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Abstract: Accurate assessment of physical fatigue is crucial to preventing physical injury caused by
excessive exercise, overtraining during daily exercise and professional sports training. However, as
a subjective feeling of an individual, physical fatigue is difficult for others to objectively evaluate.
Heart rate variability (HRV), which is derived from electrocardiograms (ECG) and controlled by
the autonomic nervous system, has been demonstrated to be a promising indicator for physical
fatigue estimation. In this paper, we propose a novel method for the automatic and objective
classification of physical fatigue based on HRV. First, a total of 24 HRV features were calculated.
Then, a feature selection method was proposed to remove useless features that have a low correlation
with physical fatigue and redundant features that have a high correlation with the selected features.
After feature selection, the best 11 features were selected and were finally used for physical fatigue
classifying. Four machine learning algorithms were trained to classify fatigue using the selected
features. The experimental results indicate that the model trained using the selected 11 features could
classify physical fatigue with high accuracy. More importantly, these selected features could provide
important information regarding the identification of physical fatigue.

Keywords: heart rate variability; physical fatigue; feature selection; machine learning

1. Introduction

With the improvement of human living standards, more and more people realize the
importance of exercise to health and engage in regular physical exercise to keep healthy.
However, proper exercise is good for health, while excessive exercise may bring harm to the
body(e.g., muscular and skeletal injuries [1], overtraining syndrome [2], atrial fibrillation [3]
and immune function reduction). Excessive exercise is defined as a relative term, implying
that a bout(s) of exercise is fine for some individuals while excessive for other individuals
due to the differences in a variety of factors, such as physical fitness and genetics [4].
Physical fatigue, as a common physiological phenomenon during exercise, is a direct
reflection of the degree of exercise. Accurate detection and evaluation of physical fatigue
levels can effectively prevent excessive exercise and further reduce physical injury caused
by excessive exercise.

Fatigue is a term used to describe a subjective feeling of tiredness or lack of energy.
Objectively evaluating fatigue is a challenging task as a person’s subjective feelings cannot
be easily assessed by other people [5]. The rating of perceived exertion (RPE) [6] is a measure
of fatigue that has been widely used for fatigue assessment in sport science, specifically in
running research [7–9]. As the RPE has advantages, such as being noninvasive, unobtrusive,
noninterruptive and easy to use, many previous studies on fatigue assessment have used it
as the ground truth. Moreover, previous studies [10,11] indicated that the RPE represented
feedback from cardiovascular, respiratory and musculoskeletal systems and it provides an
overall fatigue state assessment of a subject, while a single biomechanical or physiological
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parameter usually provides very limited information. So, in this study we collected the
RPE of subjects at each experiment stage and used it as the physical fatigue ground truth
for model training and testing.

With the development of wearable devices [12], more and more physiological pa-
rameters could be easily collected. Many researchers have been trying to use various
physiological parameters collected by wearable devices to assess physical fatigue. One of
the physiological signals for physical fatigue detection is an electromyogram (EMG) [13–16].
EMGs can reflect the electrical activity of local muscle, which is related to the physical
fatigue of the local muscle. Physical fatigue not only reduces the body’s exercise ability but
also causes neurological function decline. So, electroencephalograms (EEG) are another
physiological index used for physical fatigue assessment [17,18]. Unfortunately, both EMGs
and EEGs are weak bioelectric signals and are easily disturbed by many kinds of noise.
Additionally, their acquisitions require professional operations to paste the acquisition
electrodes to relevant body parts, so they are not widely used.

Heart rate variability (HRV), a tiny time variation between adjacent heartbeats, was
demonstrated to have a relationship with autonomic nervous activities [19]. In recent
years, machine learning algorithms based on HRV signals have become a research hotspot
in various applications, such as noise detection [20], cuff-less blood pressure measure-
ment [21], mental fatigue evaluation [22] and exercise-induced physical fatigue evalua-
tion [23]. Compared with exercise-induced physical fatigue evaluation, there have been
more achievements in mental fatigue evaluation. For HRV-based mental fatigue evaluation,
one research team used the kernel principal component method to select important HRV
features which have a strong relationship with fatigue states [24]. Their study results show
that selected features can easily distinguish between normal samples and fatigue samples.
Another research team concentrated on using neural networks and HRV analysis with a
power spectral density algorithm to build a driver fatigue detection model, and an accuracy
of 90% was achieved [25]. Moreover, decision trees, support vector machines and K-nearest
neighbor classifiers have been also proposed to quantify mental fatigue [26].

