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Abstract

activity of PRKGT gene (P=0.0009).

on milk fatty acids in dairy cattle.

Background: We previously conducted a genome-wide association study (GWAS) strategy for milk fatty acids in
Chinese Holstein, and identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) and 314
suggestive significant SNPs. Among them, two SNPs, BTB-01077939 and BTA-11275-no-rs associated with C10:0, C12:
0, and C14 index (P=0.000014 ~ 0.000024), were within and close to (0.85 Mb) protein kinase, cGMP-dependent,
type | (PRKGT) gene on BTA26, respectively. PRKGT gene plays a key role in lipolysis to release fatty acids and
glycerol through the hydrolysis of triacyglycerol in adipocytes. We herein considered it as a promising candidate for
milk fatty acids. The purpose of this study was to investigate whether PRKGT had effects on milk fatty acids.

Results: By direct sequencing the PCR products of pooled DNA, we identified a total of six SNPs, including one in
5'flanking region, four in 3" untranslated region (UTR), and one in 3' flanking region. The single-locus association
analysis was carried out, and showed that the six SNPs mainly had significant associations with C6:0, C8:0 and C17:1
(P<0.0001 ~0.0035). In addition, we observed a haplotype block formed by g.6903810G > A and g.6904047G > T
with Haploview 4.1, and it was strongly associated with C8:0, C10:0, C16:1, C17:1, C20:0 and C16 index (P= < 0.0001
~0.0123). The SNP, g.8344262A > T, was predicted to alter the binding site (BS) of transcription factor (TF) GAGA
box with Genomatix software, and the subsequent luciferase assay verified that it really changed the transcriptional

Conclusion: In conclusion, to our best of knowledge, we are the first who identified the significant effects of PRKGI

Keywords: Dairy cattle, Effects of PRKGT gene, Fatty acid traits, Transcriptional activity

Background

Dairy products are well known for vital nutrients provid-
ing high quality protein and energy in human diet [1-3].
The most important economic traits of milk production
in dairy cattle include milk yield, fat and protein yield,
and fat and protein percentage [4]. Milk fat contains a
lot of fatty acids composed of saturated fatty acid (SFA)
and unsaturated fatty acid (UFA), and it determines the
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physiological and sensory properties of the milk [5]. SFA
increases the risk of cardiovascular diseases, while UFA
decreases the risk [6—11]. For example, C12:0, C14:0 and
C16:0 have adverse effects on lower-density lipoprotein
cholesterol, that is a risk factor for cardiovascular dis-
eases [10], and substituting n-6 and n-3 polyunsaturated
fatty acids for SFAs decreases cardiovascular diseases
morbidity and mortality [11]. Fatty acids are regulated
by a huge network of genes encoding transcription and
translational regulators in living organisms [12], and the
heritability of SFA (0.14 ~0.33) and UFA (0.08 ~0.29)
have been reported [13-17].

In dairy cattle, some promising candidate genes and
QTL regions for milk fatty acids have been identified in
previous Genome-wide association studies (GWASs),
such as fatty acid synthase (FASN; on BTA19),
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diacylglycerol O-acyltransferase 1 (DGAT1; BTA14),
stearoyl-CoA desaturase (SCD; on BTA26), 22,833,168
bp to 26,284,743 bp on BTA9 and 1,588,879 bp to 2,764,
862bp on BTA14 [18-23]. Our previous GWAS [23]
discovered 83 genome-wide significant single nucleotide
polymorphisms (SNPs) and 314 suggestive significant
SNPs associated with milk fatty acids in Chinese Hol-
stein cows, in which, one SNP, BTB-01077939 for C10:0
(P =0.000014) and C14 index (P = 0.000014), was located
within the protein kinase, cGMP-dependent, type I
(PRKGI) gene, and the other SNP, BTA-11275-no-rs for
C12:0 (P =0.000024), was close to the PRKGI gene with
a distance of 0.85 Mb. In addition, Li et al. reported that
a QTL region (1.00 Mbp ~ 27.94 Mbp) on BTA26 is sig-
nificantly associated with milk fatty acids by performing
a joint GWAS based on Chinese and Danish Holstein
populations [24]. PRKG1 gene is located on BTA26 (6,
901,760 ~ 8,343,635 bp) spanning about 1442 kb and in-
cludes 20 exons. It regulates the lipolysis in adipocytes
to release fatty acids and glycerol by the hydrolysis of
triacyglycerol. It was reported that PRKGI gene was in-
volved in ¢cGMP-PKG signaling pathway to inhibit rat
brown adipocyte proliferation [25]. To date, no study
has reported the associations of PRKGI gene with milk
fatty acids in dairy cattle. Hence, the objective of this
study was to detect whether the PRKG1 gene had effects
on milk fatty acids. We herein searched potential SNPs
in PRKGI gene, and examined associations of the identi-
fied SNPs with 24 traits in Chinese Holstein cows.

