

International Edition: DOI: 10.1002/anie.201914219 German Edition: DOI: 10.1002/ange.201914219

The 9*H*-9-Borafluorene Dianion: A Surrogate for Elusive Diarylboryl Anion Nucleophiles

Jannik Gilmer⁺, Hendrik Budy⁺, Thomas Kaese, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner^{*}

Abstract: Double reduction of the THF adduct of 9H-9borafluorene (1·THF) with excess alkali metal affords the dianion salts $M_2[1]$ in essentially quantitative yields (M = Li-K). Even though the added charge is stabilized through π delocalization, $[1]^{2-}$ acts as a formal boron nucleophile toward organoboron (1·THF) and tetrel halide electrophiles (MeCl, Et_3SiCl , Me_3SnCl) to form B-B/C/Si/Sn bonds. The substrate dependence of open-shell versus closed-shell pathways has been investigated.

he quest for boron-centered nucleophiles remains a major challenge, but is rewarded with fundamentally new opportunities for element-organic synthesis. Three-coordinate, hypovalent boron compounds are electrophiles. Polarity inversion can, in principle, be achieved through the addition of two electrons into the vacant boron p_z orbital to generate an electron lone pair. Yet, this approach is impeded by the low electronegativity of the boron atom.^[1] Thus far, the arguably most versatile strategy to circumvent this problem relies on the insitu generation of nucleophilic boron species from tetra(organyloxy)diboranes(4), B₂(OR)₄: Upon addition of suitable Lewis bases, monoadducts are formed in which the $B(sp^3)-B(sp^2)$ bond is polarized in such a way as to render the sp² boryl unit a masked nucleophilic [B(OR)₂]⁻ equivalent.^[2-4] The combined -I and +M effects of the oxygen atoms decisively stabilize the [B(OR)₂]⁻ fragment—ultimately to an extent that allowed for the structural characterization of the corresponding magnesium boryl complexes by Hill and coworkers.^[5] Until today, the system $B_2(OR)_4$ /Lewis base has been developed into a broadly applicable tool for the preparation of boronic acid esters,^[6] which serve as key building blocks in organic synthesis.^[7]

 [*] M. Sc. J. Gilmer,^[+] M. Sc. H. Budy,^[+] Dr. T. Kaese, Dr. M. Bolte, Dr. H.-W. Lerner, Prof. Dr. M. Wagner Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7, 60438 Frankfurt (Main) (Germany) E-mail: Matthias.Wagner@chemie.uni-frankfurt.de
 [*] These authors contributed equally to this work.

Supporting information and the ORCID identification number(s) for
 the author(s) of this article can be found under:

https://doi.org/10.1002/anie.201914219.

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made.

Also the important field of organic optoelectronic materials increasingly demands for novel organoboranes, and specifically for boron-doped polycyclic aromatic hydrocarbons (B-PAHs) to be applied as electron acceptors or light emitters.^[8-10] Here, nucleophilic boron precursors would be equally desirable, but now they should be devoid of π -donating heteroatom substituents so that the boron atom can unfold its full capacity as an electronically perturbing element in the final products. The first firmly established, heteroatom-free boryl anion intermediate was the basestabilized species Li[BH₂(PCy₃)] (Cy = cyclohexyl), an isoelectronic analogue of the well-known phosphonium ylides.^[11] A related N-heterocyclic carbene adduct, Li[BH₂(NHC)], was described by Lacôte and co-workers,^[12] while the Bertrand group reported on a cyclic-(alkyl)(amino)carbenesupported dicyanoboryl anion, [B(CN)₂(CAAC)]^{-.[13]} Willner and Finze recently isolated alkali metal salts of the nucleophilic tricyanoborate dianion, $[B(CN)_3]^{2-.[1]}$ Here, the flow of negative charge from the doubly occupied boron p_z orbital into the antibonding CN orbitals counterbalances the electropositive character of the boron center.^[14]

