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Abstract: Monocytes represent a heterogeneous population of blood cells that provide a link between
innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of
macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research
and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population
of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a
bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages
derived from them is tightly regulated at the transcriptional and post-transcriptional level. This
review summarizes the current understanding of the role of small regulatory miRNA in monocyte
formation, maturation and function in health and cancer development. Additionally, signatures of
miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor
environment on the function of monocytes are discussed.
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1. First Glance at Monocytes

Monocytes are highly plastic cells that link innate and adaptive immunity. In humans,
they usually constitute less than 10% of all leukocytes [1] and are the largest white cells
in the blood, measuring between 16 and 22 µm in diameter. Monocytes contain one
large, kidney-shaped nucleus located in the center of the cytoplasm. They originate in
the bone marrow from pluripotent hematopoietic stem cells via a series of progenitor
cells. Finally, after the divisions of promonocytes, monocytes are formed and enter the
circulation. Monocytes’ residence in the human blood lasts from 1 to approximately
7 days [2–4]. Circulating monocytes are a heterogenous population of cells (according
to size, morphology, etc.) divided into subpopulations according to differences in the
expression of surface markers, CD14 and CD16 in humans and Ly6C, CCR2, and CX3CR1
in mice [5]. Gene expression patterns depicted in human monocyte subsets confirm their
common origin [6]. Monocytes are recruited immediately to the infected, injured, or
cancerous tissue, where they differentiate into macrophages. Monocytes are unique cells
with the potential to be precursor (e.g., of macrophages) and effector (as phagocytes or
cytotoxic cells) cells. The current theory about macrophage origin considers their embryonic
precursors and monocytes’ potential to reconstitute the macrophage pool depending on
the time and tissue niche [7]. At the tumor site, monocytes compose a major population of
infiltrating leukocytes. After reaching the neoplastic tissue, they differentiate into tumor
associated macrophages (TAM), which, depending on the type of tumor, are either bad
or good indicators of cancer treatment. The tremendous plasticity of monocytes and
macrophages is tightly regulated at both the transcriptional and translational levels. This
review summarizes the current understanding of the role of small regulatory miRNA in
monocyte formation, maturation and function in health and cancer development.
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2. Role of miRNA in Monocyte Development

Monocytes are generated from stem cells (HSC, hematopoietic stem cell) in the bone
marrow via four intermediate maturational stages: multipotent progenitor (MPP), common
myeloid progenitor (CMP), granulocyte-macrophage progenitor (GMP) and macrophage
progenitor (MP). These stages are regulated at the transcriptional level mainly by C/EBPα
(CCAAT/enhancer-binding protein α), PU.1 (Purine-rich box 1), IRF8 (IFN-regulatory
factor 8) and RUNX1 (Runt-related transcription factor 1) factors [8].

In MPP cells, C/EBPα is upregulated and its activity is controlled by miR-182 and
miR-34. C/EBPα directly upregulates the expression of miR-223 and miR-34, which are
crucial for the formation of CMP [8]. The expression of miR-223 is repressed by nuclear
factor I-A (NFI-A), which is a target for miR-223 (autoregulatory circuit). miR-223 is in-
volved in the regulation of granulocytic maturation; whereas the lack of miR-223 promotes
abundant granulopoiesis, its presence at higher levels promotes monopoiesis. PU.1 and
C/EBPα are well-studied targets of miR-155 [9]. In turn, PU.1 upregulates the expression
of miR-223, miR-146a, miR-155, and miR-338 [9]. The enhanced level of PU.1 promotes the
maturation of GMP. IRF8 and RUNX1 are other transcription factors involved in normal
myelopoiesis in cooperation with PU.1 [10]. PU.1 induces IRF8 expression, which further
promotes monocyte over granulocyte differentiation potential in progenitors. RUNX1 is
involved in the up-or down-regulation of miR-223 and, in turn, is down-regulated by
miR-129 [11]. RUNX1 enhances the expression of the CSFR1 (M-CSFR, CD115) receptor
for M-CSF, an important regulator of monocyte development [11,12]. The up-regulation
of miR-22, -34a and -155 decrease the expression of M-CSFR resulting in the development
switch to dendritic cells [13]. However, the overexpression of miR-155 in the hematopoi-
etic compartment causes a myeloproliferative disorder [14]. On the other hand, M-CSF
can directly induce PU.1 in HSC, instructing early commitment towards the myeloid lin-
eage [15]. Other regulators of this negative loop are miR-17-5p, miR-20a, and miR106a,
as described in detail in [15,16]. Their reduced expression increases the expression of the
M-CSF receptor. The overexpression of miR-21 and miR-196b have been shown to promote
monopoiesis over granulopoiesis. Both miRNAs are important in the generation of mature
monocytes [17]. The role of miR-146a in monopoiesis is not fully understood; however, the
overexpression of miR-146a inhibits megakaryopoiesis, and the lack of miR-146a expression
in knock-out mice (miR146a−/−) results in myeloproliferation [9]. NFκB, a transcription
factor involved in the regulation of normal and malignant hematopoiesis, controls the
transcription of miR-146a. miR-146a is crucial in regulating monocyte function (see below).
A summary of the miRNAs involved in the differentiation of stem cells to monocytes is
presented in Figure 1 and Table 1. In cancer, the bone marrow dramatically accelerates
the production of monocytes (monopoiesis) [18]. The elevated level of cytokines such as
G-CSF, GM-CSF and M-CSF in the serum and low grade of systemic inflammation, which
coexists with cancer, contribute to myeloid expansion [19,20]. Monocytes are also produced
during cancer progression by extramedullary hematopoiesis [21]; however, only a slight
(approximately 2%) support is given from the spleen reservoir [18].
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Figure 1. miRNA and transcription factors involved in monocyte formation.

