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ABSTRACT

DNA methylation microarrays have been the platform of choice for epigenome-wide association
studies in epidemiology, but declining costs have rendered targeted bisulphite sequencing
a feasible alternative. Nonetheless, the literature for researchers seeking guidance on which
platform to choose is sparse. To fill this gap, we conducted a comparison study in which we
processed cord blood samples from four newborns in duplicates using both the Illumina
HumanMethylationEPIC BeadChip and the Illumina TruSeq Methyl Capture EPIC Kit, and evaluated
both platforms in regard to coverage, reproducibility, and identification of differential methyla-
tion. We conclude that with current analytic goals microarrays still outperform bisulphite sequen-

cing for precise quantification of DNA methylation.

Introduction

Epigenetics is believed to play a key role in many
associations observed between environmental expo-
sures and health and developmental outcomes, e.g.
lead exposure and low birth weight [1] or maternal
smoking and childhood asthma [2]. Even though the
impact of toxic environmental exposures on popula-
tions can be quite substantial due to their high pre-
valence, on an individual level their effect sizes are
often small in part because health outcomes are multi-
factorial. This is reflected on the genetic/epigenetic
level where polygenes and pleiotropy are the norm
and clear-cut links between geno/epitypes and phe-
notypes are rare, complicating discovery and valida-
tion of exposure-related epigenetic changes. It is,
therefore, crucial to have the best laboratory tools
available. Discovery is usually carried out in the
form of epigenome-wide association studies: poten-
tially millions of CpG sites are scanned in
a hypothesis-free manner for their association with
an outcome or exposure of interest. While DNA
microarrays have been the platform of choice, techni-
cal advancements and declining costs have rendered
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targeted bisulphite sequencing a feasible alternative,
raising the question of whether investigators should
consider switching to targeted bisulphite sequencing
for new projects. Both offer single-site resolution of
DNA methylation levels and genome-wide coverage
but differ in regard to precision and density.
Microarrays and targeted bisulphite sequencing have
been compared and their respective (dis)advantages
have been discussed previously [3,4], these reports,
however, do not include benchmarks addressing the
typical scenario encountered in environmental epide-
miology, which is usually characterized by rather large
sample sizes but small effect sizes, and therefore pro-
vide little guidance for researchers in this field plan-
ning new studies. The aim of this project was to fill
this gap by comparing both platforms as directly as
possible.

Methods

DNA methylation levels were measured in cord
blood samples from four newborns, two boys and
two girls. Samples were run in duplicate (one
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index sample and one technical replicate) on
microarrays as well as using targeted bisulphite
sequencing, amounting to a total of 16 experi-
ments. Both platforms were evaluated in regard
to reproducibility between duplicates and well as
the ability to rediscover CpG sites differentially
methylated between sexes.

Study cohort

Cord blood samples were collected in the context of
a larger birth cohort study named PROGRESS. In
total, 948 pregnant women, recruited before
the second trimester and residing in Mexico City,
were enrolled between July 2007 and February 2011
and gave birth to a live infant. They were followed
throughout pregnancy, delivery and beyond, with
data and sample collection from both mothers and
newborns at several time points. The study protocol
was approved by the institutional review boards of the
Icahn School of Medicine at Mount Sinai, Harvard
School of Public Health and the Mexican National
Institute of Public Health (INSP) and all participants
provided written informed consent. Methylation
microarray data of whole blood DNA extracted
from umbilical cord blood samples were available
for 449 newborns.

