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Determining how best to manage an infectious disease outbreak may be

hindered by both epidemiological uncertainty (i.e. about epidemiological

processes) and operational uncertainty (i.e. about the effectiveness of candi-

date interventions). However, these two uncertainties are rarely addressed

concurrently in epidemic studies. We present an approach to simultaneou-

sly address both sources of uncertainty, to elucidate which source most

impedes decision-making. In the case of the 2014 West African Ebola out-

break, epidemiological uncertainty is represented by a large ensemble of

published models. Operational uncertainty about three classes of interven-

tions is assessed for a wide range of potential intervention effectiveness.

We ranked each intervention by caseload reduction in each model, initially

assuming an unlimited budget as a counterfactual. We then assessed the

influence of three candidate cost functions relating intervention effectiveness

and cost for different budget levels. The improvement in management out-

comes to be gained by resolving uncertainty is generally high in this study;

appropriate information gain could reduce expected caseload by more than

50%. The ranking of interventions is jointly determined by the underlying

epidemiological process, the effectiveness of the interventions and the size

of the budget. An epidemiologically effective intervention might not be

optimal if its costs outweigh its epidemiological benefit. Under higher-

budget conditions, resolution of epidemiological uncertainty is most valu-

able. When budgets are tight, however, operational and epidemiological

uncertainty are equally important. Overall, our study demonstrates that sig-

nificant reductions in caseload could result from a careful examination of

both epidemiological and operational uncertainties within the same model-

ling structure. This approach can be applied to decision-making for the

management of other diseases for which multiple models and multiple

interventions are available.
1. Introduction
During infectious disease outbreaks, decision-makers seek to identify and

implement interventions to most effectively bring the epidemic under control.
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Figure 1. Illustration of the epidemiological and operational uncertainties during the process of assessing the effect of alternative interventions on the final man-
agement outcome. Epidemiological uncertainty is represented by a set of alternative models that describe the relationship between biological processes and the
outcome of management concern (e.g. reduction of caseload). Operational uncertainty is represented by a set of alternative functions that determine the effec-
tiveness of candidate interventions. (Online version in colour.)
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Decision analysts have identified different sources of uncer-

tainty that can impede decision-making [1–6]. An awareness

of such uncertainties, and of how they might affect manage-

ment outcomes, is essential for planning effective intervention

efforts [4,6]. Acknowledging uncertainties is critical to avoid

over- or underestimating management effectiveness [7–9].

Studies show that ignoring uncertainties may lead to inefficient

or even unsuccessful management [5,10]. During the decision-

making process, a critical question that decision-makers face is

which candidate intervention, or combination of interventions,

is optimal to improve the management outcome. The answers

are rarely straightforward; at least two types of uncertainty

need to be addressed. The first uncertainty arises from a lack

of knowledge about the underlying epidemiological processes,

such as the rate of disease transmission and spatial spread [11].

We hereafter refer to this as ‘epidemiological uncertainty’,

which is also known as model, parametric or structural uncer-

tainty in decision theory (figure 1) [2,5,6]. The second type of

uncertainty concerns the magnitude of the effect of any inter-

vention that can be achieved in practice. This type of

uncertainty is due to limited information on, for example, logis-

tical constraints, behavioural changes that might arise or

compliance with the corresponding intervention during the

operational process. We will refer to this type of uncertainty

as ‘operational uncertainty’, otherwise known as partial control

uncertainty or partial controllability in decision theory

(figure 1) [2,6].

As a result of limited biological information, especially at

the onset of an emerging disease outbreak, epidemiological

uncertainties about the structure and parameters of epidemic

models may limit reliable prediction of the epidemic trajectory.

Quantitative methods provide support for decision-making
during epidemics, and mathematical models are increasingly

used to understand mechanisms underlying disease trans-

mission and spread, and to evaluate potential strategies for

epidemic control [12–14]. As a result of intense scientific

interest in the problem, or to account for epidemiological uncer-

tainties, multiple models based on different assumptions and

using different modelling approaches are often developed to

assist epidemic decision-making; this is particularly the

case for severe outbreaks. For example, during the 2001 foot-

and-mouth disease outbreak in the UK, multiple models were

developed to project the outbreak dynamics and evaluate can-

didate interventions to assist outbreak management [15–17].

More recently, during the 2014 Ebola outbreak in West Africa,

a large set of models was published to address transmission

mechanisms and inform decision-making [13,14,18–20].

Using multiple models provides a range of insights and may

avoid the bias of a single model. The different predictions

and management recommendations resulting from alternative

models offer a chance to understand the epidemiological uncer-

tainties and to avoid over- or underestimation of management

effectiveness. However, decision-makers need a framework to

analyse and integrate multiple models in a way that uses the

information they convey about epidemiological uncertainty

and supports the decision-making process.