Despite recent progress in the field of boryl nucleophiles, examples of diarylboryl anions ($[BAr_2]^-$), which would be the building blocks of choice for the synthesis of B-PAHs, are still scarce: Eisch and co-workers claimed that UV irradiation of Na[BPh_4] generated [BPh_2]⁻ via the reductive elimination of biphenyl,^[15] but the existence of the free anion remains subject to debate.^[16,17] In 2019, Yamashita and co-workers disclosed that the tetra(*o*-tolyl)diborane(4) dianion behaves as a dimer of $[B(oTol)_2]^{-}$.^[18] One year earlier, our group had postulated the intermediate formation of compound $[A]^-$ (Figure 1), which, depending on the reaction conditions, either undergoes boron insertion into one of the methyl C–H bonds or nucleophilic substitution of MeI to afford 2 equiv of 9-methyl-9-borafluorene.^[19]

Figure 1. The postulated intermediate $[\mathbf{A}]^-$ containing a Lewis-acidstabilized boryl anion,^[19] the isolable anion $[\mathbf{B}]^-$ with a boron-bonded NHC ligand,^[20] and the borafluorene dianion $[\mathbf{1}]^{2-}$ (this work). Carbon atoms marked with asterisks bear *t*Bu substituents.

Angew. Chem. Int. Ed. 2020, 59, 5621–5625 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Wiley Online Library 5621

Angewandte

In both instances, the actual reactive species would be the 9-borafluorenyl anion, [BFlu]-, a cyclized derivative of [BPh₂]⁻ (consider the conceptual relationship between [A]⁻ and the above-mentioned $B_2(OR)_4$ /Lewis base system). In compound $[A]^-$, the $[BFlu]^-$ moiety is stabilized through adduct formation of its electron lone pair with a Lewis acidic 9-methyl-9-borafluorene molecule. As an alternative option, [BFlu]⁻ could be tamed through adduct formation of its boron p_{z} orbital with a suitable Lewis base. Precedence exists in the form of Braunschweig's tetraphenylborolyl-NHC complex $[\mathbf{B}]^{-}$ (37% yield),^[20,21] and we thus wondered whether the 9-borafluorenyl dianion $[1]^{2-}$ (Figure 1), a formal hydride adduct of [BFlu]-, can also be made accessible on a preparative scale. We envisage two advantages of $[1]^{2-}$ over $[B]^{-}$ as a nucleophilic building block: 1) Its molecular framework is fully conjugated, and the boron center is not sterically shielded, given that an H⁻ ion is the smallest possible ligand. 2) After reaction with an electrophile El-X, the hydride substituent should be easily removable from the primary intermediate [El(H)BFlu]⁻ to generate three-coordinate ElBFlu, thereby rendering $[1]^{2-}$ a true synthetic equivalent of the thus far elusive [BFlu]⁻.

Herein, we report high-yielding syntheses of $M_2[1]$ salts (M = Li, Na, K) and their use as boron nucleophiles for establishing B–B and B–C/Si/Sn bonds. We also investigated key mechanistic issues regarding the formation and closed-shell versus open-shell reactivity of $M_2[1]$.

The synthesis of $M_2[1]$ is based on the two-electron reduction of parent 9*H*-9-borafluorene (1), which is stable in monomeric form as its THF adduct 1 THF (Figure 2a).^[22–24] Treatment of 1 THF in THF with excess alkali metal M for one to two days led to a color change from pale yellow to dark green (M = Li, Na) or dark red (M = K). The isolation of the corresponding salts $M_2[1]$ was achieved through simple removal of unconsumed alkali metal and evaporation of the liquid phase under vacuum. The purity of the products, which were formed in essentially quantitative yields, was confirmed by ¹H, ¹¹B, and ¹³C{¹H} NMR spectroscopy; Li₂[1] (Supporting Information) and Na₂[1] (Figure 3 a) were structurally characterized by X-ray crystallography.