As a comparison, a few recent efforts have been made towards HRV-based physical
fatigue assessment. Ramos et al. [27] combined EMG features and HRV features to build a
binary SVM classifier. By analyzing HRV from blood volume pulse signals, Cosoli et al. [28]
evaluated the performance of two machine learning algorithms in distinguishing between
nonfatigue and fatigue conditions and presented a fatigue-related index to quantify the
physical fatigue. Guan et al. [29] proposed a bidirectional long- and short-term memory
neural network to classify physical fatigue. The model used HRV features and inertial
sensor signals as inputs and achieved 80.55% accuracy. Nevertheless, most of these models
either used multiple kinds of signals or coarsely classified physical fatigue into two levels.
Therefore, the purpose of this study was to investigate whether the machine learning
method combined with HRV, which has been proven to be useful in mental fatigue assess-
ment, is also effective for continuous and real-time monitoring of physical fatigue during
exercise. Furthermore, the study also aimed to investigate which HRV features were the
most significant in the classification. The selection and analysis of relevant features may also
be important for improving the interpretability of the physical fatigue assessment model.

Based on the results of previous studies and the advancements in machine learning
technology, we proposed a novel method for the automatic and objective classification of
physical fatigue. First, we proposed a feature selection method to remove useless HRV features
that have a low correlation with physical fatigue and redundant HRV features that have a high
correlation with the selected features. Then, four machine learning algorithms were trained
to classify fatigue using the selected features. Experimental results for 80 healthy subjects
indicate that the model trained using the selected features could classify physical fatigue with
a high accuracy of 85.5%.

The remainder of this paper is organized as follows. Section 2 introduces the data
collection experiment and the physical fatigue evaluation modeling methods. Section 3
provides the physical-fatigue-related HRV feature selection results and the physical fatigue
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classification results. The obtained fatigue classification results with different machine
learning methods are presented and discussed in Section 4. Finally, the study is concluded
in Section 5.

2. Materials and Methods
2.1. Data Collection

A total of 80 healthy subjects were recruited for participation in the data collection
experiments; the statistical anthropometric characteristics of all subjects are summarized
in Table 1. The subjects were asked to perform a preset treadmill exercise, which was
modified from the Bruce protocol [30], and during the test, their ECG data were collected.
The experiment process is shown in Table 2; it started with a 5 min pre-rest, during which
the subjects were asked to stand still on the treadmill. Following this was the exercise stage,
during which the subjects began to run at a speed of 3 km/h, and the speed increased to the
next preset value every 5 min until reaching the maximum preset speed, and the subjects
would run at this maximum preset speed until they were physically exhausted. It was not
necessary to reach the maximum speed during the exercise stage, and the exercise could be
terminated at any time the participant signaled that he was exhausted.

Table 1. Participants’ statistical characteristics.

Statistical Characteristic Value

Number of Subjects 80 (42 Males, 38 Females)
Age (years) 29.1 ± 6.5
Height (cm) 168.0 ± 8.1
Weight (kg) 61.7 ± 11.2

Table 2. Protocol of the modified Bruce treadmill test.

Stage Duration (min) Speed (km/h) Incline (%)

Pre-rest 5 0 0
Ex-1 5 3 5
Ex-2 5 5 5
Ex-3 5 6.4 5
Ex-4 5 7.8 5
Ex-5 5 10.2 5
Ex-6 Until exhausted 11.6 5

The data collection scenario is shown in Figure 1. The subjects were asked to wear
a 12-lead ECG device (GE Medical System Information Technologies, INC, CardioSoft
Cardiac Testing System). The ECG device used in our study was specially designed for
exercise ECG monitoring, and hardware anti-noise design and software filtering algorithms
were made to ensure the high quality of the collected exercise ECG signal. In addition, we
further compared and analyzed the quality of 12-lead ECG signals, and finally selected a
V3-lead ECG signal, which had the best signal quality for subsequent HRV extraction and
fatigue evaluation.
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Figure 1. The scenario of the data collection experiment.

The RPE scale ranged from 6 to 20, and the subject was free to choose any integer value
within this range. Prior to starting the run, we explained the RPE scale listed in Table 3 to
each subject. During the running experiments, the fatigue states of subjects were recorded
with the RPE. At the end of each stage, the subjects were asked to report their RPE. Three
classes were defined based on the RPE values: (i) “Rested” for values from 6 to 10; (ii) “A
bit tired” for values from 11 to 16; and (iii) “Tired” for values from 17 to 20.