While an increasing number of studies address epide-

miological uncertainty in epidemic management [14,21,22],

operational uncertainty has received comparatively less atten-

tion. Identifying and understanding operational uncertainties,

so as to anticipate the logistical and cost constraints affecting

candidate interventions, is essential for efficient decision-

making. The level of operational uncertainty can vary among

individual interventions. For example, while it is relatively
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Figure 2. Illustration of an SEIHFR compartment model and three widely
applied interventions simulated by the model. An SEIHFR model includes S
(susceptible individuals in a population), E (exposed individuals), I (infectious
individuals in the community), H (hospitalized individuals), F ( funerals for
infectious individuals who died in the community or hospital) and R (indi-
viduals removed from the model through either recovery or burial)
compartments. The three simulated interventions are reducing transmission
in the community (represented by the green arrow), improving hospitaliz-
ation by increasing the percentage of cases hospitalized and reducing the
transmission in hospital (represented by orange arrows) and reducing trans-
mission at funerals (represented by blue arrows). The transitions that are
affected by an intervention are shown by arrows with dashed lines.
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straightforward to estimate the extent to which hospitalization

can be increased by adding more beds and recruiting more

healthcare workers [23], it may be far more difficult to estimate

how much community transmission of any disease can be

reduced by increasing quarantine or providing household sani-

tation kits. Moreover, uncertainty is likely to be particularly

high when interventions rely on behavioural changes, such

as avoiding social contact with infected individuals, through

information campaigns [24,25]; behavioural changes in

response to an outbreak can alter transmission and potentially

reduce epidemic size [25]. Operational constraints on a particu-

lar intervention also depend on outbreak settings, including

constraints imposed by the prevalent political, cultural and

economic conditions [26]. For example, it may be easier to

achieve higher hospitalization rates and to reduce hospital

transmission in developed rather than in developing countries

due to the availability of public health resources.

To identify the optimal intervention for an epidemic

management problem, we require an understanding of the

inherent uncertainties from both epidemiological and

operational perspectives. Ignoring either type of uncertainty

may lead to poor recommendations. For example, an epidemio-

logically effective intervention may not be optimal if it is

operationally hard to implement or economically expensive;

similarly, a cheap, operationally feasible intervention is not

optimal if it is epidemiologically ineffective in controlling the

outbreak. Therefore, it is essential to address both types of

uncertainties in the same framework. In our previous work

[14], we have explicitly addressed how epidemiological

uncertainties can affect management recommendations and

examined how to use an ensemble of models to identify and

resolve the epidemiological uncertainties that most hinder

the choice of an optimal intervention. However, further studies

to explicitly evaluate operational uncertainties within such

epidemic models (i.e. to simultaneously evaluate both epide-

miological and operational uncertainties within the same

modelling framework) would be highly informative. In the

present study, we use Ebola outbreak management to demon-

strate the inclusion of both operational and epidemiological

uncertainties in an analysis to inform decision-making about

management of an epidemic. The analysis is based on a large

set of existing models that encapsulate epidemiological

uncertainty, in conjunction with an analysis of operational

uncertainty. We initially assess their joint importance assuming

an unlimited budget. Although we recognize that this is unrea-

listic, it provides a baseline for comparison with budget-

constrained results. In practice, any response to an outbreak

always has a budget limit, though the magnitude of this limit

and other operational constraints may not be well articulated

at the time of response planning [27,28]. We therefore explore

the potential cost-effectiveness of interventions at different poss-

ible budget levels, to assess the degree to which costs and

budget constraints affect intervention rankings. Furthermore,

we apply value of information (VoI) analysis [29], which quan-

tifies how much the management outcome could be improved

by resolving different sources of uncertainty. VoI can be used

to direct new information collection, and to evaluate the poten-

tial value of resolving epidemiological and operational

uncertainty under different budgetary constraints. Addition-

ally, we discuss the application of the framework developed

here across a possible range of public health settings in terms

of contingency planning for an outbreak, or as a useful tool

during an outbreak.
2. Methods
We used the tenets of decision theory to frame our analysis,

because we are interested in the applied question of how to

inform decision-making regarding management of epidemic out-

breaks. The elements of a structured decision-making framework

include the objectives, the alternative interventions, and the

modelling approach to evaluate the interventions and the sources

of uncertainty [11]. We applied these elements in the context

of managing a future Ebola outbreak, taking into account both

epidemiological and operational uncertainty.

We defined minimizing caseload as the management objective.