Microarray data

Samples from PROGRESS were assayed on the
Mlumina  MethylationEPIC ~ BeadChip  (EPIC,
[umina Inc., San Diego, CA). EPIC experiments
were run at the University of Illinois following bisul-
phite conversion at Northwestern University accord-
ing to the manufacturer’s protocol: DNA input is
bisulphite-converted, amplified, fragmented, subse-
quently dropped on the array where the targeted
DNA molecules hybridize to the probe sequences,
extended with tagged nucleotides, and finally
scanned to record fluorescence intensities.
Generated output is saved in .idat files, the starting
point for this analysis. Samples passed comprehen-
sive quality control [5] and undetected probes were
filtered out (estimating background noise using non-
specific fluorescence instead of negative control
probes) [6] and fluorescence intensities were cor-
rected for dye bias using RELIC [7]. Fluorescence
intensities were converted into methylation levels
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PBal8]. No normalization was performed. Four sub-
jects were chosen randomly out of the pool of sam-
ples that passed, had a sufficient amount of DNA,
and had been measured in duplicates, each with
index and technical replicate placed on different 96-
well plates and different rows on the 8-well chips.

Bisulphite sequencing

Samples were sequenced at the Epigenomics Core
Facility at Weill Cornell Medicine using the Illumina
TruSeq Methyl Capture EPIC Kit (TruSeq) and pre-
processed as described previously [9]. TruSeq uses
targeted enrichment in which baits hybridize to
regions of interest for subsequent amplification.
Samples were run on an Illumina HiSeq 2500 with
100 bp paired-end sequencing on two lanes with
a total yield of 66 Giga bases. Preprocessing included
quality control using FastQC, adapter trimming
using cutadapt, and read alignment and methylation
calling using Bismark with Bowtie2 (command-line
arguments: -q — score-min L,0,-0.2 - ignore-quals -
no-mixed - no-discordant - dovetail - maxins 500).
No de-duplication was performed as recommended
for targeted sequencing. The starting point for this
analysis were methylated and total counts of reads
overlapping queried CpG sites. In the context of
sequencing the term coverage can possess several
meanings. To avoid confusion we use the term read
depth in order to refer to the total number of
sequenced reads that map to/overlap a CpG site.
We use the term coverage exclusively to convey
whether a CpG site is targeted/queried at all by either
platform.

Whereas for EPIC only one preprocessing pipeline
and therefore only one set of methylation level esti-
mates was produced, three sets of estimates were
evaluated for TruSeq. But beforehand a list of CpG
sites common to EPIC and TruSeq was compiled. We
will refer to this set of CpG sites as the reference loci.
First, raw methylation levels g were estimated as the
ratio of methylated to total counts for each particular
CpG site (hence the ‘R’ in Bg). Second, blocks were
defined by assigning CpG sites to the nearest reference
locus. Only sites within 250bp in either direction of
a reference locus were considered, capping block size
at 501bp. This window size was chosen to allow
sufficient numbers of CpG sites per block to take
advantage of pooling while only grouping together
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CpG sites that are close enough to be highly correlated
and likely part of the same functional unit. For each
block, methylated and total counts were tallied and
their ratio B used as an estimate representative of the
collapsed methylation proportion in the entire block
(hence the ‘C in B¢). The genomic position of the
reference locus was used to match blocks to EPIC
probes. Third, smoothed estimates s for each CpG
site were produced by applying the BSmooth function
from the frequently cited bsseq Bioconductor package
with default parameters (hence the ‘S’ in fs) [10]. The
BSmooth function performs locally weighted regres-
sions taking the read depth into account. By its design,
it enables the imputation of missing values.

Reproducibility

Only CpG sites common to EPIC and TruSeq were
considered in this step and CpG sites mapping to the
X and Y chromosomes were dropped as well.
Reproducibility was measured by the Pearson corre-
lation coefficient of methylation levels between index
samples and technical replicates across all probes,
before and after centring the data by subtracting
CpG-specific means [11]: in the pursuit of differen-
tial methylation only inter-sample variation is rele-
vant. Due to the bimodal distribution of methylation
levels and the fact that many CpG sites exhibit little
biological variation, intra-sample variation (ie.
between different CpGs in the same sample) greatly
outpaces inter-sample variation (i.e. between differ-
ent samples for the same CpG). In this situation
correlation of non-centred data conveys little infor-
mation about reproducibility. For example, correla-
tion coefficients between pairs of EPIC arrays
without centring usually range above 0.98 even for
unrelated samples. Data were not standardized as
measurements are already on the same scale (from
0 to 100% methylation).