3. Monocytes’ Journey in the Blood

The release of monocytes from the bone marrow is regulated by CCR2 and CXCR4
receptors and the signaling associated with them. Monocytes’ exposure to CCL2 (MCP-1)
enables their egress by weakening the anchoring of CXCR4 in the bone marrow. Monocytes
in bone marrow differ in the level of CXCR4 expression. A higher expression of CXCR4
causes their immobilization in bone marrow [22] and usually correlates with a lower ex-
pression of CCR2 [23]. The cross-desensitization model of monocytes’ egress from the bone
marrow assumes that under inflammatory conditions the increased availability of CCL2 de-
sensitizes CXCR4 [23,24]. In a mouse model, the expression of CCR2 is regulated indirectly
by miR-33 and miR-146 [25,26]. It was shown that CXCR4 expression on mononuclear
cells in the bone marrow is regulated by miR-150 [27]. Abrogation of miR-150 by hypoxia
significantly increases CXCR4 expression on bone marrow-derived mononuclear cells [27]
(Table 1).

The CCR2–CCL2 signaling axis is crucial also for the mobilization of classical mono-
cytes to the tumor site [21,28]. Increased serum level of CCL2 has been observed in patients
suffering from different cancers (gastric, pancreatic, prostate, lung) [29–31]. These types of
cancer have been also associated with an elevated level of circulating monocytes (summa-
rized in [28,32]). The release of monocytes from the spleen during cancer progression is
CCR2 independent and is instead associated with angiotensin II signaling [28,33].

Circulating monocytes differ in their CXCR4 expression, which results in different
homing preferences. Tumor cells, by secreting TGFβ, upregulate the expression of CXCR4
on monocytes and facilitate their migration towards the CXCL12 gradient [34]. In col-
orectal cancer, recruited CXCR4+ cells are predominantly immunosuppressive (resemble
Ly6Clow) [35], whereas monocytes with lower CXCR4 expression have an enriched profile
of genes associated with the innate response [22].
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Table 1. miRNA in monocytes’ fate.

Monocytes’ Fate microRNA Targets References

development

miR-182 C/EBPα [8]
miR-125 IRF-4, Bak1, KLF13, BMF [9]
miR-34 C/EBPα [8]

miR-155 PU.1 aC/EBPα, CSFR1 [9]
miR-223 NF-1A, E2F1, IKK-1α [8,9]

miR-17-5p RUNX1 [15,16]
miR-20a RUNX1 [15,16]
miR-106a RUNX1 [15,16]

miR-21 G-CSF [17]
miR-196b G-CSF [17]
miR-146a TRAF6, IRAK1 [9]

differentiation

miR-223 IKKα, E2F1 [36,37]
miR-17 ATG7 [38]
miR-22 PU.1 [39]

miR-106a RUNX1, CSFR1 [16,40]

activity

egress from bone
marrow/circulation

miR-19a

miR-33
miR-146
miR-150

myosin-IXb, filamin 2,
RUNX3

Hmga2, HDL-C
CCR2

CXCR4

[41]

[25]
[26]
[27]

inflammatory response

miR-146a

miR-146b
miR-132
miR-155
miR-21

NFκB, IRAK1, IRAK2,
TRAF6, STAT1, IRF5, Relb

STAT3
IRAK4

BCL6, SOCS1, SHIP1
PDCD4

[9,25,26,42]
Curtale et al., 2013

[43]
[9,43–45]

[9]

phagocytosis
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4. Monocytes—Diversity and Cancer

Blood monocytes constitute a heterogeneous population of cells according to their
phenotype and function. In humans, circulating monocytes are divided into three subsets,
as introduced by Ziegler-Heitbrock et al. in 2010 [5]. The presented review adheres to/is
consistent with this nomenclature. The three subsets are described by the gradual change in
the expression of CD14 (a lipopolysaccharide co-receptor) and CD16 (an immunoglobulin
γ receptor, FcγRIII) markers [5] (Figure 2).

1 

 

 

Figure 2. A dot plot representing three subsets of human monocytes according to the expression of
CD14 and CD16 supplemented with data concerning upregulated miRNA [41,49,50].
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Classical CD14++CD16− monocytes represent about 75–85% of the total number of
human monocytes and are the counterparts of mouse Ly6Chigh cells. The subsets are
homologous between species, but there are important differences in subset-specific gene
expression; thus, these findings cannot be directly translated from mice to humans [51].
Classical monocytes express high levels of CD14 (co-receptor to TLR4, known receptor for
LPS), CCR2 and lower levels of HLA-DR. Classical monocytes display high motility towards
inflamed tissue and enormous phagocytic potential, which makes them scavenger and
rapid reaction force cells [52]. Classical monocytes remain in the blood for roughly 1 day
and after that approximately 99% of them leave the circulation [2]. This subset is a major
producer of anti-inflammatory IL-10 after endotoxin stimulation [53,54]. The motility of
CD16− monocytes is regulated by miR-19a [41]. Prediction analysis has indicated more than
170 target genes involved in cellular movement that might be regulated by miR-19a [41].
The lower susceptibility of the CD16− monocytes to undergo spontaneous apoptosis may
be attributed to the low expression of miR-432, which is predicted to regulate a few genes
with anti-apoptotic function [41]. Both the decline and elevation of this subpopulation in
various malignancies had been observed. The relevant decrease of CD14++ monocytes was
stated in metastatic melanoma [55] and gastric cancer patients [56]. In contraposition to
this report, classical monocytes were meaningfully increased in chronic myelomonocytic
leukemia (CMML) [57]. The level of classical monocytes is a potentially predictive marker
for anty-PD1 therapy response and patient survival in advanced melanoma [58].