Other objectives are possible and can have a profound effect on the

results [30], but we focused on this one for the purpose of demon-

stration. We first simulated the caseload under no intervention

conditions to provide a baseline. We then identified three classes

of alternative sets of management intervention that are widely

applied for Ebola control. The first set of interventions involves

reducing transmission in the community, which comprises a suite

of approaches including rapid contact tracing and case isolation,

community awareness campaigns to reduce travel and encourage

self-quarantine of sick individuals, provision of household sani-

tation kits and closing borders. The second set of interventions

aims to improve hospitalization, by increasing the proportion of

Ebola patients who get hospitalized and reducing transmission

within the hospital setting. Improving hospitalization can be

achieved in practice by, for example, improving contact tracing

and gaining public support to identify and isolate patients, building

Ebola treatment centres, and increasing medical supplies and beds.

Reducing hospital transmission can be achieved if healthcare per-

sonnel use personal protective equipment (PPE) when treating

infected cases, and by reducing hospital visits. The third set of inter-

ventions involves reducing funeral transmission, which is achieved

via safe burial practices.

Our modelling framework involved stochastic compartment

models, which were used to evaluate the effect of each of the

three sets of interventions in achieving the management objective.

In the full SEIHFR model, individuals in a population progress

through susceptible (S) to exposed (E), infectious (I ) and hospital-

ized (H ) compartments [14]. Infectious individuals (in the

community or hospital) finally reach the removed (R) compart-

ment either through recovery or death; in the latter case they

proceed to the funeral (F) compartment before finally being

removed from the transmission chain (figure 2). We identified



40 60
budget

80 100200

0

20

40

1. cheap and effective

3. cheap and partly effective
2. expensive and effective

60

80

100

in
te

rv
en

tio
n 

ef
fe

ct
iv

en
es

s 
(%

)

Figure 3. Illustration of three different types of relationship between the expected effect of candidate interventions and the corresponding budget (on a scale of 0 –
100). The three dotted grey vertical lines at budgets of 25, 50 and 75 represent low, intermediate and high budget levels, respectively.
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and recoded 37 published compartmental Ebola models. Eight

models had all SEIHFR compartments represented, seven were

SEIHR models (excluding an explicit funeral compartment), five

were SEIFR models (without an explicit compartment for hospital-

ized individuals) and 17 were SEIR models with neither hospital

nor funeral compartments [14]. Epidemiological uncertainty is

represented by these 37 parameterized Ebola models and the

alternative hypotheses implied by each. Detailed information on

the variation in key parameters in the 37 models is provided in

electronic supplementary material, table S1.

The set of interventions for reducing community trans-

mission was simulated by reducing the transmission coefficient

(the rate that disease moves from infected individuals to suscep-

tible individuals in a population; the product of the contact rate

and transmission probability given contact) in the community

compartments of the model. The set of interventions to improve

hospitalization was simulated by simultaneously increasing the

proportion of individuals hospitalized and reducing in-hospital

transmission. The set of interventions to reduce funeral trans-

mission was simulated by reducing the transmission coefficient

in the funeral compartment in the model. The effectiveness of

each set of interventions was defined as the percentage change

in transmission or hospitalization compared with the baseline.

For example, 10% effectiveness in the community transmission

intervention was represented by a 10% reduction in the commu-

nity transmission coefficient in the corresponding simulation.

All three sets of interventions can be explicitly simulated in the

full SEIHFR models, as illustrated in figure 2. For the submodels

with simpler structure (for which some compartments were

unspecified), the corresponding interventions were implicitly

simulated following the approach of Li et al. [14], in which the

implicit effect of an intervention was calculated via the average

proportional contribution of the target transmission to the overall

transmission based on the full SEIHFR models.

For each class of intervention, we must assume the effect of

the intervention on the corresponding parameters of the dynamic

models. Prior to implementation, it may not be possible to know

this effect. Hence this uncertainty in intervention effectiveness

represents a critical operational uncertainty. First, to thoroughly

explore operational uncertainties, we simulated each model

and intervention combination under the full possible range of

intervention effectiveness (from 0 to 100%, with steps of 10%)

for each set of interventions without considering the cost.

Second, to assess the extent to which costs would affect manage-

ment recommendations, we explored the effects on caseload

projection and intervention rankings of uncertainty in the cost
function, combined with three alternative budget levels. We

explored three representative cost functions, each of which is

plausible for public health management and likely to apply to

Ebola interventions (figure 3). The cost functions are assumed

to take a logistic form:

f ðxÞ ¼ L
1þ e�k(x�x0)

, ð2:1Þ

where x is the amount invested, in units ranging from 0 to 100,

f (x) is the intervention effectiveness, ranging from 0 to 100%, L
is the maximum intervention effectiveness, x0 is the value

where f (x) achieves its midpoint value (i.e. 0.5 � L) and k is the

steepness of the curve. We adjusted the parameters L and k for

each of the three cost functions to illustrate the differences in

their maximum achievable intervention effectiveness (L ¼ 75%

or 100%) and the increase in intervention effectiveness per unit

expenditure (k ¼ 0.1 or 0.2). The first cost function, where L ¼
100% and k ¼ 0.2, describes interventions that are ‘cheap and

effective’. In this scenario, the effectiveness of the intervention

increases quickly with increased expenditure, and the effective-

ness may approach 100% with further expenditure (figure 3).

