundaries;

N segmentation quality of the algorithm has been evaluated via

the Dice Coefficient.

The proposed method only requires a single user seed, while

other approaches [13,18] require multiple user-inputs to achieve

comparable results. On the other hand, the easily alterable

smoothness term seemingly provides more flexibility than the

Figure 19. Vertebra segmentation results (red) for a graph that has been constructed with a spherical template from a user-defined
seed point (blue). The left image shows the segmentation result when the density of the rays/sampled nodes and the delta value are set to very
large values. When these values are smaller the graph cut prefers a more spherical/elliptical segmentation result (middle). The rightmost image shows
the extreme case where the delta value was set to zero. There the graph cut has to come back with a perfect sphere and the only variation is the size
of the sphere which depends on the gray values.
doi:10.1371/journal.pone.0093389.g019

Figure 20. Corresponding 3D results of Figure 19, where a graph has been constructed with a spherical template for vertebra
segmentation. The left image shows the 3D segmentation result (yellow) when the density of the rays/sampled nodes and the delta value are set to
very large values. When these values are smaller the graph cut prefers a more spherical/elliptical segmentation result (middle). The rightmost image
shows the extreme case where the delta value was set to zero, which resulted into a perfect sphere.
doi:10.1371/journal.pone.0093389.g020
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approach proposed by Štern et al. [14], since the authors state that

they might have to introduce new parameters to their determin-

istic model when confronted with not yet considered pathologies

or deformations.

In addition, contrary to most of the alternative approaches

[12,15,18], our proposed method does not rely on training data

and is thus not constrained to the variations, deformations and

pathologies covered in the data set. This also means that Cube-

Cut needs a far less expensive initialization phase. Furthermore,

the graph-based approach presented by Aslan et al. [15] observes

the whole set of the image’s voxels, while Cube-Cut only requires a

subset. Both algorithms compute the mincut in polynomial time

and thus our approach outperforms the approach of Aslan et al. in

terms of theoretical runtime.

Furthermore, whereas other approaches [12,15,16,17,18] have

tested their algorithms only on CT datasets, we show that our

approach is suitable for MR-image processing, and contrary to

several other approaches [13,14], we have tested our algorithm on

pathological spine data, achieving a better mean DSC than Zukić

et al. [19]. A shift towards a more frequent application of MRI in

the preoperative evaluation of surgical patients would result in less

radiation exposure compared to the more frequent application of

CT.

Figure 21. Sagittal 2D-view on Cube-Cut segmentation result (left, red), GrowCut segmentation result (center, white) and reference
image (right). The GrowCut algorithm detects false boundaries in the pedicles-region.
doi:10.1371/journal.pone.0093389.g021

Figure 22. "Vertices" of the vertebral body’s outer boundaries were not detected accurately (green circles). The upper image shows a
3D segmentation result, the lower images show 2D overlaps of manual (red) and automatic (white) segmentation results.
doi:10.1371/journal.pone.0093389.g022
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To summarize, Cube-Cut generates a two-terminal s-t-network

where the vertices correspond to a cubic shaped subset of the

image’s voxels. By only observing a subset of the image’s voxels,

the algorithm improves the theoretical runtime in comparison to

other graph-based approaches that consult the whole voxel set.

The capacities of the terminal edges reflect a voxel’s affiliation with

the object (vertebral body) and the background, while the topology

of non-terminal ‘-weighted edges implements the smoothness-

constraint. After network construction, a minimal s-t-cut, com-

puted in polynomial time, determines the segmentation result. For

the mincut computation, the Boykov-Kolmogorov algorithm is

applied, since it was demonstrated [36], that despite a worst case

complexity of O(v(G)2e(G) |Cmin|), where v(G) is the number of

vertices, e(G) the number of edges and |Cmin| the capacity of a

minimal cut, the algorithm is most effective for networks of low

complexity, like the one Cube-Cut generates. In addition, we want

to point out here that Boykov’s graph cut model can support high

dimensional data in its own settings.