The key to success is to maintain a temperature of -78 °C during the first hour of the reaction in order to avoid the formation of unwanted side products, primarily $[1H]^-$ and $[3]^{2-}$ (Figure 2 a and b, top vs. middle).^[25] Why is an initial low temperature of such critical importance, given that further stirring of the respective mixture at room temperature for a much longer time span is still required to drive the reaction to completion?

To answer this question, we will exemplarily refer to the sodium species. We first note that immediately after reaching room temperature, the reduction mixture already contains appreciable amounts of Na₂[1], together with the B–B-bonded dimer Na₂[2]^[26] as the major product (Figure 2b, bottom). Precedence exists for an analogous *intra*molecular reductive B–B coupling reaction between two methylene-bridged borafluorene moieties.^[27] In a first control experiment, we confirmed that also an *inter*molecular variant is possible by mixing equimolar amounts of Na₂[1] and 1. THF at -78 °C (Scheme 1).

Figure 2. a) The neutral THF adduct 1·THF and the anions $[1H]^{-}$, $[2]^{2-}$, and $[3]^{2-}$. b) ¹H NMR spectra ($[D_8]$ THF) of the reaction products obtained from mixtures of 1·THF and excess sodium metal at room temperature (top), at -78 °C (1 h) \rightarrow room temperature (1 d; middle), and at -78 °C (1 h; bottom). Carbon atoms marked with asterisks bear *t*Bu substituents.

NMR spectroscopy subsequently revealed the quantitative conversion into Na₂[**2**],^[28] which was isolated in 98% yield and structurally characterized by X-ray crystallography (see the Supporting Information). In a second control experiment, Na₂[**2**] was stirred in a glovebox with sodium metal in [D₈]THF. NMR monitoring of the reaction progress over 21 h showed the gradual reductive cleavage of the B–B bond to ultimately furnish 2 equiv of Na₂[**1**], which unveils the role of Na₂[**2**] as the key intermediate on the way from **1**.THF to Na₂[**1**] (see the work of Kinjo^[29] for a comparable B–B bond cleavage reaction). In a third control experiment, Na₂[**2**] was treated at room temperature with a substoichiometric amount of the masked Lewis acid **1**.THF. The mixture subsequently contained two new components: Na[**1H**] and Na[**3H**]

Scheme 1. Synthesis of Na₂[2] from Na₂[1] and 1·THF; reductive cleavage of Na₂[2] to give Na₂[1]; hydride abstraction from Na₂[2] with 1·THF and skeletal rearrangement to furnish Na[3H] and Na[1H]. Carbon atoms marked with asterisks bear tBu substituents. Conditions: i) THF, -78 °C, 1 h; ii) [D₈]THF, room temperature, 21 h; iii) [D₈]THF, room temperature, 1 h.

(Scheme 1).^[26] It has been shown previously that M[3H] reacts with alkali metals M to afford the diborene $M_2[3]$ (see Figure 2 a).^[24,30] We therefore propose that the hydride transfer between Na₂[2] and 1. THF paves the way to the formation of the side products generated in the room-temperature reduction of 1. THF. The sole purpose of the low-temperature step is therefore to reductively quench the Lewis acidity of 1. THF under conditions where its reaction with Na₂[2] is kinetically prohibited.

With the doubly reduced 9*H*-9-borafluorene $[\mathbf{1}]^{2-}$ in hand, we were then able to tackle long-standing questions regarding the electronic structure of the central C₄B ring in its dianionic (formally aromatic) and neutral (formally antiaromatic) states.^[31] The pristine system is particularly valuable because here perturbations originating from steric or electronic influences of the boron-bonded substituent are not an issue (consider the π back-bonding contribution from B to NHC in $K[\mathbf{B}]^{[20]}$). In lieu of the experimentally inaccessible monomeric $\mathbf{1}$,^[22,23] we will rely on the computed structure $\mathbf{1}^{C}$ (B3LYP/TZVP) for comparison with the (averaged) bond lengths of Na₂[1] (Figure 3a). Two-electron injection into neutral 9H-9-borafluorene significantly changes its heavyatom scaffold (Figure 3b). The pattern of bond-length elongations and contractions matches perfectly with the nodal structure of the LUMO of 1° , which becomes doubly