This type of cost curve might apply to the set of interventions

intended to reduce funeral transmission. For example, funeral

transmission might be quickly reduced by providing staff and

PPE supplies to conduct safe burial, and it may achieve a high

effectiveness, approaching 100% reduction in funeral trans-

mission, with completely safe burial practices. The second cost

function, where L ¼ 100% and k ¼ 0.1, represents the interven-

tions that are ‘expensive and effective’; it increases less quickly

with increased investment, but the effectiveness may still even-

tually approach 100%. Such interventions may require a

considerable initial investment before generating an obvious

effect on outbreak control, but the effectiveness can increase

rapidly and achieve a high level once it passes a certain invest-

ment threshold (figure 3). This could be the case for the set of

interventions for improving hospitalization. For example, the

effect of investment in hospital construction cannot be seen

until it comes into use; then it increases the proportion of individ-

uals hospitalized. The third cost function, where L ¼ 75% and

k ¼ 0.2, illustrates the interventions that are ‘cheap and partly

effective’; the effectiveness increases quickly with initial invest-

ment, but saturates at a lower level, i.e. the effectiveness levels

off below 100% despite continued investment (figure 3). This

might apply to the set of interventions for reducing community

transmission. For example, community transmission could be



Table 1. Optimal interventions with lowest caseload projection under 27 different cost function combinations for each of 37 Ebola models for a low budget.
The three simulated interventions are reducing community transmission (com.), improving hospitalization (hos.) and reducing funeral transmission (fun.). The
three simulated cost functions are ‘cheap and effective’ (1), ‘expensive and effective’ (2) and ‘cheap and partly effective’ (3). The last column and row show the
optimal interventions with lowest caseload across models and cost functions, respectively, while the right bottom cell shows the overall optimal intervention
across models and cost function combinations. Full information on the caseload and optimal intervention for all 37 models and 27 cost function combinations
under low, intermediate and high budget levels is provided in electronic supplementary material, tables S1 and S2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 across models
1 1 1
1 2 1
1 3 1
1 1 2
1 2 2
1 3 2
1 1 3
1 2 3
1 3 3
2 1 1
2 2 1
2 3 1
2 1 2
2 2 2
2 3 2
2 1 3
2 2 3
2 3 3
3 1 1
3 2 1
3 3 1
3 1 2
3 2 2
3 3 2
3 1 3
3 2 3
3 3 3

= reducing community transmission
= reducing funeral transmission
= improving hospitalization

cost
function
of com.

cost
function
of fun.

cost
function
of hos.

across cost functions

models
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reduced considerably by implementing actions such as edu-

cational campaigns or providing household sanitation kits,

which are inexpensive, but the impact may stop increasing at

some level despite increasing effort. These cost functions rep-

resent a range of possible functions; considerable research

would be required to estimate the appropriate functional form

and parameterization in any real setting. We considered all 27

permutations of the three cost functions across the three sets of

interventions (table 1). We did this for each of three budget

levels: low (25 out of a total of 100 unit cost), intermediate (50

out of a total of 100 unit cost) and high (75 out of a total of

100 unit cost). We estimated the intervention effectiveness for

each of the 27 possibilities (encapsulating our operational uncer-

tainty), projected the caseload under each effectiveness for each

of the 37 models (encapsulating our epidemiological uncer-

tainty), and identified the optimal intervention based on the

projected caseload for each of the 999 (¼ 37 � 27) model–cost

function combinations under each budget level (table 1;

electronic supplementary material, tables S1 and S2).

We performed 1000 stochastic simulations for each of the

models under all scenarios. Each simulation started with an

initial epidemic status of one infectious individual in a population

of 10 000 individuals. We assumed a coefficient-of-variation of 0.1

in each transmission coefficient. To ensure equivalent repre-

sentation, we conducted all simulations in R 3.2.1 [31] using the

Gillespie algorithm (with a tau-leap approximation) [32].