CD14++CD16+ monocytes are defined as intermediate and, together with the non-
classical CD14+CD16++ subset, are analogous to mouse Ly6Clow cells; both are referred to
as“proinflammatory” [5]. CD14+CD16++ cells are described also by CX3CR1high or Slan
(6-sulfoLacNAc) expression [59,60]. Intermediate monocytes have a longer lifespan than
classical monocytes and circulate in the blood for approximately 4 days [2,3]. Nonclassical
monocytes are present in the blood for approximately 7.5 days [2]. CD16+ cells patrol the
endothelium, transmigrate through a layer of resting endothelial cells and preferentially
give rise to dendritic-like cells or macrophages [61,62]. The process of differentiation to den-
dritic cells is regulated by miR-34 and miR-342, which are expressed abundantly in CD16+

monocytes [41]. Functionally, non-classical monocytes are less phagocytic than classical
and intermediate monocytes; however, they are extremely important in proinflammatory re-
sponse (TNF), angiogenesis and the production of ROI (reactive oxygen intermediates) [52].
In the tumor microenvironment, non-classical monocytes are involved in the resolution of
inflammation and scavenging tumor-derived materials, e.g., extracellular vesicles [61,63].
The non-classical subset expresses a remarkably high basal level of miR-146a, a known
negative regulator of the TLR pathway [26,64]. An elevated level of non-classical mono-
cytes was observed in endometrial or breast cancer patients in comparison with healthy
controls. This expansion was associated with a significant increase in CX3CL1 and a reduc-
tion in CCL2 levels in cancer patients’ sera [65,66]. An increased ratio of non-classical to
CD14++ monocytes was observed in patients with multiple myeloma [58]. An increase in
the percentage of non-classical and intermediate monocytes was also observed in gastric
cancer patients [56]. Additionally, in the cohort study of pediatric patients with solid
tumors (neuroblastoma, Wilms’ tumor, retinoblastoma, hepatoblastoma, rhabdomyosar-
coma, osteosarcoma, Ewing sarcoma and others) the relevant increase of intermediate
and non-classical monocyte subsets was observed and positively correlated with longer
overall survival [67]. A significantly elevated percentage of CD16++ monocytes was also
observed in adult solid cancer patients in comparison to noncancerous, systemically ill
patients (e.g., after trauma) [68]. There is also growing evidence implicating non-classical
monocytes in the prevention of hematogenic spread of cancer metastasis [63]. Furthermore,
a lung cancer mouse model lacking “patrolling” monocytes (Nr4a1 knockout mice) resulted
in an increase in metastasis formation [63]. However, elevated level of CD14+CD16++

monocytes was related to poor prognosis in patients with cholangiocarcinoma [69]. Be-
sides this, a lower survival rate in gastric HER-2-negative patients was correlated with
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non-classical monocyte tumor infiltration [70]. The conflicting data indicates the divergent
roles of non-classical monocytes in different phases of tumor disease.

To date, only a few reports on circulating intermediate subset of monocytes in can-
cer patients have been published. Intermediate monocytes are major producers of TNF,
IL-1β and reactive oxygen species in comparison to the other monocyte subsets [56,71].
Intermediate monocytes exhibit proangiogenic properties, as they express high level of
VEGFR2 [72]. An increase of the intermediate subpopulation was observed in patients with
ovarian, lung, gastric, colorectal and oral squamous cancer [56,73–76]. A decreased level of
intermediate monocytes was observed in head and neck cancer patients [77]. The confusing
and contradictory observations presented above highlight the need to understand the
mechanism responsible for the functional heterogeneity of monocytes.

The currently adopted model of the origin of non-classical and intermediate monocytes
positions them as a sequential transition from classical monocytes [3]. A recent paper
by Tak et al. supported the hypothesis of a linear differentiation pattern from classical
monocytes via intermediate to non-classical monocytes [3]. This transition pattern is
promoted by serum CCL2 [13]. It was proposed that 1% of classical monocytes end up as
circulatory intermediate monocytes [2]. Interestingly, all intermediate monocytes mature
in the circulation to become non-classical monocytes [2] Tak at al. assumed that the
differentiation of non-classical monocytes from the intermediate subset occurs outside the
blood (intermediate cells leave the circulation and return as non-classical monocytes) [3].
It is estimated that about 80–100% of the intermediate subset pool differentiate into non-
classical monocytes [2,3]. How classical monocytes are selected to differentiate into non-
classical monocytes or how they migrate into the tissue is still unknown. The miR reported
to be responsible for regulating the functional heterogeneity of monocyte subsets is miR-
146a [26]. RELB, a member of the NF-κB/Rel family, is a direct target of miR-146a. Both,
RELB and its negative regulator miR-146a preferentially control the expansion of Ly-6high

monocytes in mice (the equivalent of human classical monocytes) [26]. However, recent
studies suggest the role of Notch-2 signaling, which promotes the expression of miR-150.
miR-150 expression in non-classical monocytes was 10 fold higher than in the classical
subset [78]. The major target of miR-150 is TET3. TET3 belongs to the dioxygenase family,
which regulates DNA methylation [78]. The orphan transcription factor NR4A1 (nuclear
receptor subfamily 4 group A member 1) is required for the differentiation of classical into
non-classical monocytes, as investigated in a mouse model [79]. However, as mentioned
above, in the mouse model, Ly6Clow cells are the counterpart of human non-classical and
intermediate monocytes. The latter demonstrated high levels of miR-124-3p [80], which
was described as a regulator of NR4A1 [81].