Table 1 Detailed information of six SNPs identified in PRKGT gene
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Further, we verified the impact of one regulatory SNP on
transcriptional activity of PRKGI with dual-luciferase
assay.

Results

SNPs identification

By screening the entire coding region and 5" and 3’
flanking regions, we identified six SNPs (Table 1) in
PRKGI gene, including g.8344262A >T in 5’ flanking
region, g.6904047G > T, g.6903810G > A, g.6903365C > A
and g.6902878 T > G in 3’ untranslated region (UTR),
and g.6901713 T >G in 3’ flanking region. The geno-
typic and allele frequencies of the six SNPs in PRKGI
gene were shown in Table 1.

Associations between SNPs/haplotype blocks and 24 milk
fatty acids

Genetic associations (significant associations with P <
0.0001 ~ 0.0035) of six SNPs were detected for 24 milk
fatty acids, and the results were shown in Table 2. The
g.8344262A > T was significantly associated with C10:0,
C18:1cis-9 and total index. The g.6904047G > T was sig-
nificantly associated with C17:1 and C17 index. The
g.6903810G > A was significantly associated with C8:0,
C20:0 and total index. The g.6903365C > A was signifi-
cantly associated with C6:0, C8:0 and C20:0. The
g.6902878 T > G was significantly associated with C6:0,
C8:0 and C17:1. The g.6901713 T > G was significantly
associated with C6:0, C8:0, C10:0, C17:1, C14 index and

SNP name Location Position (UMD 3.1.1) GenBank no. Genotype NO. Frequency Allele Frequency

g.8344262A>T 5" flanking region Chr26:8344262 rs109571301 AA 508 04824 A 0.6876
AT 432 04103 T 03124
TT 113 0.1073

g.6904047G > T 3"UTR Chr26:6904047 15478962267 GG 500 06729 G 0.8203
GT 219 0.2948 0.1797
T 24 0.0323

g.6903810G > A 3"UTR Chr26:6903810 15444193880 AA 23 0.0219 0.1237
AG 214 0.2036 0.8763
GG 814 0.7745

9.6903365C > A 3"UTR Chr26:6903365 rs42630538 AA 116 0.1950 0.2504
CcC 413 0.6941 C 0.7496
CA 66 0.1109

g.6902878T> G 3"UTR Chr26:6902878 rs136888798 GG 221 03778 G 03812
GT 4 0.0068 0.6188
T 360 06154

g.6901713T>G 3' flanking region Chr26:6901713 rs381717383 GG 30 0.0286 G 0.1778
GT 313 0.2984 0.8222
T 706 06730

Note: UTR Untranslated region
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C17 index. In addition, as shown in Table 3, the signifi-
cant dominant (a), additive (d) and allele substitution ()
effects of these six SNPs for C6:0, C8:0, C10:0, C12:0,
C14:0, C14:1, C16:0, C16:1, C17:1, Cl18:lcis-9, C18
index, C20:0, C14 index, C16 index, C17 index, SFA,
UFA, SFA/UFA and total index were presented in Table
3 (P<0.05).

With the Haploview 4.1, we found a haplotype block
(Fig. 1) formed by two SNPs, g.6904047G>T and
2.6903810G > A. The haplotype block included haplo-
types GG, GT and AG with their frequencies of 67.70,
20.00 and 12.30%, respectively. The haplotype-based as-
sociation analysis (Table 4) showed that the haplotype
block had significant associations with C8:0, C10:0, C16:
1, C17:1, C20:0 and C16 index (P < 0.0001 ~ 0.0123).

Further, by estimating the LD among the SNPs of
PRKG1 and SCD genes with a distance of 12.79 Mbp, we
did not found haplotype block between the two genes
(Fig. 2), indicating that the significant effects of PRKGI
gene on milk fatty acids were not induced by LD with
SCD gene.