VoI analysis quantifies the difference between expected

management outcomes achieved via implementing the optimal

intervention identified before and after new information is

collected, and therefore provides a useful tool to evaluate an infor-

mation collection strategy [4,11,29]. We conducted VoI analysis to
examine how much the management outcome could be improved

by new information collection to resolve epidemiological and

operational uncertainty [4,7,29]. We first conducted an expected

value of perfect information (EVPI) analysis [4,11,29], a common

type of VoI analysis, to evaluate the improvement in management

outcome from perfect information to resolve all sources of uncer-

tainties. EVPI is calculated as

EVPI ¼
Xq

i¼1

Xr

j¼1

pipj min
a

Ca,i,j �min
a

Xq

i¼1

Xr

j¼1

pipjCa,i,j, ð2:2Þ

where Ca,i,j represents caseload projected under intervention a,

model i and cost function combination j, with a ¼ 1, 2, . . . , A
(A ¼ 3), i ¼ 1, 2, . . . , q (q ¼ 37) and j ¼ 1, 2, . . . , r (r ¼ 27). pi is

the weight associated with model i (i.e. the prior belief weight

that model i is the true model; subject to the constraint that the pi

sum to 1), pj is the weight associated with cost function combi-

nation j (i.e. the belief weight that cost function combination j is

the true cost function combination; subject to the constraint that

the pj sum to 1) and mina indicates the lowest caseload under the

optimum intervention. We assigned equal weight to all models

and to all cost function combinations; these weights could be

updated should evidence (for example, the fit of real-time surveil-

lance data to projections from each model) support a reassessment

of model credibility to assign uneven weights [33]. We conducted

three separate EVPI analyses assuming low, intermediate and high

budget levels. We subsequently conducted expected value of par-

tial information (EVXI) analyses to quantify how much

the management outcome could be improved by resolving only

epidemiological uncertainty (i.e. identifying the ‘true’ model) or

only operational uncertainty [4,29]. The EVXI analysis for
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epidemiological uncertainty as represented by 37 models can be

quantified as

EVXIðepidemiologicalÞ ¼
Xq

i¼1

pi min
a

Xr

j¼1

pjCa,i,j

�min
a

Xq

i¼1

Xr

j¼1

pipjCa,i,j, ð2:3Þ

where n (n ¼ q � r ¼ 999) model-cost function combinations are

grouped into i ¼ 1 . . . q model sets (q ¼ 37). A similar EVXI analy-

sis can be conducted considering the 27 cost function combinations

as a representation of operational uncertainty:

EVXIðoperationalÞ ¼
Xr

j¼1

pj min
a

Xq

i¼1

piCa,i,j

�min
a

Xq

i¼1

Xr

j¼1

pipjCa,i,j, ð2:4Þ

where n model–cost function combinations are grouped into

j ¼ 1 . . . r cost function combination sets (r ¼ 27). Both EVXI

analyses for epidemiological uncertainty and operational

uncertainty were also conducted under three budget levels,

again assuming that all models were equally weighted, and

similarly that each of the three cost-effectiveness curves were

equally likely for each intervention.
3. Results
Figure 4 shows the projected caseload of each of the 37 models

under each of the three interventions, with effectiveness ranging

from 0% to 100% in a simulated population of 10 000 individ-

uals. For a given effectiveness of a particular intervention,

caseload varies greatly between models, suggesting a high

level of epidemiological uncertainty. Generally, when the inter-

vention effectiveness is the same, caseload is lowest under the

intervention of reducing community transmission, intermedi-

ate under the intervention of reducing funeral transmission,

and highest under the intervention of improving hospitaliz-

ation. This suggests that reducing community transmission
could be epidemiologically most effective in controlling the out-

break. However, the rank of intervention can also be affected by

the level of efficacy that is achievable in practice. For example,

when each intervention has the same effectiveness level, redu-

cing community transmission is on average more successful

than reducing funeral transmission in reducing caseload.

However, if reducing community transmission can only achieve

a low level of effectiveness, for example 20%, but reducing

funeral transmission can achieve 40% or higher, then the inter-

vention of reducing funeral transmission, rather than the

intervention of reducing community transmission, ranks as

the most successful intervention. Thus, the rank of intervention

is not only determined by its epidemiological effect but also the

ultimate effectiveness level that can be achieved.