Circulating monocyte subsets differ in miRNA expression. An initial/preliminary
study by Dang et al. [41] identified 66 miRNAs that were differentially expressed between
CD16+ and CD16− monocytes. Targets of differentially expressed miRNAs were mostly
related to motility and cell death processes [41]. miRNA-17, miRNA-18a/b, miRNA-
19a/b, miRNA-20b, miR-27a, miRNA-106a, miR-119-5b and miR-345 were overexpressed in
classical monocytes, whereas miRNA-132, miRNA-146a, miRNA-342-3p, miR-379, miR-382,
miR-411, miR-637 and miR-654-3p were overexpressed in non-classical monocytes [50,82]
(Figure 2). Recently, the Ziegler-Heitbrock group presented a lower expression of miR-20a
and miR-106b in non-classical monocytes defined by both CD14/CD16 expression and via
Slan [83].

miRNA analysis of intermediate subpopulations has only been done by Zawada
et al. [49]. In this very elegant study, they reported 38 miRNAs that were differentially ex-
pressed in the intermediate subset compared to both classical and non-classical monocytes
(ibid). Two of them differed in expression more by than 10- and 12-fold: miR-150-5p was
downregulated and miR-6087 was upregulated, respectively. Other miRs were linked to
distinct biological processes such as cell differentiation, gene regulation, TLRs signaling
and antigen presentation. In general, intermediate and non-classical monocytes had the
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highest similarity in miRNA expression, and the largest differences were found between
classical and non-classical monocytes [49].

Shu et al. presented the differentially expressed miRNAs of blood monocytes derived
from gastric and breast cancer patients and healthy donors [84]. 74 miRNAs were sig-
nificantly upregulated in both breast and gastric cancer patients compared with healthy
donors, while 46 miRNAs were significantly downregulated in cancers. Most of the target
genes of the miRNAs were involved in tumorigenesis including signaling pathways of
cancer progression, such as the mTOR signaling, the HIF-1 and the calcium signaling
pathways [83].

5. Activation of Monocytes—The Role of miRNA

Circulating monocytes are searching for signals that may lead either to their activation,
differentiation or death. Inflammatory stimuli such as TLR ligands or proinflammatory
cytokines (TNF, IL-1) induce the expression of 200 miRNAs including miR-146a, miR-
146b, miR-132 and miR-155 [42]. miR-146a serves as a negative regulator of NFκB by
reducing phosphorylation of IκB, which allows its release from the IκB/NFκB complex.
miR-146a also targets TRAF6, IRAK1, IRAK2 and IRF3 and controls the TLR4 signaling
pathway (Table 1). The enhanced expression of miR-146a limits the inflammatory response
of monocytes [42]. The increase of miRNA-146b in monocytes/macrophages may be
also mediated by IL-10-dependent STAT3, which may result in the reduction of the LPS-
dependent production of inflammatory mediators [85]. Nahid et al. described the induction
of miR-132 after TLR2 ligation and hypothesized a feedback regulatory mechanism of miR-
132 on the TLR2 signaling cascade, mediated by miR-132 targeting IRAK4 [43]. On the other
hand, miR-155 enhances the production of proinflammatory cytokines in monocytes and
macrophages and is referred to as a proinflammatory miRNA. The increased expression of
miR-155 induced CCL2 secretion by stimulated monocytes/macrophages. It was reported
that miR-155 inhibits BCL6, an inhibitor of NFκB [44]. miR-155 activation involves the JNK
pathway and results in AKT kinase activation [86].

The role of miRNAs in the regulation of phagocytosis is poorly understood. To date,
four miRs have been described as negative regulators of phagocytosis, e.g., miR-24, miR-
30b, miR-124-5p and miR-142-3p [46,47]. miR-142-3p directly regulates protein kinase C
alpha (PKCα), a key gene involved in phagocytosis. miR-24 and miR-30b regulate the
production of TNF-α, IL-6 and IL-12p40, which are associated with active phagocytosis [46].
miR-124-5p is involved in the regulation of the activity of the actin cytoskeleton. The
direct targets of miR-124-5p are ARPC3 and ARPC4 transcripts, which result in reduced
expression of the ARP2/3 complex, a crucial regulator of actin polymerization [47]. miR-
21 was described as directly implicated in switching wound-associated macrophages to
an anti-inflammatory status after the engulfment of apoptotic cells or efferocytosis [28].
miR-21 downregulates the inflammatory response via the blocking of PTEN and PDCD4 in
TNF-NFκB and IL-10-AP1 pathways [48] (summarized in Table 1).

Cancer cells can alter the activity of circulating monocytes. It has been observed that in
cancer patients’ blood, the proportions of monocyte subsets are changed, as described above
(“Monocytes—Diversity and Cancer”). Moreover, during tumor development, monocytes
with the immunosuppressive phenotype (the downregulation of HLA-DR and upregulation
of PD-L1), which are called myeloid-derived suppressor cells (Mo-MDSC), are induced [87].
Finally, monocytes exhibit an altered response to stimuli, e.g., proinflammatory [88] or
cancer-related [89]. This process, called “cancer education” or “selective deactivation”, has
been described in different types of cancers [89,90]. Cancer forces the differences in the
transcriptional profiles of monocytes’ genes, e.g., in breast cancer it applies to 865 genes,
and in endometrial cancer to 997 genes. A substantial number of upregulated genes were
shown to be involved in cell migration, angiogenesis, cell communication and apoptotic
process, as reviewed in [33].
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6. Macrophage—A Destination of Monocytes

Tissue macrophages are persistent and self-renewing cells [7]. Most of them are
established prenatally [7]. However, in adults, tissues are also populated by macrophages
derived from bone marrow precursor cells (which could differ from blood monocytes) and
by blood monocyte-derived macrophages [7]. Macrophage replenishment is also due to
self-renewal [91]. The monocytic origin of tissue macrophages has become a dogma of the
mononuclear phagocyte concept, as introduced by Van Furth [92].