Table 3. The RPE scale and its description.

Borg Rating Description

6 Nothing
7 to 8 Very, very light

9 to 10 Very light
11 to 12 Fairly light
13 to 14 Somewhat hard
15 to 16 Hard
17 to 18 Very hard
19 to 20 Very, very hard

Each participant participated in at least 1 session and at most 3 sessions (with an
interval of 1 week) of data acquisition experiments. Each session lasted 20 min to 60 min,
and a total of 207 sessions were collected. Figure 2 shows the fatigue state distribution of
the dataset collected in the 207 sessions of experiments. It can be seen that the perception of
tiredness had individual differences. Under the same exercise intensity and time, e.g., at the
EX-3 stage, participants reported being “Rested” in 20 sessions, “A bit tired” in 128 sessions
and “Tired” in 59 sessions. In addition, all 80 subjects finished the first 3 exercise stages
(to EX-3 stage), while from the Ex-4 stage onwards, there were subjects who stopped the
exercise because of exhaustion.

The study was approved by the Institutional Review Board of Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences. All subjects signed their written
informed consent before the experiments.
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2.2. Preprocessing and Feature Extraction

The sampling rate of ECG data was 200 Hz. In order to eliminate electronic noise
and motion artifacts, the sampled signals were preprocessed using a Butterworth low-pass
filter with a cutoff frequency of 50 Hz and a nine-level wavelet decomposition with the
order 8 Daubechies wavelet. As the guideline [31] recommended that the ECG records
used for HRV analysis should last for at least 5 min, we segmented the raw ECG with a
5 min sliding window without overlap and extracted HRV features from each segment.

Over a specific time period, time domain features are just measurements of the mean and
variability in the time interval between heartbeats, which is alternately referred to as normal-
to-normal intervals (NN). The common time domain features include the mean of NN interval
sequence (meanNN), the mean of heart rate sequence (meanHR), the standard deviation of NN
interval sequence (SDNN) and the root mean square of successive differences in NN interval
sequence (RMSSD). Another two features calculated by successive differences in NN interval
sequence are the number of these differences greater than 50 ms (NN50) and the percentage of
NN50 in total intervals (pNN50). By segmenting the long NN interval sequence into several
nonoverlapping chunks with a chosen time window (1 min in this work), two types of HRV
features, including the standard deviation of the averages of segmented chunks (SDANN)
and the average of the standard deviations of segmented chunks (SDNNi), can be calculated.
In addition to these statistical features, there are two geometric HRV features based on the
NN interval sequence histogram with bins of 1/128 s. The HRV triangular index (HRVTi) is
the ratio of the total number of all intervals to the height of the histogram. Additionally, the
triangular interpolation of the histogram (TINN) is the baseline width of the minimum square
difference triangular interpolation of the highest peak of the histogram.

For HRV frequency domain analysis, power spectrum density (PSD) was computed
using the Lomb–Scargle method. Three main components were derived from the heart rate
power spectrum, namely the very low frequency band (VLF) ranging between 0.0033 Hz
and 0.04 Hz, the low = frequency band (LF) ranging between 0.04 Hz and 0.15 Hz and the
high-frequency band (HF) ranging between 0.15 Hz and 0.4 Hz. The VLF component has
been reported to be associated with arrhythmic death [32] and high inflammation [33]. The
LF component appears to be sensitive to both sympathetic and parasympathetic activities,
whereas the HF component is primarily mediated by the parasympathetic nervous activ-
ity [34]. Therefore, the LF/HF ratio has been regarded as a measure of physical workload
and stress [35].

Aimed at the nonlinearity of heart rate signal, a number of nonlinear techniques have
been applied to HRV analysis, which was thought to be an effective way to describe the
changes in the biological signal. Three nonlinear methods were used for HRV analysis in
this work, namely sample entropy (sampen), Poincare plot (SD1, SD2 and SD1/SD2) and
detrended fluctuation analysis (α, α1 and α2).

Using MATLAB R2018a with the help of Physionet Cardiovascular Signal toolbox [36],
a total of 24 features, including 10 time domain features, 7 frequency domain features and
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7 nonlinear features, were computed for further processing. All the obtained HRV features
are listed in Table 4.

Table 4. All HRV features.