Our results show that the ranking of interventions can

also be affected by the relationship between effectiveness and

investment (table 1), and by budget constraints (electronic sup-

plementary material, table S2). When the budget is tight, a

cheap intervention is most likely to be optimal: reducing com-

munity transmission is always optimal provided it is ‘cheap

and effective’ or ‘cheap and partly effective’; reducing funeral

transmission is generally optimal (36 out of 37 models in both

cases); and, improving hospitalization is also optimal most of

the time (31 out of 37 models in both cases; table 1), assuming

both other interventions are expensive. Across models

(table 1, last column), reducing community transmission is gen-

erally best (in 16/27 cost function combinations). Across cost

function combinations (table 1, last row), reducing funeral

transmission is generally best (in 22/37 models). Reducing

community transmission is optimal across all models and

cost function combinations (table 1, last cell). As the budget

increases, the ranking of interventions is less affected by the

potential cost functions (electronic supplementary material,

table S2). For example, with a high budget, the optimal inter-

vention is relatively unchanged across 27 cost function

combinations for a given model (electronic supplementary

material, table S2—ranking within a column is consistent).

Detailed information on caseload and the best-ranked interven-

tion associated with all model, intervention and cost function



Table 2. The value of resolving epidemiological and operational uncertainty in an epidemic Ebola setting. Expected value of perfect information (EVPI)
represents the improvement in management outcome in terms of reduction in caseload by resolving all sources of uncertainty perfectly (see electronic
supplementary material, table S3 for calculations). Expected value of partial information (EVXI) represents the improvement in management outcome by
resolving a particular source of uncertainty, specifically epidemiological or operational uncertainty.

budget

low medium high

minimum of the average caseload across models and cost functions 1829 881 621

average of the lowest caseload across models and cost functions 1486 515 265

EVPI 343 366 356

improvement in management % 18.7% 41.5% 57.3%

average of the lowest caseload across models 1645 585 294

EVXI 185 296 326

improvement in management % 10.1% 33.6% 52.6%

average of the lowest caseload across cost functions 1623 765 590

EVXI 206 115 30

improvement in management % 11.3% 13.1% 4.8%
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combinations under each budget level (37 models� 27 cost

function combinations � 3 budget levels) is provided in the

electronic supplementary material (tables S2 and S3).

To examine how the management outcome can be

improved by resolving different sources of uncertainty, we

conducted EVPI and EVXI analyses based on electronic sup-

plementary material, table S3. Overall, our EVPI results

showed that, by resolving all uncertainties in both epidemiolo-

gical and operational settings, caseload could be reduced by

18.7%, 41.5% or 57.3% under low, intermediate and high bud-

gets, respectively (table 2). Such high EVPI values suggest that

reducing uncertainty surrounding the decision-making pro-

cess is highly worthwhile, and is especially beneficial when

budgets are large. The EVXI analysis shows that reducing epi-

demiological uncertainty (as represented by the 37 models) is

more beneficial under moderate and high budget levels than

under low budget level (33.6% and 52.6% versus 10.1%

reduction in caseload; table 2). On the other hand, the EVXI

analysis of operational uncertainty shows that while resolving

uncertainty about the cost function only improves the manage-

ment outcome by 4.8% under high budget conditions, the

effect is higher when the budget is tight, with the management

outcome improved by 11.3% and 13.1% under intermediate

and low budget levels, respectively (table 2). Comparison of

the EVXI analyses of epidemiological uncertainty versus oper-

ational uncertainty showed that, when the budget level is low,

it is almost equally important to resolve epidemiological and

operational uncertainties (10.1% versus 11.3% reduction in

caseload; table 2), while resolution of epidemiological uncer-

tainties becomes relatively more beneficial under high budget

level conditions (52.6% versus 4.8%; table 2).

4. Discussion
During the epidemic decision-making process, a key issue is

the identification of interventions that will most effectively

bring an outbreak under control. As disease outbreaks are
often unexpected, they are also usually associated with signifi-

cant uncertainty about epidemiological processes, and about

how successful interventions will be. At one extreme, for an

entirely novel pathogen, uncertainty about the dynamics of the

disease (i.e. epidemiological uncertainty) needs to be addressed

first, because potentially useful interventions cannot even be

identified without at least some knowledge of the disease. At

the other extreme, a common disease re-emerging in a new con-

text might mean that the epidemiology is fairly well known, and

the information most lacking may be on intervention effective-

ness under the new conditions (i.e. the main uncertainties are

operational). For a re-emerging disease, however, epidemiologi-

cal knowledge of transmission dynamics may exist, but outbreak

characteristics (such as the basic reproduction number (R0) and

clinical severity) may differ in new settings. In general, in most

outbreak settings, such as the 2014 West African Ebola outbreak

examined here, there are both epidemiological and operational

uncertainties that impede decision-making. In such situations,

it will be important to assess these two forms of uncertainty

concurrently within a common framework.