Figure 3. a) Molecular structure of $[Na(thf)_3][Na(thf)][1]$ in the solid state. Hydrogen atoms (except BH) and tBu groups are omitted for clarity. b) Differences between selected (averaged) bond lengths [Å] of $[Na(thf)_3][Na(thf)][1]$ and 1^{c} . c) LUMO of 1^{c} in two different orientations. d) ¹¹B NMR shifts of $Na_2[1]$ and **BrBFlu** (green); differences between selected ¹³C NMR shifts [ppm] of $Na_2[1]$ ([D₈]THF) and **BrBFlu** (C₆D₆). Carbon atoms marked with asterisks bear tBu substituents.

occupied upon reduction (Figure 3c): 1) $Na_2[1]$ shows enhanced bond-length alternations within its benzene rings; specifically, the peripheral rims adopt a butadiene-like character. 2) The B–C bonds in $Na_2[1]$ (avg. 1.537 Å) are shorter by 0.022 Å than those of 1° , which is consistent with an increased double-bond character in the dianion. Moreover, the difference between the length of the C2-C12 bond minus the averaged C1-C2/C11-C12 bonds amounts to $\Delta =$ -0.059 Å in Na₂[1] and +0.066 Å in 1^c. The absolute values are similar, but the relative bond orders are inverted. Taken together, these structural features indicate that the two added electrons are not constrained to the boron p_z orbital, but to some extent distributed over the entire π -electron system of Na₂[1]. Somewhat surprisingly in view of the aromatic character of $[\mathbf{B}]^-$ (Figure 1),^[20] the bond-length alternation in the central C_4B ring of $[1]^{2-}$ does not support the view of a cyclic delocalized "Clar sextet" within this substructure, but rather points toward an allylic CBC fragment in combination with a C2–C12 bond of increased double-bond character. Accumulation of negative charge on the benzene rings of Na₂[1] also becomes evident from the ¹³C NMR spectrum, which shows that all except one of the C(sp²) atoms are significantly shielded (Figure 3d). 2,7-Di-*tert*-butyl-9-bromo-9-borafluorene (**BrBFlu**) was used as a substitute for the uncharged reference system 1 because **BrBFlu** is the only derivative of trigonal-planar 2,7-di-*tert*-butyl-9-borafluorene, for which ¹³C{¹H} NMR data have been recorded in a nondonor solvent (C₆D₆) and fully assigned.^[23]

Notwithstanding the evidence of charge delocalization in Na₂[1], an upfield-shifted ¹¹B NMR signal at 3.9 ppm suggests that considerable π -electron density remains accumulated at the boron center. Thus, $[1]^{2-}$ has the potential of acting as a π nucleophile, and a first experiment in this direction has already proven that a mixture of Na₂[1] and 1. THF furnishes the $B(sp^3)-B(sp^3)$ species $Na_2[2]$ in quantitative yield (see above). Conceptually related examples of targeted B-B bond-forming reactions are scarce and restricted to heteroatom-stabilized boryl nucleophiles, such as Nozaki's and Yamashita's boryllithium^[32,33] or (in situ generated) pinacolatoboryl anions,^[34] and [B(CN)₃]^{2-,[35]} B-B coupling between Na₂[1] and 1. THF can take place either in a closed-shell fashion (as for Finze's K₂[B(CN)₃]/K[FB(CN)₃] system)^[35] or by comproportionation within an encounter complex constituted by the electron-rich $[1]^{2-}$ and the electron-poor 1 (see Power's claim in a related case).^[36] In fact, the Na₂[2] species transiently generated during the synthesis of Na₂[1] may also result from the dimerization of two boranyl radicals Na[1].