Measures Feature Unit Description

Time
domain

meanNN ms Mean of NN interval sequence.
meanHR 1/min Mean of heart rate sequence.
SDNN ms Standard deviation of NN interval sequence.
RMSSD ms Root mean square of successive differences in NN interval sequence.
NN50 count Number of successive differences in NN interval sequences greater than 50 ms.

pNN50 % Percentage of NN50 in total intervals.
SDANN ms Standard deviation of the averages of the segmented chunks.
SDNNi ms Average of the standard deviations of the segmented chunks.
HRVTi - Ratio of total number of all intervals to the height of the histogram.

TINN ms Baseline width of the minimum square difference triangular interpolation of the
highest peak of the histogram.

Frequency
domain

aVLF ms2 Absolute powers of VLF band.
aLF ms2 Absolute powers of LF band.
aHF ms2 Absolute powers of HF band.

LF/HF - Ratio of aLF/aHF.
peakVLF Hz Peak frequency for VLF band.
peakLF Hz Peak frequency for LF band.
peakHF Hz Peak frequency for HF band.

Nonlinear
domain

sampen - Negative natural logarithm of the conditional probability that two sequences remain
similar at the next point.

SD1 ms Standard deviations along the major axis of the ellipse.
SD2 ms Standard deviations along the minor axis of the ellipse.

SD1/SD2 - Ratio of SD1 to SD2.

α - Slope of a fitting line of the root mean square fluctuation of an integrated and
detrended time series on a log–log scale.

α1 - α on first linear region.
α2 - α on second linear region.

2.3. Feature Selection

Feature selection is essential for training an effective model. There is no doubt that any
unnecessary features, including unimportant features and redundant features, will increase
the computational cost of model training and the risk of model overfitting, decrease the
interpretability of the model and reduce the generalization performance of the model on the
test set. Thus, dropping features with a weak correlation with physical fatigue (unimportant
features) and removing highly redundant features are two steps needed during feature
selection. The proposed feature selection method is described in Algorithm 1.
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Algorithm 1 Feature selection.

Input: Original features Φ, input data {(X1, y1) , . . . , (XN , yN)}
Output: Selected features Φ′

1: Initialize thresholds r1, r2
2: Initialize number of repeats T
3: for f in Φ do
4: Compute actual Gini importance I{ f } from {(X1, y1) , . . . , (XN , yN)} according to Equation (1)
5: end for
6: for i = 1→ T do
7: Shuffle the labels y1, . . . , yN , which is referred to as y′1, . . . , y′N
8: for f in Φ do
9: Compute new Gini importance of Di

{ f } from
{
(X1, y′1

)
, . . . , (XN , y′N)

}
according to

Equation (1)
10: end for
11: end for
12: for f in Φ do
13: Compute score of the feature according to Equation (4), which is referred to as S{ f }
14: end for
15: Select the features with a score lower than r1, which is referred to as Φ1
16: Delete the features Φ1 from Φ
17: Compute the correlation matrix of features Σ according to Equation (5)
18: Select the features with less actual Gini importance in each pair of features with a correlation

above r2 which is referred to as Φ2
19: Delete the features Φ2 from Φ
20: Obtain the remaining features in Φ, which is referred to as selected features Φ′

2.3.1. Dropping Unimportant Features

Dropping low-correlated features requires the scores of all the features at first. The
method based on feature importance of random forest (RF) and permutation impor-
tance [37] was proposed to score the importance of features. RF provides a Gini importance
for the assessment of feature importance. Suppose that we have an input dataset with N
instances {(X1, y1) , . . . , (XN , yN)} where each Xi =

{
x{ f1}, . . . , x{ fm}

}
is a vector with m

features and yi is the corresponding label. First, RF uses the dataset to establish its model.
Then, Gini importance of feature f is defined as the sum of the impurity improvement
of all the nodes n in all trees S using the feature during the training phase, according to
Equation (1):

I{ f } = ∑
S

∑
n

∆Gini(n, S) (1)

The decrease in Gini impurity resulting from optimal split ∆Gini(n) is defined as

∆Gini(n) = Gini(n)− pl∆Gini(nl)− pr∆Gini(nr) (2)

Gini(n) = 1−
K

∑
k=1

p2
n,k (3)

where Gini(n) denotes Gini impurity at the node n; nl and nr denote the child nodes of n;
pl and pr denote the ratio of the child nodes’ sample size to the total sample size; and pn,k
denotes the ratio of class k = {0, 1, . . . , K} in node n.