Classic analyses of management examine alternative inter-

ventions in a single model and rank them by their effect on the

outcomes of interest. With the rapid development of quantitat-

ive forecasting tools for epidemics, coupled with increased data

availability, multiple models are commonly built to project

disease trajectories and inform public health policy [14]. Mul-

tiple alternative models provide an opportunity to improve

the representation of uncertainty underlying the epidemic pro-

cess, and avoid the bias that may arise from using a single

model [34,35]. Understanding and quantifying the epidemiolo-

gical uncertainties represented by multiple models is thus

critical to identify the optimal interventions in epidemic man-

agement. In the current study, we explored an ensemble of

models to assess the effects of epidemiological and operational

uncertainties on management recommendations. Rather than

trying to select a single ‘best’ model and use it to evaluate can-

didate interventions, this study addresses how the uncertainty,
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as expressed in the multiple existing published models, affects

the choice of action. As illustrated in figure 2, each of the

37 models can be envisioned as a subset of a synthetic

model, reflecting expert understanding of the model structure

and parameters. Therefore, by evaluating each candidate inter-

vention over the whole set of models, our results can be used to

fully evaluate the effect of this epidemiological uncertainty.

Our study shows that the magnitude of caseload projections

varies substantially across models (figure 4), suggesting a

high level of epidemic uncertainty and that management

outcomes based on interventions assessed in any single

model could be overly optimistic or pessimistic. Our EVXI

analysis further showed that—in the context of the 37 Ebola

models—resolving epidemiological uncertainty could improve

the management outcome by 52.6% on average, suggesting

that new information to improve the understanding of the

epidemic process (that is, being able to identify the best

model to project the epidemic dynamics) could potentially

reduce disease burden by half.

We further find that ignoring operational uncertainty may

affect the ranking of alternative interventions and lead to sub-

optimal management decisions. Our EVXI analysis shows that

new information to resolve the operational uncertainty in inter-

vention effectiveness could improve the management outcome

by up to 13.1%, meaning 3753 fewer cases for the 2014 Ebola

outbreak. This suggests that previous studies failing to include

operational uncertainty [11,14] underestimate the value of

operational research to support decision-making. One of the

reasons for failing to include operation uncertainty in previous

studies is that evaluating the intervention effectiveness that can

be achieved under logistical constraints is challenging, because

the levels of uncertainty about logistical constraints may differ

from intervention to intervention, and the operational uncer-

tainty may be more difficult to ascertain for one intervention

than for another. Quantifying the caseload reduction that is

affordable given the intervention costs is another challenge to

the resolution of operational uncertainty, and it requires

including the cost functions themselves, and uncertainty

about the cost functions. While a failure to consider cost func-

tions means that one might choose effective but expensive

interventions, ignoring uncertainty in the cost function may

lead to suboptimal decision-making by over- or under-estimat-

ing the management outcome. As demonstrated in our study,

the optimal intervention varies under different intervention-

cost function scenarios (table 1; electronic supplementary

material, table S2). Estimating the cost-effectiveness function

for a particular intervention in practical management can be

challenging, because resources are often directly or indirectly

shared by different interventions, and the effects of different

interventions commonly interact.

Information about the effectiveness that a particular interven-

tion can achieve is often limited in epidemiological studies (but

see [36] on vaccine effectiveness), due to challenges in untangling

the joint effects from different interventions, for which high-res-

olution data are required (e.g. [37]). Studies to provide deeper

insights into the logistical constraints, and cost-effectiveness

information for individual interventions would facilitate epi-

demic decision-making. From the standpoint of policy-makers,

information that anticipates how much the management out-

come could be improved by per unit investment would help

managers to determine the optimal intervention and plan man-

agement efforts. Input from economists and operations

researchers in terms of economic data collection and modelling
would also allow a better description of the relationship between

the cost and the effectiveness of particular interventions. We

argue that the best outcomes will be achieved by integrating

the cost-effectiveness functions and the simulations of effective-

ness-management outcomes via epidemic models into an

overall cost-management outcome framework as illustrated by

this Ebola case study. Such a framework requires the joint efforts

of epidemiologists and economists.

Our results show that both epidemiological and operational

uncertainties would have affected the choice of intervention in

the context of the 2014 Ebola outbreak, and that the value of

new information collection, which could allow an improve-

ment in management outcome of up to 57.3%, is generally

high. Additional information to resolve epidemiological uncer-

tainty could be obtained through real-time surveillance of

epidemiological processes (e.g. mortality rates, transmission),

while monitoring of intervention activities and their effective-

ness would help to reduce operational uncertainty (e.g. [38]).