Discovery of differential methylation

All EPIC data of cord blood samples from
PROGRESS save the four subjects with TruSeq data
(resulting in a sample size of 445) were used to com-
pile a list of CpG sites differentially methylated
between boys and girls (positive markers) and
a second list consisting of not-differentially methy-
lated sites (negative markers). Only autosomal CpG

sites common to EPIC and TruSeq were considered
and potentially cross-hybridizing probes, as judged by
sequence homology [12], were excluded. B4 were
regressed (linearly) on sex, batch (i.e. the 96-well
plates on which samples were allocated), and leuko-
cyte composition. Proportions of seven cell types
(granulocytes, monocytes, natural killer cells,
CD19 + B-lymphocytes, CD8 + T-cells,
CD4 + T-cells, nucleated red blood cells) were esti-
mated using the Houseman algorithm [13] based on
two reference datasets of purified cord blood cells
[14,15]. CpG sites with p-values below 0.05 after
Bonferroni correction were deemed positive, CpG
sites with p-values above 0.1 before Bonferroni cor-
rection were deemed negative. Positive markers were
further restricted to absolute effect sizes capped at 0.05
as we wanted to focus on small effect sizes. The list of
positive and negative markers is referred to as ground
truth for this study.

Association between methylation levels in cord
blood and sex was again assessed in the subset
consisting of eight (the four subjects with duplicate
measurements not used to define the ground
truth) EPIC samples and eight TruSeq samples,
respectively. Five analytical approaches were
employed depending on which set of estimates
was used. Conditional on what yielded better per-
formance, either linear or logistic regression was
used.

(I) For B4 logistic regression models with sex
as the only independent variable (aside
from the intercept)

(II) For B¢ logistic regression models with sex
as the only independent variable and
observations weighted by read depth.

(IIT) For g logistic regression models with sex
as the only independent variable and
observations weighted by read depth.
Only reference loci were considered.

(IV) Again using Pr and logistic regression
models with weighted observations, but
with separate models for every CpG site
of a block, not just the reference loci.
Subsequently p-values were summarized
by block into a single p-value using
Fisher’s method.

(V) For Bs linear regression models and sub-
sequently summarizing of p-values by



block with Fisher’s method. No weighting
of observations was done as read depth is
already taken into account during the
smoothing step.

These approaches differ whether information is
pooled across CpG sites or not, and whether
methylation levels or p-values are pooled. While
not exhaustive, they represent the various basic
strategies of regional methylation analysis, with
the use of Bs representing a hybrid approach.
Using the corresponding p-values as scores, the
ability to discriminate between positive and nega-
tive markers, as determined by the population-
level EWAS, was measured with the c-statistic.

Results
Coverage

Not counting those targeting non-CpG sites, there
were 862,927 probes on the EPIC, amounting to 3%
of the roughly 28.2 million CpG sites in the human
genome (version hg19). TruSeq enriches for 437,792
preselected regions encompassing 3,358,636 or 12%
of all CpGs. TruSeq builds upon the content of the
EPIC chip, resulting in a high overlap between both
platforms. When we overlapped CpG sites/probes
with annotation tracks of epigenetic elements (with
categories of CpG island, shore, shelf) and genetic
elements (3X UTR, 58 UTR, promoter, exon, intron),
we found that despite querying roughly four times
the number of CpG sites compared to EPIC, the
percentage of (epi)genetic elements covered (overlap
with at least one probe/CpG site) by TruSeq was
similar (see Figure 1). Both platforms cover the vast
majority of CpG islands, shores and shelves.
Coverage of the various genetic elements was less
complete with the highest coverage for promoters
and the least for exons.