Unlike the common permutation importance, the label rather than the feature was per-
muted in this method. After shuffling the labels for the first time, the new dataset can be
expressed as

{
(X1, y′1

)
, . . . , (XN , y′N)

}
, where y′1, . . . , y′N is a permutation of the actual labels.

After training the RF model with the new dataset, we could compute the Gini importance of
feature f , which is referred to as D1

{ f }. By repeating T times on permutation of labels at random,

the null importance distributions D{ f } =
{

D1
{ f }, . . . , DT

{ f }

}
of various features were created

to demonstrate how the model can make sense of a feature disregarding the original labels.
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Randomly reordering labels could reduce the Gini importance of all features, because
the input data no longer correspond to the real labels obtained in the real world. If the
model relies heavily on a feature in its prediction, its importance is particularly affected.
Thus, a metric to score a feature is calculating the percentage of the feature’s null importance
distribution as less than the actual importance. The formula for calculating this score of the
feature f is given by Equation (4).

score =
count(D{ f } < I{ f })

T
× 100% (4)

where count() denotes counting the elements that meet the criteria, D{ f } is a set of null
importance distributions of f with the number of repeats of T, and I{ f } is the actual Gini
importance of f .

From another viewpoint, the score is a kind of quantitative index adapted from the
original feature importance. Compared with the original Gini importance, the score is more
effective at selecting features with high importance. The features with a score lower than the
threshold r1 will be dropped as “unimportant features”, which contribute little to the model.

2.3.2. Removing Redundant Features

The Pearson correlation coefficient was implemented to compute the correlation ma-
trix and measure the redundancy between two features. Pearson correlation coefficient r
provides an indicator to quantitatively evaluate the linear correlation between two vari-
ables [38]. It has a value ranging from −1 to +1, where −1 indicates a perfect negative
linear relationship, 0 indicates no linear relationship, and +1 indicates a perfect positive
linear relationship. The closer the absolute value of r to 1, the stronger the correlation.
Given two variables, X and Y, the Pearson correlation coefficient r between X and Y is
defined as Equation (5):

r =
∑N

i=1
(
Xi − X

)(
Yi −Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi −Y

)2
(5)

where N is the number of the variable, Xi and Yi are the values of X and Y for the ith
individual, and X and Y are the averages of X and Y.

In consequence, the larger the absolute value of the correlation coefficient between
two features, the higher the mutual substitutability and the redundancy of the two features,
and vice versa. As for each pair of features whose correlation is higher than a threshold r2,
the less important one will be regarded as the “redundant feature” and removed.

2.4. Physical Fatigue Classification

The last step is using machine learning algorithms to accurately classify physical fa-
tigue levels. The classification model adopted four supervised machine learning algorithms,
namely decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN) and
light gradient boosting machine (LightGBM). These classification models were trained with
the best features obtained by the feature selection method described in Section 2.3.

The performance metrics of the evaluation model were accuracy (ACC), precision,
recall and F1 score (F1), and their definitions are listed in Equations (6)–(9)

ACC =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)
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F1 =
2× Precison× Recall

Precison + Recall
(9)

where TP refers to the number of correctly classified samples in a certain class, FP refers to
the number of samples misclassified as a certain class when they belong to other classes,
TN refers to the number of correctly classified samples in other classes, and FN refers to the
number of samples belonging to a certain class that was misclassified as other classes. The
average of these metrics among classes was calculated to obtain a final evaluation of the
model’s performance.

The 10-fold cross validation method was used to evaluate the performance of these
models. In order to prevent a subject’s data from being used partly for training and partly
for testing, each iteration was trained with the data of 72 subjects and tested with the data
of the remaining 8 subjects. The average performance of the 10 iterations was used as the
final result.

3. Results
3.1. Optimal Feature Set

Using Equation (1), the scores of the 31 original features were calculated (t = 100) and are
shown in Figure 3. When setting the threshold r1 to 0, we selected 10 unimportant features
and removed them. The remaining 14 important features include meanNN, meanHR, SDNN,
NN50, pNN50, SDANN, HRVTi, TINN, aVLF, sampen, SD2, SD1/SD2, α and α1.
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Figure 4 shows the correlations between 14 important features. As we can see, there
were three pairs of features (meanNN and meanHR, pNN50 and NN50, SD2 and SDNN)
with correlation magnitudes greater than the threshold r2 which was set to 0.9. Then, we
removed the redundant features, including meanNN, pNN50 and SDNN, which were least
important features in each pair.