Our EVPI analysis also shows that the overall value of infor-

mation increases with increasing budget availability,

suggesting that such new information collection could be

especially beneficial under high or unlimited budget con-

ditions. Furthermore, our EVXI results show that the exact

benefit of resolving a particular source of uncertainty could

be affected by budget conditions. For example, resolving epide-

miological uncertainty yields the most improvement in

management outcome when the budget level is high, while

resolving operational uncertainty yields is relatively more

important to management outcome under low to moderate

budget levels. The low, intermediate and high budget level

values in the current study were used to illustrate the depen-

dence of management recommendations on budget

circumstances. In practice, the budget for Ebola control

during the 2014–2016 outbreak was itself highly uncertain,

and changed over time. The WHO asked the international com-

munity to fill a $71 million gap when issuing the initial regional

plan on 31 July 2014. The cost estimates then rose to $490 million

on 28 August and $988 million in a UN appeal in mid-Septem-

ber [27,28], as the outbreak worsened and it became apparent

that a larger response was necessary to both control further

spread and recover from its impacts. In November 2014, the

Obama administration asked US Congress to approve $6.18 bil-

lion in funding to fight Ebola [39], and the US Congress passed

the president’s emergency appropriation of $5.4 billion.

We have not investigated whether our results extend

broadly to other disease outbreak settings, but we conjecture

that they may. For example, for severe disease outbreaks of sig-

nificant public health concern, like Ebola or Zika, spending

may exceed initial budgets in the pursuit of a critical manage-

ment objective (as seen in the case of polio eradication);

therefore research could focus on the resolution of uncertainties

surrounding the epidemiological processes. For other types of

outbreaks, such as some agricultural diseases, budget con-

straints may play a more important role in decision-making.

We offer our conjecture as a hypothesis for future study.

Although we cannot make remarks regarding our conclusions’

generality, the approach developed and applied to identify the

uncertainties that most impede decision-making in the context

of disease outbreaks is general.

We have illustrated the joint consideration of operational

and epidemiological uncertainty as demonstrated in our

retrospective study. This approach can also be used prospec-

tively to guide information collection, preparedness planning
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and inform decision-making for future outbreaks. By analysing

the potential uncertainties before an outbreak occurs, we may be

able to pinpoint key epidemic processes and parameters,

important constraints on interventions, or operational limit-

ations which might alter the ranking of interventions, and

therefore management decisions [4,11]. For example, estimat-

ing the potential range of the transmission coefficients of

different transmission sources, plus a corresponding parameter

sensitivity analysis, would help to rank the interventions

targeting different sources of transmission. Similarly, identifi-

cation of approximate functional forms for intervention costs,

and of key fixed costs, both of which clearly could change out-

comes for our Ebola decisions, might be possible before (for

better-known diseases) or in the early stages (for novel dis-

eases) of an outbreak. Similar insights were found in a VoI

analysis of vaccination for foot-and-mouth disease in the UK;

vaccination capacity was a key uncertainty in this situation

and could be addressed via pre-outbreak contingency plan-

ning [40]. An enhanced prospective approach is also possible.

Because not all published models were designed to be compre-

hensive (i.e. to evaluate all intervention options), the models

might not represent the full range of epidemiological uncer-

tainty that does, in fact, exist. An exciting future extension

would be to engage multiple modelling groups to develop

their models with the same set of outputs and the same set

of alternatives in mind (i.e. by careful a priori framing of the

decision problem). This would do a better job of representing

the full range of epidemiological uncertainty that exists.

Valuable insights may also be obtained during an outbreak,

both in terms of identifying unknown information which is

nevertheless safe to ignore versus information that is most

important to gather as the outbreak proceeds. As time during

an outbreak is limited and valuable, and there is an opportu-

nity cost associated with learning, it is important to prioritize

the collection of information related to the most important

uncertainties; information is more valuable if it might change

the management decision [29]. Epidemic and operational

uncertainties can be reduced in real time during an outbreak

as new models to understand outbreak dynamics are
developed, as the understanding of the outbreak itself evolves

[33], and as information on intervention effectiveness becomes

available. For a relatively long outbreak, such as the 2014 Ebola

outbreak in West Africa, there may be opportunities for real-

time learning and adaptation of the management strategies

as new information on epidemiological and operational uncer-

tainties are collected [11,20].

Overall, efficient epidemic decision-making necessitates

accounting for the uncertainty underlying both disease

dynamics and intervention efficacy. Our work illustrates a

framework to explore the epidemiological and operational

uncertainties on the same platform to facilitate decision-

making. There is a need for increased interaction between the

communities that study the epidemiological consequences of

interventions (often housed in public health or dynamical sys-

tems fields) and the communities that study the operational

and logistical dynamics of the implementation of interventions

(often housed in operations research, sociology, health systems

administration and communications). These two disciplines

have largely been developing independently; bringing them

together will translate into improved management outcomes.

This approach should be applicable to other epidemic manage-

ment scenarios where multiple models or multiple alternative

representations of uncertainty are available.
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