In order to further assess the scope of $[1]^{2-}$ as a surrogate of the nucleophilic boryl anion [BFlu]⁻, reactions of Li₂[1] with MeCl, Et₃SiCl, and Me₃SnCl were performed (THF, room temperature). According to NMR analysis, quantitative conversion occurred to afford the B–Me- and B–SiEt₃bonded species Li[1Me] and Li[1SiEt₃],^[25] respectively (Scheme 2). It was next confirmed that the hydride ligand of Li[1Me] can be easily abstracted with excess MeCl or Me₃SiCl in a one-pot reaction to furnish the free borane 4. We

Scheme 2. Synthesis of Li[**1Me**], Li[**1SiEt**₃], Li[**1SnMe**₃], and Li[**1C**₂**H**₄**CH**=**CH**₂] from Li₂[**1**] and MeCl, Et₃SiCl, Me₃SnCl, and 4chloro-1-butene, respectively; hydride abstraction from Li[**1Me**] to give the free borane **4**. Reaction of Li₂[**1**] with (bromomethyl)cyclopropane to form Li[**1C**₂**H**₄**CH=CH**₂]. Carbon atoms marked with asterisks bear *t*Bu substituents.

take this as a proof of principle that $[1]^{2-}$ can indeed be used as a [BFlu]⁻ equivalent in the synthesis of triorganoboranes. The stannylated hydroborate Li[**1SnMe**₃] was formed to approximately 80%, together with Li[**1H**] and Sn₂Me₆ (Scheme 2). These side products raise the question as to whether the apparent nucleophilicity of $[1]^{2-}$ is, at least in part, a consequence of radical reactivity (as has been observed for the system [**B**]⁻/Me₃SnCl^[21]): Single-electron transfer from $[1]^{2-}$ to Me₃SnCl yields the $[1]^{--}$ and [Me₃Sn]⁻ radicals, which can either recombine in the solvent cage to generate Li[**1SnMe**₃] or undergo radical-pair separation with subsequent homocoupling (Sn₂Me₆) and H-atom abstraction (Li[**1H**]).

The assumption of a possible radical pathway gains further support from the observation that the reaction of $Li_2[1]$ with MeI (30% conversion into Li[1Me]) is far less selective than that with MeCl; for MeI, radical reactivity has been reported.^[37] Moreover, treatment of $Li_2[1]$ with 1 equiv of the fast radical clock (bromomethyl)cyclopropane gave mainly the ring-opened olefin $Li[1C_2H_4CH=CH_2]$ together with $Li_2[2]$ and small amounts of Li[1H], with all three products indicating radical intermediates.^[38] An authentic sample of $Li[1C_2H_4CH=CH_2]$ was synthesized from $Li_2[1]$ and 4-X-1-butene (X = Cl, Br); similar to the case of MeX, only the organochloride gave a high conversion into $Li[1C_2H_4CH=$ $CH_2]$ (75% by NMR analysis).

In summary, we have disclosed the first example of a fully conjugated diarylboryl ([BFlu]⁻) anion, stabilized by a hydride ligand ([1]^{2–}). The steric hindrance of the boron center is minimal, and [1]^{2–} straightforwardly reacts with organoboranes or tetrel halides to generate B–B/C/Si/Sn bonds. The hydride ligand of the thereby obtained methyl(hydro)borate [1Me]⁻ can be easily abstracted, thus rendering [1]^{2–} a true surrogate of the elusive [BFlu][–] nucleophile. The extent of closed-shell versus open-shell reactivity of [1]^{2–} depends on the substrate: Evidence for radical intermediates has been found for the heavier halogen leaving groups (Br, I) and electrophilic tetrel centers (Sn).

Conflict of interest

The authors declare no conflict of interest.