Sensors 2022, 22, 3199 10 of 15

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

removed the redundant features, including meanNN, pNN50 and SDNN, which were 
least important features in each pair. 

 
Figure 4. Correlations between 14 important features. 

After the feature selection process, a total of 11 features with high importance and 
low redundancy were finally selected, resulting in an optimal feature set for modeling. 
The selected 11 features are given in Table 5. 

Table 5. Optimal feature set. 

Time Domain Frequency Domain Nonlinear Domain 
meanHR aVLF sampen 

NN50  SD2 
SDANN  SD1/SD2 
HRVTi  α 
TINN  α1 

3.2. Classification Performance 
Table 6 shows the average accuracy, precision, recall and F1 score of four machine 

learning models using different features in assessing physical fatigue. On the one hand, 
the average performance of models using selected features was superior to the perfor-
mance of models using all features. For the DT, SVM, KNN and LightGBM models trained 
with selected HRV features, the average F1 score increased by 6.3%, 4.0%, 2.2% and 2.0%, 
respectively, when compared with corresponding models trained with all HRV features. 
On the other hand, the standard deviations of the models trained with selected HRV fea-
tures were reduced, which means the models were more stable when the selected features 
were used. Therefore, it can be seen that both the performance and the stability of the 
models were increased by the selected features, which verifies the effectiveness of our 
proposed feature selection method. 

Figure 4. Correlations between 14 important features.

After the feature selection process, a total of 11 features with high importance and low
redundancy were finally selected, resulting in an optimal feature set for modeling. The
selected 11 features are given in Table 5.

Table 5. Optimal feature set.

Time Domain Frequency Domain Nonlinear Domain

meanHR aVLF sampen
NN50 SD2

SDANN SD1/SD2
HRVTi α

TINN α1

3.2. Classification Performance

Table 6 shows the average accuracy, precision, recall and F1 score of four machine
learning models using different features in assessing physical fatigue. On the one hand, the
average performance of models using selected features was superior to the performance
of models using all features. For the DT, SVM, KNN and LightGBM models trained
with selected HRV features, the average F1 score increased by 6.3%, 4.0%, 2.2% and 2.0%,
respectively, when compared with corresponding models trained with all HRV features. On
the other hand, the standard deviations of the models trained with selected HRV features
were reduced, which means the models were more stable when the selected features were
used. Therefore, it can be seen that both the performance and the stability of the models
were increased by the selected features, which verifies the effectiveness of our proposed
feature selection method.
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Table 6. Performance of the four machine learning models using different features.

Model
Using All Features Using Selected Features

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

DT 0.728 ± 0.043 0.646 ± 0.062 0.644 ± 0.053 0.642 ± 0.056 0.772 ± 0.030 0.711 ± 0.036 0.706 ± 0.034 0.705 ± 0.034
KNN 0.780 ± 0.045 0.712 ± 0.044 0.694 ± 0.041 0.696 ± 0.044 0.805 ± 0.020 0.754 ± 0.031 0.735 ± 0.038 0.736 ± 0.033
SVM 0.810 ± 0.038 0.752 ± 0.048 0.748 ± 0.053 0.747 ± 0.052 0.831 ± 0.037 0.780 ± 0.045 0.770 ± 0.040 0.769 ± 0.043

LightGBM 0.841 ± 0.030 0.811 ± 0.035 0.777 ± 0.041 0.781 ± 0.038 0.855 ± 0.015 0.829 ± 0.032 0.800 ± 0.031 0.801 ± 0.025

In addition, it was also shown that LightGBM outperformed other models in all the per-
formance metrics, yielding an accuracy of 0.855 and an F1 score of 0.801. The performance
demonstrated the possibility of using HRV for objective physical fatigue assessment.

4. Discussion
4.1. Performance Analysis

The overall confusion matrix of LightGBM in the 10-fold cross validation is shown in
Figure 5. The row labels indicate the true classes for samples in each row, while the column
labels indicate the predicted classes for samples in each column. The numbers labeled in
each grid show the number of samples classified into the classes labeled in the row, and
the labels shown in the row are the true classes of the samples. The color represents the
proportion of the aforementioned samples to all samples in the same row.
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From the results shown in Figure 5, we can see that the model performed best in
predicting “Rested” samples and worst in predicting “Tired” samples, indicating the
model’s lack of sensitivity in discriminating “Tired” from “A bit tired”. One of the factors
affecting the model performance in distinguishing between the two labels is the imbalance
of the dataset. In the collected dataset, there are more rested samples than tired samples.
Due to the lack of sufficient tired samples, the classifier was insufficient in describing tired
samples, so the trained model had a poor performance in generalizing the “tired” label.