As a result of the random assembly manufactur-
ing process of the EPIC chip, some probes might
not actually be present and have to be masked in
the data. Furthermore, a small fraction of probes
are usually masked as they show very low fluores-
cence intensities, an indication that the targeted
CpG site has not been sufficiently amplified or
might differ from the reference genome (either
because the CpG site itself is mutated/deleted or
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Figure 1. Coverage of epigenetic and genetic elements for EPIC
(black) and TruSeq (red).

because nearby changes prevent hybridization to
the 50-mer probes) so that the estimated methyla-
tion levels represent spurious values. Similarly,
some of the CpG sites targeted by TruSeq have
no reads mapped to them. In our dataset these
instances were rare, affecting only 1.0% and 0.3%
of EPIC and TruSeq data, respectively.

Read depth

Median read depth at CpG sites targeted by
TruSeq was 51 with the following distribution:
0.3% at read depth 0 (missing), 2.5% at 1-10,
8.5% at 11-20, 12.9% at 21-30, 13.6% at 31-40,
12.2% at 41-50, and 49.9% at 51-300, and 0.1% at
read depths above 300. Reads mapped outside the
targeted regions were dropped before continuing
with the analysis, even when corresponding EPIC
probes were available, as median read depth was 0.
CpG sites with read depths below 11 or above 300
were filtered out before evaluating reproducibility
and ability to detect differential methylation.

Concordance

Figure 2 shows the concordance of estimated
methylation levels between EPIC and TruSeq sam-
ples stratified by read depth across all eight pairs.
As expected, concordance (as assessed by the cor-
relation between 5,220,451 paired measurements)
improves with increasing read depth, ranging from
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Figure 2. Concordance of methylation level estimates between EPIC and TruSeq samples stratified by read depth.

0.835 (1-10 mapped reads) to 0.980 (51-300
mapped reads). The discrete nature of bisulphite
sequencing data is especially apparent for lower
read depths. Even though most CpG sites are
completely (un)methylated, the peaks of the bimo-
dal distribution of EPIC methylation levels are
shifted inwards.

Reproducibility

In the case of TruSeq, precision is primarily
a function of read depth (see Figure 2). After filtering
out allosomal loci and TruSeq data with low or
excess reads (<11 or >300) there were a total of
570,494 remaining CpG sites in common between
platforms. Correlation coefficients between index
samples and technical replicates using non-centred
data were 0.997 for B4 and 0.986, 0.991 and 0.993 for
PBrPc and Bs, respectively. After centring the data
these coefficients changed to 0.493 for 8, and 0.178,
0.259 and 0.250 for Bg, Bc and s, respectively. The
necessity to centre the data becomes even more clear
by looking at unrelated samples (which should not
be as closely correlated): matching each index sample
with the wrong technical replicate of the same sex,
correlation coefficients were 0.993 for 84 and 0.980

for Br when using the non-centred data, and —-0.163
for B4 and —0.149 for Br when using the centred
data.

Further restricting the TruSeq centred data to
sites with a read depth greater than 50 resulted in
correlation coefficients of 0.273 for Br. To achieve
a correlation coefficient for By as high as for B, it
was necessary to restrict the data to those with
a read-depth above 130 (~10% of data, median
read depth of 146).

Differential methylation

After dropping probes that are potentially cross-
reactive, methylation levels 4 of reference loci
were tested for their association with sex in the
remaining n = 445 cord blood samples from the
PROGRESS cohort. A total of 10,495 probes were
differentially methylated between boys and girls at
a family-wise error rate of 0.05, while 404,106
probes had unadjusted p-values above 0.1. We
further restricted the set of positive markers to
9,653 with absolute effect sizes below 0.05 on the
B-scale. The ability to discriminate between the
two lists of positive and negative markers was
evaluated in the EPIC and TruSeq datasets, each



Table 1. Results of differential methylation benchmark.
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Approach #  Platform  Estimates  Pooling of methylation levels Pooling of p-values Model c-statistic
| EPIC Ba No No Logistic regression 0.761
I TruSeq Bc Yes No Weighted logistic regression 0.663
I TruSeq Br No No (reference loci only) ~ Weighted logistic regression 0.647
v TruSeq Br No Yes Weighted logistic regression 0.675
\Y TruSeq Bs Yes Yes Linear regression 0.586

consisting of eight samples (four subjects run in
duplicates). The results are presented in Table 1.
The highest c-statistic was achieved for EPIC (1),
the lowest for TruSeq with smoothed methylation
estimates (V). Pooling p-values or methylation
levels modestly improved discrimination (IV vs.
III and II vs. III).