Keywords: boron · boryl anions · nucleophilic substitution · radical reactions · umpolung

How to cite: Angew. Chem. Int. Ed. 2020, 59, 5621–5625 Angew. Chem. 2020, 132, 5670–5674

- E. Bernhardt, V. Bernhardt-Pitchougina, H. Willner, N. Ignatiev, Angew. Chem. Int. Ed. 2011, 50, 12085–12088; Angew. Chem. 2011, 123, 12291–12294.
- [2] E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, *Chem. Rev.* 2016, *116*, 9091–9161.
- [3] Synthesis and Application of Organoboron Compounds (Eds.: E. Fernández, A. Whiting), Springer International Publishing, Cham, 2015.
- [4] R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, *Chem. Commun.* 2015, 51, 9594–9607.

- [5] A. F. Pécharman, A. L. Colebatch, M. S. Hill, C. L. McMullin, M. F. Mahon, C. Weetman, *Nat. Commun.* 2017, *8*, 15022. The field of heteroatom-stabilized boryl anions was pioneered by quantum-chemical calculations of Schleyer and co-workers and Nozaki's/Yamashita's preparation of a 1,3,2-diazaborole-derived boryllithium; see: a) M. Wagner, N. J. R. van Eikema Hommes, H. Nöth, P. v. R. Schleyer, *Inorg. Chem.* 1995, *34*, 607–614; b) Y. Segawa, M. Yamashita, K. Nozaki, *Science* 2006, *314*, 113–115.
- [6] J. A. Schiffner, K. Müther, M. Oestreich, Angew. Chem. Int. Ed. 2010, 49, 1194–1196; Angew. Chem. 2010, 122, 1214–1216.
- [7] Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials (Ed.: D. G. Hall), Wiley-VCH, Weinheim, 2011.
- [8] E. von Grotthuss, A. John, T. Kaese, M. Wagner, Asian J. Org. Chem. 2018, 7, 37–53.
- [9] L. Ji, S. Griesbeck, T. B. Marder, *Chem. Sci.* 2017, *8*, 846–863.
 [10] A. Escande, M. J. Ingleson, *Chem. Commun.* 2015, *51*, 6257–
- 6274. [11] T. Imamoto, T. Hikosaka, J. Org. Chem. **1994**, 59, 6753–6759.
- [12] J. Monot, A. Solovyev, H. Bonin-Dubarle, É. Derat, D. P. Curran, M. Robert, L. Fensterbank, M. Malacria, E. Lacôte, *Angew. Chem. Int. Ed.* **2010**, *49*, 9166–9169; *Angew. Chem.* **2010**, *122*, 9352–9355.
- [13] D. A. Ruiz, G. Ung, M. Melaimi, G. Bertrand, Angew. Chem. Int. Ed. 2013, 52, 7590-7592; Angew. Chem. 2013, 125, 7739-7742.
- [14] J. Landmann, J. A. P. Sprenger, R. Bertermann, N. Ignat'ev, V. Bernhardt-Pitchougina, E. Bernhardt, H. Willner, M. Finze, *Chem. Commun.* 2015, 51, 4989–4992.
- [15] J. J. Eisch, K. Tamao, R. J. Wilcsek, J. Am. Chem. Soc. 1975, 97, 895–897.
- [16] J. D. Wilkey, G. B. Schuster, J. Org. Chem. 1987, 52, 2117-2122.
- [17] J. Radtke, S. K. Mellerup, M. Bolte, H. W. Lerner, S. Wang, M. Wagner, Org. Lett. 2018, 20, 3966–3970.
- [18] S. Akiyama, K. Yamada, M. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 11806–11810; Angew. Chem. 2019, 131, 11932–11936.
- [19] T. Kaese, T. Trageser, H. Budy, M. Bolte, H. W. Lerner, M. Wagner, *Chem. Sci.* 2018, 9, 3881–3891.
- [20] H. Braunschweig, C. W. Chiu, K. Radacki, T. Kupfer, Angew. Chem. Int. Ed. 2010, 49, 2041–2044; Angew. Chem. 2010, 122, 2085–2088.
- [21] R. Bertermann, H. Braunschweig, R. D. Dewhurst, C. Hörl, T. Kramer, I. Krummenacher, *Angew. Chem. Int. Ed.* 2014, 53, 5453–5457; *Angew. Chem.* 2014, 126, 5557–5561.
- [22] A. Hübner, Z. W. Qu, U. Englert, M. Bolte, H. W. Lerner, M. C. Holthausen, M. Wagner, J. Am. Chem. Soc. 2011, 133, 4596– 4609.