In addition, unlike most of the previous studies, which coarsely classify fatigue states
into “Tired” and “Non-tired”, this study had one “Non-tired” state, namely “Rested”, and
two levels of tiredness, namely “A bit tired” and “Tired”; as there may be bias in individual
perception of the two levels of tiredness states, the classification performance for these
two levels of tiredness is relatively inferior. The accuracy of the model would be greatly
improved if “A bit tired” and “Tired” were merged into one category.
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4.2. Comparison with Related Works

Our results suggest that the meanHR, NN50, SDANN, HRVTi, TINN, aVLF, sampen,
SD2, SD1/SD2, α and α1 are the key HRV features for physical fatigue assessment. In-
putting too few features or too many features may decrease the classification performance.

The HRV time domain features have been used in drivers’ sleepiness detection. Abtahi
et al. [39] conducted a variance analysis between groups and found that there was a
statistically significant difference for these time domain features, including meanNN,
SDNN, SDANN, SDNNi and NN50. According to their results, the meanNN and SDNN
increased when drivers’ mental state transformed from alert to severe sleepiness. The data
analysis in [40] also showed that meanNN, SDNN and HRVTi were associated with drivers’
mental stress levels.

Previous studies have explored the frequency domain features of HRV to detect
drivers’ mental fatigue. Some studies have shown that there is a significant rise in the
LF/HF when the driver became drowsy [41]. While some studies suggest that the LF/HF
has no significant changes when human states changed [39], other studies reported that the
LF/HF even decreased with mental workload and mental stress increases [25,42]. Therefore,
a study reported that the change direction and degree of HRV linear indexes may not be
the same in different degrees of mental fatigue [26]. The results from our study show that
the VLF was related to physical fatigue, which is consistent with the previous research
results reported in [43].

The analysis in [44] showed that SD1 and SD2 decreased after a table tennis match,
indicating activation of the sympathetic system and, simultaneously, deactivation of the
parasympathetic system. Another study [45] pointed out that α1 decreased when running
at low intensity. They suggested that α1 can provide the opportunity to track physiological
status in real time to monitor exercise fatigue. Similar to the aforementioned studies, our
study suggests that SD2, SD1/SD2, α and α1 can help to assess physical fatigue.

4.3. Limitations

Although we obtained promising results for LightGBM using the selected features,
there were still limitations. For example, the number of subjects involved in this study
was small, which may affect the stability of the models. In addition, the results of our
analysis verify that heart rate is an important indicator for the final evaluation of physical
fatigue. However, heart rate can be affected by many factors, e.g., diseases (including
hyperthyroidism [46], diabetes [47]), emotion [48] and age [49]. Future work should be
carried out to study the influence of factors affecting heart rate on the proposed physical
fatigue assessment model.

5. Conclusions

The application of HRV and machine learning algorithms in physical fatigue assess-
ment was studied in this paper. First, 24 HRV features of four domains were computed
from the original ECG. Then, a two-step feature selection method was proposed to select
the best features. After feature selection, 13 original features were removed, and 11 optimal
features were selected and used as the input of the model. These selected HRV features
identified for physical fatigue detection are meanHR, NN50, SDANN, HRVTi, TINN, aVLF,
sampen, SD2, SD1/SD2, α and α1. Four machine learning algorithms, DT, SVM, KNN
and LightGBM, were used to build classifiers that automatically detect the fatigue state.
LightGBM achieved the best performance and had an accuracy of 0.855 and an F1 score of
0.801. The results verify the feasibility of using HRV to evaluate physical fatigue states. By
using the features selected by our feature selection method, the proposed model achieved
superior performance in assessing the physical fatigue state. Furthermore, the selected
features can be applied to wearable ECG devices for physical fatigue assessment during
exercise in real time.

In future works, more subjects with diseases (e.g, diabetes, hypertension, heart disease)
and subjects with different levels of physical fitness and different ages will be included to in-
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crease the reliability of physical fatigue assessment. Finally, other machine learning or deep
learning models and features based on other physiological signals would be considered.
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