Discussion

Out of the rich selection of platforms for quantifi-
cation of DNA methylation, EPIC and TruSeq
share performance characteristics and costs that
render them suitable for epigenome-wide associa-
tion analyses. But both platforms come with their
own challenges regarding preprocessing, batch
effects, and statistical analysis. No consensus on
best practices has emerged yet and an ever-
growing selection of available software packages
only makes the decision more difficult. Many
open questions remain, most fundamentally how
to segment or group CpG sites? (An overview of
existing methods can be found in Chen et al., 2016
[16].) While often highly correlated, sudden
changes in methylation levels between proximal
CpG sites can be observed. Despite these unre-
solved issues, investigators planning new studies
still have to decide on platforms and analytic stra-
tegies in the meantime.

We wanted to answer the question of which plat-
form, EPIC or TruSeq, provides the most information
in the context of epigenome-wide association studies
of environmental exposures, which are usually char-
acterized by small effect sizes. While DNA methyla-
tion microarrays query only a small fraction of all
CpG sites in the human genome, they offer better
precision, whereas bisulphite sequencing techniques
can query more CpG sites — even the entire genome —
but usually do so at low coverage and consequently
low precision due to cost constraints. In terms of
genome-wide coverage both platforms perform very

similarly. To facilitate a more useful comparison, we
restricted our analysis to common CpG sites/regions
and rephrased the question more specifically as to
whether the lower precision of bisulphite sequencing
data can be compensated by pooling information
from nearby CpG sites and whether such a strategy
might even improve detection of differential methyla-
tion? Again, while the answer might depend on the
magnitude of the sought-after epigenetic differences,
we were most interested in small-magnitude effect
sizes.

We chose to apply rather lightweight preproces-
sing and simple analytical approaches. In the case
of EPIC, this included dye bias correction (a
within-array method which nevertheless improves
between-array reproducibility [7]) and filtering by
detection p-values, but no normalization or regio-
nal analyses. In the case of TruSeq, this included
using the default preprocessing for bisulphite
sequencing data as performed at the Epigenomics
Core Facility at Weill Cornell Medicine [9], and
simple analytical approaches of pooling informa-
tion from nearby CpG sites. While not exhaustive,
the selection of analytical approaches evaluated
here covers all of the basic strategies.

Both platforms performed similarly in regards
to coverage of genetic and epigenetic elements,
and the fraction of missing data, i.e., the number
of targeted CpG sites that were ultimately not
observed was low, an important feature when the
same CpG sites are to be compared across hun-
dreds of samples.

Comparing reproducibility of single-site methy-
lation level estimates, we find that EPIC clearly
outperforms TruSeq with a correlation coefficient
after mean-centering of 0.493 compared to 0.178.
While pooling methylation levels across nearby
CpG sites did improve the correlation to 0.259,
this is still substantially worse than for the EPIC
data. It is crucial to note that correlation coeffi-
cients were evaluated using centred data: previous
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comparisons of bisulphite sequencing and micro-
array methylomic assays reported Pearson correla-
tions of non-centred data that are misleadingly
high.

Consistent with these findings, the best perfor-
mance in the differential methylation benchmark
was achieved using EPIC data, yielding a c-statistic
of 0.761. For TruSeq, pooling p-values or reads
from nearby CpG sites gave only slightly better
results (0.675 and 0.663) than just using the refer-
ence loci (0.647). Interestingly, the methylation
level estimates produced by BSmooth, even though
scoring better in regard to reproducibility, yielded
the worst c-statistic (0.586).