- [23] A. Hübner, M. Diefenbach, M. Bolte, H. W. Lerner, M. C. Holthausen, M. Wagner, *Angew. Chem. Int. Ed.* **2012**, *51*, 12514– 12518; *Angew. Chem.* **2012**, *124*, 12682–12686.
- [24] T. Kaese, A. Hübner, M. Bolte, H. W. Lerner, M. Wagner, J. Am. Chem. Soc. 2016, 138, 6224–6233.
- [25] A. Hübner, M. Bolte, H. W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2014, 53, 10408 – 10411; Angew. Chem. 2014, 126, 10576 – 10579.
- [26] Li₂[**2**], M[**1H**], and M[**3H**] (M = Li, K) are known; the NMR resonances of M_2 [**2**] (M = Na, K), Na[**1H**], and Na[**3H**] were assigned by analogy; see Refs. [24,25].
- [27] A. Hübner, T. Kaese, M. Diefenbach, B. Endeward, M. Bolte, H. W. Lerner, M. C. Holthausen, M. Wagner, *J. Am. Chem. Soc.* 2015, *137*, 3705–3714.
- [28] For practical reasons, the NMR spectra had to be recorded at room temperature. It can thus not be excluded that the actual B-B bond formation occurs not earlier than during warm-up.
- [29] L. Kong, W. Lu, Y. Li, R. Ganguly, R. Kinjo, J. Am. Chem. Soc. 2016, 138, 8623-8629.
- [30] T. Kaese, H. Budy, M. Bolte, H. W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2017, 56, 7546–7550; Angew. Chem. 2017, 129, 7654–7658.
- [31] A. Iida, S. Yamaguchi, J. Am. Chem. Soc. 2011, 133, 6952-6955.
- [32] K. Nozaki, Y. Aramaki, M. Yamashita, S. H. Ueng, M. Malacria, E. Lacôte, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 11449– 11451.
- [33] Y. Hayashi, Y. Segawa, M. Yamashita, K. Nozaki, Chem. Commun. 2011, 47, 5880-5890.
- [34] A. F. Pécharman, M. S. Hill, C. L. McMullin, M. F. Mahon, Angew. Chem. Int. Ed. 2017, 56, 16363–16366; Angew. Chem. 2017, 129, 16581–16584.
- [35] J. Landmann, J. A. P. Sprenger, M. Hailmann, V. Bernhardt-Pitchougina, H. Willner, N. Ignat'ev, E. Bernhardt, M. Finze, *Angew. Chem. Int. Ed.* 2015, 54, 11259–11264; *Angew. Chem.* 2015, 127, 11411–11416.
- [36] W. J. Grigsby, P. P. Power, J. Am. Chem. Soc. 1996, 118, 7981– 7988.
- [37] L. M. Tolbert, J. Bedlek, M. Terapane, J. Kowalik, J. Am. Chem. Soc. 1997, 119, 2291–2292.
- [38] D. C. Nonhebel, Chem. Soc. Rev. 1993, 22, 347-359.

Manuscript received: November 7, 2019

Accepted manuscript online: December 13, 2019 Version of record online: January 22, 2020

Angew. Chem. Int. Ed. 2020, 59, 5621–5625 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

GDCh

5625