For circulating monocytes, cytokines such M-CSF and GM-CSF are the most important
signals which trigger their movement into the tissue and differentiation into macrophages
or dendritic cells. Under physiological conditions, macrophage homeostasis is regulated by
quorum sensing mechanisms in which the M-CSF factor is pivotal. This hypothesis assumes
that macrophage survival and proliferation are controlled by the presence of M-CSF in
the surroundings and its consumption by them [93]. The homeostatic balance is owed to
M-CSF, while GM-CSF is a product of inflammatory activated cells, which contribute to
the proinflammatory activation of monocytes [94]. The crucial stage in M-CSF- or GM-
CSF-dependent differentiation into macrophages is autophagy, which helps to prevent
caspase-3 dependent apoptosis [95,96]. Autophagy in monocytes is ATG7-dependent [97].
The ATG7 gene is negatively regulated by miR-17 [38], which is abundantly expressed
in classical monocytes [51]. Another miR involved in the differentiation of monocytes
into macrophages is miR-223. The decrease of miRNA-223 causes the repression of IKKα,
a component of the NFκB pathway, which then results in the induction of p52 and the
repression of both canonical and non-canonical NFκB pathways [36]. In monocytes, miR-
223 targets a cell-cycle regulator E2F1, and by blocking the cell-cycle enables differentiation
and an exit from the cell cycle [37]. The upregulation of miR-22 in monocytes promotes their
differentiation by increasing c-JUN expression and its interaction with PU.1, which controls
the whole differentiation process [39]. Macrophages exhibit elevated levels of miR-424-5p,
-362-3p, -335-5p and miR-106 in comparison to progenitor cells, which illustrates the role of
these miRs in monocytes differentiation [40].

Tumor cells and non-malignant tumor-associated cells (e.g., cancer-associated fibrob-
lasts, stromal cells) secrete a variety of inflammatory factors (IL-6, IL-34, IL-17, M-CSF),
chemokines (CCL2, CCL7, CXCL8, CX3CL1) and miRs involved in the recruitment of
surrounding macrophages and blood monocytes into the tumor site [40,98]. Breast can-
cer cells were reported to express high levels of miR-375, which promotes macrophage
infiltration via CCL2 [98]. However, the mechanism of how miR-375 enhances CCL2
expression remains unknown. CCL2, in addition to being a strong chemoattractant, can
protect monocytes against apoptosis in the tumor microenvironment by upregulating anti-
apoptotic proteins and inhibiting caspase-8 cleavage [99]. The overexpression of miR-125
in tumor cells leads to the inhibition of M-CSF and CX3CL1 production by tumors and in
consequence the reduction of macrophages recruitment [40,100]. Low levels of miR-148b
in hepatocellular carcinoma cells causes the enhanced secretion of M-CSF, which in turn
increased macrophages infiltration [40].

Macrophages can be also recruited to the tumor by hypoxia. The differentiation
process of blood monocytes (well-oxygenated environment) into macrophages (hypoxic
area) changes the expression pattern of hypoxia-inducible factors Hif-1α and Hif-2α, key
regulators for the adaptation to hypoxia. This process is associated with a downregulation
of the miR-17 -92 cluster, as both Hif-α subunits are targeted by miR-17 and miR-20a [101].

Macrophages that infiltrate the tumor site can adapt their activity to the environ-
ment in order to start acting as tumor-associated macrophages (TAM) and to constitute a
distinguishable subset of myeloid cells within the tumor stroma. The process by which
macrophages produce distinct functional phenotypes in response to environmental stimuli
is called polarization [102]. TAM can act as an anti-cancer defender/protector (mostly
polarized to M1 or M1-like) but are more likely to support tumor development as M2-
polarized macrophages (or M2-like). In many tumors, macrophages of different functional
activities may coexist. However, the variety of macrophage subsets makes it hard to find



Biomolecules 2022, 12, 100 9 of 19

a reliable marker for TAM [103]. In the initial classification, the M1/M2 polarity was
based on different metabolic pathways for arginine. M1 macrophages used the iNOS
pathway, in contrast to the arginase pathway, are used by M2 cells [102,103]; however, this
classification was based on in vitro experiments and does not fully reflect the diversity
of macrophages in vivo. In 2008, Mosser and Edwards proposed the new classification
of macrophages. They distinguished three major populations, referred to as classically
activated (microbicidal activity, mostly similar to M1), wound healing (tissue repair) and
regulatory macrophages (anti-inflammatory activity, mostly similar to M2) [104]. The graph-
ical presentation of a color wheel visualized the remarkable plasticity of macrophages,
which allows them to change their physiology (color) in response to the environment.
Classical macrophages, activated by inflammatory stimuli, e.g., IFN γ and TNF, produce
pro-inflammatory cytokines and mediators. Wound-healing macrophages can develop in
response to innate or adaptive signals, e.g., IL-4, from injured tissues. The third group
of macrophages (regulatory) is generated in response to different stimuli including the
combination of TLR ligands, immune complexes or prostaglandins, and is an important
producer of TGFβ and IL-10 [104]. Classically activated macrophages with inflammatory
phenotypes are dominant in the earliest stages of cancer. During tumor progression, the mi-
croenvironment changes the macrophages, which infiltrate the tumor’s neighboring tissue
in a way that closely resembles regulatory macrophages. In this classification, TAM share
the characteristics of both regulatory and wound healing macrophages and are located in
the green area of the color wheel [104].