There are strengths and important limitations to
our analysis. We relied on a large dataset in order to
compile the ground truth for the differential methyla-
tion benchmark. Another common benchmark strat-
egy, in case no ground truth is available, is to split
a dataset, run the same analytical approach on each
half independently, and subsequently check results for
consistency. The so-called correspondence-at-the-top
metric represents such a benchmark: CpG sites are
ranked by increasing likelihood of differential methy-
lation and the overlap between the top » hits from
each half is counted. We refrained from such
a strategy, as for TruSeq p-values do not only depend
on the magnitude of the effect size but also read depth.
The non-uniform non-random distribution of read
depth across genomic regions has the potential to
skew the ranking (especially considering the small
sample size) and thus give a false impression of the
ability to identify actual differential methylation.
Ground truth based benchmarks do not suffer from
such problems. However, ground truth was here
determined also using the EPIC platform and some
of the classifications of positive and negative markers
may not be valid for TruSeq, for example, because of
cross-reactivity (even though we tried to mitigate this
issue by dropping potentially problematic probes
beforehand) and may, therefore, bias this benchmark
in favor of EPIC.

When grouping CpG sites queried by TruSeq
into blocks, they were matched to the nearest EPIC
probe within 250bp if available. This segmentation
ignores the underlying methylation levels and may
break up functional units even when established
analytical approaches would group them together
and may result in a loss of statistical power. In case

such an unfavorable scenario would stem from
closely placed EPIC probes, however, pooling
information from those probes would likely have
resulted in improved statistical power as well. In
other words, if an optimal analytical approach for
TruSeq data would group together two blocks, so
would an optimal analytical approach likely group
together the corresponding EPIC probes. The seg-
mentation based on genomic proximity would
therefore not give either platform a competitive
edge. However, there may be better ways to define
functionally-related proximal sites which could, in
general, improve results from smoothing or pool-
ing approaches [17].

Most limiting is the small sample size of just
four unique subjects, which does not resemble the
situation of a typical EWAS which often includes
hundreds of samples. This limitation led us to treat
duplicates as independent observations in the dif-
ferential methylation benchmark, which can lead
to an incorrect distribution of p-values. It would
do so however for all analytical approaches con-
sidered here. Furthermore, the c-statistic assesses
the discriminative power, i.e. the relative - not
absolute - ranking of positive compared to nega-
tive markers. The small sample size is also the
reason why we do not report confidence intervals,
as such would have required a resampling scheme
to accurately reflect variability.

In addition, we would like to make a few comments
regarding each platform not addressed in our analysis.
While regional analytical approaches exist for EPIC
(and indeed have been applied where probe density
allows [18,19]), methylation levels are not comparable
between probes. Sequence homology between probes
leads to off-target binding/cross-hybridization which
explains the reduced dynamic range of methylation
levels compared to TruSeq as seen in Figure 2. The
magnitude of off-target binding and thus the intensity
of background noise depends on the probe sequence
and therefore varies even for probes that are near each
other in genomic coordinates. Another source of
noise is cross-talk between the green and red fluor-
ophores used to distinguish the different nucleotides
incorporated in the single-base extension step [8].
This issue mainly affects probes of Infinium Type II
design [6] which make up 84% of the EPIC array,
resulting in an even narrower dynamic range of
Infinium Type II probes compared to Infinium Type



I probes. Regional approaches based on pooling sin-
gle-site p-values may still be valid for EPIC, though. In
comparison, TruSeq offers more accurate methylation
levels, as reads that do not map uniquely are dis-
carded. Compared with whole-genome bisulphite
sequencing, the TruSeq targeted enrichment
approach can offer a considerably greater read depth
with excellent coverage of the Illumina targeted
regions. Yet even with this read depth (median of 51
reads per targeted CpG), the precision of bisulphite
sequencing data cannot match that from microarrays
which have many thousands of oligo binding sites per
bead. Last, it should be mentioned that using the
450K/EPIC microarrays ensures comparability to the
vast body of literature and reference datasets using the
same platform.

Conclusions

In the context of epigenome-wide association stu-
dies of environmental exposures, methylation
microarrays are still the laboratory platform of
choice. Pooling information from nearby CpG
sites cannot compensate for the lower precision
of single-site methylation levels, at least not at
average read depth around 50.
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