For evaluation, Cube-Cut 3D-masks were compared to manual

vertebral body segmentation results, obtained in a time-costly

slice-by-slice manner, performed by trained physicians, achieving

a promising mean DSC of 81.33%, which is on par with the state

of the art (comparable to [19]). The computation (graph

construction, mincut computation and triangulation) that led to

the maximum DSC value of 86.69% terminated in 19 seconds on

a customary PC. All other parameter settings took no more than a

minute to execute. It was found that a slice-by-slice segmentation

of a vertebra took trained physicians 1066.65 minutes on average,

and a subsequent conversion into a 3D-mask was also still needed.

This illustrates the practicability of the novel approach in terms of

preoperative time management, since its employment could save

up to nine minutes per vertebra.

Moreover, we also used a spherical template instead of the cubic

shaped one, to set up a graph and applied it to vertebra

segmentation. As shown in Figure 19 and 20 on the left side, a

vertebra can roughly be segmented this way if the density of the

rays/sampled nodes and the delta value are set to very large

values. However, as soon as these values are smaller, the graph cut

prefers a more spherical/elliptical segmentation result, as shown in

the middle images of Figure 19 and Figure 20. In the extreme case

where the delta value is set to zero, the graph cut has to come back

with a perfect sphere and the only variation is the size of the sphere

which depends on the gray values (rightmost images of Figure 19

and 20). Hence, the above illustrates the superiority of cubic-

shaped templates when it comes to vertebra segmentation.

Furthermore, we also compared the Cube-Cut masks with

GrowCut results and found that Cube-Cut clearly outperformed

GrowCut in this setup, regardless of the similar DSC values.

Besides others, GrowCut regularly did not recognize the vertebral

body’s outer boundaries in the pedicle-regions, which led to false

boundary detections as shown in Figure 21. This strongly

illustrates the convenience of the alterable smoothness-term.

Furthermore, manual adjustments of the results obtained with

Cube-Cut, which at this stage would still be necessary in a clinical

context, would take less user effort, since the cubic characteristics

of a vertebral body are already incorporated into the calculations.

A re-initialization of GrowCut – in case of an unsatisfying

segmentation result – can be very time-consuming, because strokes

have to be drawn all over again in several 2D slices. The

initialization of GrowCut on three 2D slices took an experienced

user around one minute and the run time of GrowCut – after the

initialization – was around 1–3 minutes. The re-initialization of

Cube-Cut however, usually only required the replacement of the

one seed.

Nevertheless, visual evaluations of Cube-Cut’s segmentation

results indicate that the algorithm frequently segments the same

specific areas of a vertebral body inaccurately. Recognizing the

rectangle shape of a vertebral body, on sagittal slices, these areas

could be referred to as the vertebral body’s "vertices" (Figure 22).

Although the present version of Cube-Cut already allows an

arbitrary increase of precision in terms of number of rays and

points per ray, future versions of the algorithm could overcome

this problem by a densification of rays only in the corresponding

spaces or by allowing the user to adjust the segmentation result

manually.

Regarding the robustness of Cube-Cut in general, we can report

that the method only performs satisfactory if the cube’s volume is

larger than the vertebral body’s (Figure 23, right side), since in case

the cube is smaller (Figure 23, left) side, the graph does not

penetrate the background which results in an s-t-cut that lies

somewhere inside the vertebral body. Thus, a cube larger than the

vertebra is desirable. Right now, we estimate the volume of the

largest vertebral body in a data set visually and choose the cube’s

volume accordingly. Future versions of Cube-Cut could provide

the user with the possibility of defining the size of the cube

interactively, e.g. by drawing a stroke through the vertebra at its

Figure 23. The size of the cube (red) in the left image is too small to segment the vertebra, because a graph that is constructed
inside this cube does not cover the border of the vertebra and the s-t-cut will lie inside the vertebra. In contrast, the size of the cube in
the right image is sufficient, because a graph that is constructed inside this cube will also cover the vertebra’s border and thus is able to segment it.
doi:10.1371/journal.pone.0093389.g023

Cube-Cut: Vertebral Body Segmentation

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e93389



largest measurement. The length of the stroke would then be used

to define the cube’s size automatically, with an additional safety

margin.

Furthermore, as already mentioned above, the seed has to be

placed roughly around the center region of the vertebral body in

order to obtain satisfactory segmentation results. Nevertheless, the

algorithm proved itself relatively stable against small deviations

and moreover, the replacement of the seed only takes a second

which is one of the distinguishing advantages of Cube-Cut.
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