The polarization of macrophages is regulated at the transcriptional level, e.g., NFkB,
STAT1 and C/EBPα mediate M1 polarization by TLR signaling proinflammatory cytokines.
IRF4, C/EBPα, KLF4, STAT3 and STAT6 promote M2 polarization [15]. The plasticity of
TAMs is regulated, inter alia, by miRNA. miRNAs such as miR-9, miR-21, miR-24, miR-26a,
miR-125a, b miR-143, miR-145, miR-146a, miR-148, miR-155, miR-187, miR-223, miR-378-3p,
miR-511-3p and others have been implicated in the macrophage polarization process [15].
The short list of miRNAs involved in macrophage polarization is presented below (Table 2).

Table 2. Summary of miRNAs involved in polarization of macrophages.

miRNA Targets Mechanism of Action Ref.

miR-let7c C/EBP-δ Promotes M2 by reducing the expression of M1 related genes, e.g., iNOS
and IL-12, and increasing levels of M2 markers. [105,106]

miR-9 NFkB1
PPARδ

Negative regulator of TLR4 signaling, inhibits proinflammatory
responses in monocytes/macrophages by suppressing NF-kB1 transcript

encoding for the NF-kB subunit p50.
miR-9 could also function as a positive regulator of NF-kB signaling by

limiting the formation of inhibitory complexes.
miR-9 enhances M1 polarization. miR-9 suppresses PPARδ activity and

prevents Bcl-6 mediated anti-inflammatory effects.

[15,106,107]

miR-21 M-CSF-R
PDCD4

miR-21 suppresses the expression of proinflammatory genes, e.g., iNOS,
TNFα and IL-6, and induces the transcription of M2 genes: Arginase1,

MRC1, FIZZ and IL-4Rα
After induction by LPS, acts as negative regulator of TLR4 signaling by

targeting proinflammatory PDCD4, a tumor suppressor.

[9,108]

miR-26a
KLF4

M-CSF
PI3K/Akt

The downregulation of miR-26a facilitates the upregulation of KLF4,
which increases arginase activity (M2).

Its expression leads to the regulation of M-CSF, causing the reduced
recruitment of macrophages in HCC (hepatocellular carcinoma).

[108,109]

miR-29-3p SOCS1/STAT6 Promotes M2 polarization by targeting SOCS1/STAT6, leading to their
overexpression. [110]
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Table 2. Cont.

miRNA Targets Mechanism of Action Ref.

miR-124 MCP-1 (CCL2)

Downregulates the expression of CCL2 via direct binding to the 3′UTR of
CCL2. The expression of miR-124 is controlled by the expression of

ICAM-1, an adhesion molecule on macrophages. Depletion of ICAM-1
leads to M1 polarization because of the lack of CCL2. ICAM-1 induces
the expression of the transcription factor Sp1, which regulates miR-124

expression in macrophages.

[111]

miR-125a/b
miR-125a-p5

IRF-4
KLF13

Promotes M1 via targeting IRF-4, a negative regulator of the
proinflammatory response. The overexpression of miR-125 results in an

increased proinflammatory response via, e.g., the enhancing surface
expression of MHC II, CD40, CD86, CD80 and IFN-γR.

Is involved in the maintenance of M2 macrophages while suppressing
the M1 phenotype by KLF13.

[105,112]

miR-127 Bcl-6 Promotes M1 via the targeting of Bcl-6, leading to the limited expression
of Dusp1, a negative regulator of JNK activation. [113]

miR-142-3p TGFβ Controls the modulation of macrophages to the M2 phenotype through
transforming the growth factor beta (TGFβ) signaling pathway. [114]

miR-146a

Notch1
TRAF-6
IRAK1
NFkB

Reduces the level of M1-marker genes (e.g., iNOS, CD86, TNF, IL-12 and
IL-6), and increases the production of M2-phenotype markers (e.g., Arg1,

CCL17, CCL22 and CD206).
It is a bona fide negative regulator of NFkB.

Suppresses the proinflammatory response and enhances the activation of
M2 macrophages via the inhibition of the Notch1 pathway.

[15,85,115]

miR-148a PTEN
SIRPα

Promotes M1 polarization and inhibits M2 polarization upon Notch
activation (the reduction of PTEN leads to the activation of AKT and

NFkB).
miR-148a downregulates the expression of SIRPα (a negative regulator of

phagocytosis) on M1 cells.

[116,117]

miR-155-3p
miR-155-5p

INPP5D
PI3K/AKT SOCS1
SHIP1 TSPAN14
INPP5D MAFB

Promotes inflammation by stopping the expression of INPP5D, an
inhibitor of the PI3K/AKT signaling pathway, and SOCS1, which

inhibits STATs activity.
[118]

miR-187 MAIL (NFKBIZ)
TNFA

Induces the anti-inflammatory response in macrophages by regulating
IL-10 secretion. Its overexpression leads to the reduction of the TNFα,

IL-6 and IL-12p40 secretion of monocytes activated by LPS.
[15]

miR-223 STAT3
Highly expressed in M2 macrophages. miR-223 overexpression

downregulates IL-6 and IL-1b, but not TNF-alpha in TLR-activated
macrophages

[119]

miR-375 TNS (tensin3) PXN
(paxillin)

Facilitates the recruitment of M2 by acting on CD36. TNS3 and PXN,
regulators of cell migration, are direct targets for miR-375. Their

downregulation enhances macrophage migration and tumor infiltration.
[98]

miR-378-3p PI3K/Akt pathway
miR-378 is induced by IL-4 and negatively regulates AKT1 signaling in

macrophages. miR-378 promotes M2 polarization by, e.g., the
upregulation of Arg1.

[120]

miR-511-3p
CCL2
MRC1
Rock2

Its overexpression leads to the induction of macrophage differentiation to
M2 phenotype by reducing the mRNA levels of CCL2.

Highly expressed in M2 macrophages and is a coregulator of the
mannose receptor expression.

By targeting Rock2 (kinase phosphorylating IRF4), miR-511-3p supports
the expression of M2-related genes

[121,122]

7. Promising Therapies

The progression of various cancers could be enhanced or diminished by the func-
tional activity of macrophages. By regulating macrophage polarization, miRNAs could
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affect cancer development/outcomes. Although the miRNAs which regulate the polariza-
tion of macrophages are known (see above), there is still a lack of clinical trials enabling
their utilization.

Among those miRNAs, the most promising studies are associated with miR-155,
which could induce the repolarization of M2 to M1 macrophages. In the mouse S-180
sarcoma model, the transfection of miR-155 mimics (double-stranded RNAs, which mimics
mature miR-155) to M2 cells induces a switch from M2 to M1 polarized cells. Transduction
of pre-miR-155 to M2 macrophages induced apoptosis in Lewis lung carcinoma (LLC)
cells [123]. The mechanism is unknown, but some studies suggest that the overexpression
of miR-155 leads to the suppression of the C/EBP- β signaling cascade [124]. The potential
targets of miR-155 are the SH2-containing inositol-5′phosphatase 1, IL13Rα1 or SMAD2/3
and the suppression of the signaling cascades regulated by these molecules promotes M1
macrophages [45,125,126]. Also, in the pancreatic cancer model, it was presented that
exosomes derived from Panc-1 cells transfected with miR-155 or miR-125b-2 resulted in
macrophages (J771.A1) reprogramming from the M2 to the M1 phenotype. Transfection
was facilitated by hyaluronic acid-poly (ethylene imine; non-viral vector; HA-PEI), which
targeted the CD44 molecule on macrophages. Similar results were obtained in the study of
lung cancer in mice model using miR-125b [127,128].

Another study revealed that miR-19a-3p is downregulated in M2 macrophages
(RAW264.7) in the mouse breast cancer model. The expression of miR-19-3p correlated with
the increased expression of the Fra-1 gene (protooncogene) in breast cancer cells [129]. The
use of miR-19a-3p mimics significantly suppressed the expression of Fra-1 downstream
genes such as VEGF, STAT3 and pSTAT3. In vivo, intratumorally injected miR-19a-3p in-
hibits the capacity of breast tumor cells (4T1) to migrate and invade. Moreover, miR-19a-3p
inhibits the glucocorticoid pathway activating the STAT3 and NFAT and promotes M2
polarization [129].

Some in vitro and in vivo studies showed that miRNA could also control the activity
of M-CSF. In 2016, M-CSF was identified as a target of miR-1207-5p in lung cancer cell line
A549 [130]. miR-1207-5p contributes to an increase in the secretion of IL-12 and IL-23 and
to a decrease in IL-10 and VEGF [110] by regulating STAT3 or AKT kinase. Moreover, this
miRNA, via controlling the expression of a few various molecules (e.g., SNAIL, SMAD2
or Vimentin), impacts the regulation of the epithelial–mesenchymal transition (EMT). In
the mouse model of lung cancer, the overexpression of miR-1207-5p contributes to the
suppression of metastasis formation. In non-small cell lung carcinoma tissues, miR-1207-5p
is downregulated and correlates with the upregulated expression of M-CSF [130]. The
expression of M-CSF is also regulated by miR-26a. In the hepatocellular carcinoma model
(HCC), miR-26a contributes to the stimulation of pro-inflammatory M1 macrophages by
downregulating the expression of M-CSF [130]. The elevated expression of M-CSF correlates
with a higher frequency of cancer metastasis in many cancer types, e.g., papillary retinal cell
carcinomas, breast cancer or HCC. In the vitro model of breast cancer, miR-21 negatively
regulates the expression of M-CSF via the regulation of the PI3K/Akt signaling pathway.
The inhibition of miR-21 expression by docosahexaenoic acid leads to increased levels of
the tumor suppressor protein (PTEN), which prevents the expression of M-CSF [131].

There are also potential anti-tumor therapeutic strategies focusing on the inhibition
of autophagy. The autophagic metabolism is characteristic for M2 macrophages and
could be potentially useful to modify TAMs polarization. The study presented by Li and
collaborators proves the role of miR-498 in the regulation of autophagy in M2 macrophages
in esophageal cancer. In this model, the inhibition of MDM2 (mouse double minute
2 homolog)-mediated ATF3 (cyclic AMP-dependent transcription factor) degradation by
miR-498 led to both autophagy and the suppression of M2 polarization [132].

Another study showed that diminishing the expression of oncogenic miR-9 in HCC
with the use of sponge circMTO1 results in the inhibition of tumor growth. This results
in the promotion of the expression of p21, which has a tumor-suppressive role in HCC
development [133]. Breast cancer metastasis is promoted by an endogenous noncoding
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RNA called circIRAK3, which sponges miR-3607. miR-3607 causes the downregulation
of FOXC1 (forkhead box C1) [134]. The use of circRNAs that could bind to oncogenic
miRNAs and regulate the activity of endogenous circRNAs, which binds to suppressor
miRNAs, could be a potential therapeutic strategy; however, further studies are needed to
comprehend the mechanisms underlying such regulations.

Another therapeutic strategy against tumors is radiotherapy. However, some tumors
could develop resistance to that kind of therapy. In endometrial cancer (EC), resistance was
achieved due to exosomes released by infiltrating tumor M2 TAMs. Exosomes carry in abun-
dance circular RNAs (has_circ_0001610). The released has_circ_0001610 absorb/compete
with miR-139-5p, causing the upregulation of cyclin B1. These processes lead to the in-
crease of radiotherapy resistance in EC. The knockdown of has_circ_0001610 in in vitro
and in vivo results in the increased radiosensitivity of EC. This study showed that knowl-
edge about complicated miRs machinery in macrophages could help to increase cancer
sensitivity to therapies, e.g., radiotherapy [135].

8. Conclusions

The life span of monocytes and macrophages is controlled by miRs; miRNAs control all
stages of monocyte development, activation and differentiation. miRs control macrophage
activity in tumors, and changes in the profile of miRNAs may impact the macrophage
response to tumor cells by promoting a switch from M2 to M1 cells and/or preventing M2
polarization. Current studies indicate the possibility of using different miRs to ‘control’ the
behavior of macrophages and tumor cells. These strategies include a direct interference in
M2 to M1 switching (e.g., miR-155) or the regulation of cellular processes such as autophagy
(e.g., miR-498), invasiveness (e.g., miR-19a-3p) and growth (e.g., miR-9) in tumor cells
themselves. All these examples strongly encourage the exploitation of miRs in clinical trials
as good candidates for modern forms of anti-tumor immunotherapy, with the potential of
either stimulating an appropriate response from the immune cells infiltrating the tumor or
by exerting certain changes in the tumor cells themselves.
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Akt Protein kinase B
ARPC Actin Related Protein Complex
ATF3 cyclic AMP-dependent transcription factor
ATG7 Autophagy related protein 7
BCL6 B-cell lymphoma 6 protein
C/EBPα CCAAT/enhancer binding protein α

C/EBP-δ CCAAT/enhancer binding protein δ

CCR2 c-c chemokine receptor type 2
CD14 a lipopolysaccharide co-receptor
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CD16 an immunoglobulin γ receptor, FcγRIII
CMML chronic myelomonocytic leukemia
CMP common myeloid progenitor
CSFR1 Colony Stimulating Factor 1 Receptor (M-CSFR)
CX3CL1 c-x3-c motif chemokine ligand 1
CX3CR1 c-x3-c motif chemokine receptor 1
CXCL12 (SDF) c-x-c motif chemokine ligand 12
E2F1 E2F transcription factor 1
FOXC1 forkhead box C1
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
GMP Granulocyte-Macrophage Progenitor
HA-PEI hyaluronic acid-polyethylene imine
HCC hepatocellular carcinoma
HIF-1 Hypoxia-Inducible Factor 1
HLA-DR Human Leukocyte Antigen class II
HSC Hematopoietic Stem Cell
IKKα IκB kinase α

iNOS inducible Nitric Oxide Synthase
INPP5D Inositol Polyphosphate-5-phosphatase D
IRAK1 Interleukin 1 Receptor Associated Kinase 1
IRAK2 Interleukin 1 Receptor Associated Kinase 2
IRAK4 Interleukin 1 Receptor Associated Kinase 4
IRF3 Interferon Regulatory Factor 3
IRF8 Interferon Regulatory Factor 8
JNK c-Jun N-terminal kinase
KLF4 Kruppel Like Factor 4
KLF13 Kruppel Like Factor 13
LLC Lewis Lung Carcinoma
LPS lipopolysaccharide
MAFB MAF BZIP transcription factor B
MAIL (NFKBIZ) NFKB inhibitor Zeta
MCP-1 (CCL2) Monocyte Chemoattractant Protein-1
M-CSF Macrophage Stimulating Factor
MP Macrophage Progenitor
MPP Multipotent Progenitor
MRC1 Mannose Receptor C-type 1
mTOR mammalian Target of Rapamycin kinase
NFAT Nuclear Factor of activated T-cells
NFKB1 Nuclear Factor kappa B subunit 1
NFκB Nuclear Factor kappa-light-chain-enhancer of activated B cells
NR4A1 Nuclear Receptor subfamily 4 group A member 1
PD-1 Programmed cell Death receptor 1
PDCD4 Programmed Cell Death 4 protein
PI3K Phosphoinositide 3-kinase
PKCα Protein kinase C alpha
PPAR Peroxisome Proliferator-Activated Receptor
PTEN Phosphatase and Tensin homolog deleted on chromosome ten
PU.1 Purine -rich box 1
PXN paxillin
ROCK2 Rho-associated coiled-coil kinase 2
ROI Reactive Oxygen Intermediates
RUNX1 Runt-related transcription factor 1
SDF-1 (CXCL12) α-chemokine receptor specific for stromal-derived-factor-1
SHIP1 src homology 2 domain containing inositol polyphosphate 5-phosphatase 1
SIRPα Signal regulatory protein α

SOCS1 Suppressor of Cytokine Signaling 1
STAT1 Signal Transducer and Activator of Transcription 1
STAT3 Signal Transducer and Activator of Transcription 3
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STAT6 Signal Transducer and Activator of Transcription 6
TAM Tumor Associated Macrophages
TGFβ Transforming Growth Factor β
TLR Toll-like Receptor
TLR2 Toll-like Receptor 2
TLR4 Toll-like Receptor 4
TNF Tumor Necrosis Factor
TNS tensin 3
TRAF6 TNF Receptor Associated Factor 6
TSPAN14 tetraspanin 14
VEGFR2 Vascular Endothelial Growth Factor Receptor 2
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