Change of transcriptional activity caused by
9.8344262A>T

We predicted the change of TFBS caused by the SNP in
the 5’ flanking region of PRKGI gene using Genomatix
software, and found that the allele T of g.8344262A > T
created a TFBS for GAGA-Box (GAGA).

To detect whether g.8344262A >T changed the tran-
scriptional activity of PRKGI, we synthesized two con-
structs with A and T of g.8344262A > T, respectively
(Fig. 3a). We measured the luciferases activities of firefly
and renilla, and showed the results in Fig. 3b. Luciferase
activities of the two constructs were significantly higher
than that of the blank control (P <0.0005) and empty
vector  (PGL4.14; P<0.0006), suggesting that
2.8344262A > T might have the transcriptional activity.
The allele T of g.8344262A > T had significantly lower
luciferase activity than the allele A (P =0.0009), implying
that g.8344262A > T could alter the transcriptional activ-
ity of PRKG1 gene.

Discussion
In our initial GWAS [23], PRKG1 was considered as one
of the promising candidate gene on milk fatty acids in
Chinese Holstein. It was also reported that PRKGI gene
was associated with fatty acid composition in swine [26],
and the PRKGI knockout mice had lower triglyceride
stores in the brown adipose tissue [27]. Here, we first
verified that PRKGI gene had significant effects on
medium-chain saturated fatty acids in dairy cattle, espe-
cially C8:0.

SCD gene was also a promising candidate gene on
BTA26 for milk fatty acids [23], and its effects had been
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confirmed [28]. In a joint GWAS based on Chinese and
Danish Holstein populations, Li et al. also identified a
significant QTL region for milk fatty acids (10.00 ~
27.94 Mbp on BTA26), which included SCD and PRKGI
[24], and the SCD was in downstream of PRKG1 with a
distance of 12.79 Mbp. In this study, it was shown that
no LD among the SNPs of PRKGI and SCD was ob-
served, indicating that the effects of PRKGI on milk
fatty acid traits were independent from SCD.

From the KEGG database, we found that PRKG1 was
involved in the cGMP-PKG signaling pathway (ko04022)
and regulation of lipolysis in adipocytes (ko04923). In
rat, cGMP signaling inhibited brown adipocyte prolifera-
tion and thereby promoted brown adipocyte differenti-
ation [25]. The brown adipose tissue from PRKGI
knockout mice decreased triglyceride stores, suggesting
an increase in the ratio of pre-adipocytes to adipocytes
and fewer fully differentiated brown adipocytes [27]. In
swine, the RNA-Seq analysis identified that the PRKGI
gene was the differentially-expressed in muscle between
high and low groups for fatty acid composition traits
[29]. Considering the significant effect of PRKGI on
milk fatty acid in the present study, we deduced that the
gene might have important regulatory function for milk
fatty acid metabolism in dairy cattle.

Gene expression is commonly controlled by TFs that
are bound to specific sequence elements and the regular
regions of the genome [30, 31]. TFBSs are the biding
sites (BS) targeted by a DNA binding protein [32], and
its disruption is associated with phenotypic diversity [33,
34]. In this study, the allele T of g.8344262A >T was
predicted to create a BS for TF GAGA, and it signifi-
cantly lowered the transcriptional activity of PRKGI.
GAGA is a drosophila transcription factor involved in
many nuclear activities, and can enhance transcription
by stabilizing pre-initiation complex and promoting re-
initiation [35]. Interactions of GAGA-binding proteins
with the GAGA of the VIbR promoter activate VIbR
gene expression, and provide a potential mechanism for
physiological regulation of VIbR transcription [36]. The
significant associations of g.8344262A > T with milk fatty
acids, and its impact on transcriptional activity of
PRKGI gene, suggested that g.8344262A > T might be a
potentially causal mutation regulating the PRKGI ex-
pression by changing the BS for the TF GAGA to affect
the formation of milk fatty acids in dairy cattle.

Conclusions

According to our previous GWAS, we considered
PRKGI1 gene as a promising candidate for milk fatty
acids in dairy cattle. In the present study, we further
confirmed the effects of PRKGI on milk fatty acids, and
showed that the gene mainly impact on medium-chain
saturated fatty acid traits. In addition, we revealed that
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Fig. 1 Linkage disequilibrium (LD) among the six SNPs of PRKGT gene. r” is the correlation coefficient between the two loci

2.8344262A > T might be a potentially causal mutation
altering the transcriptional activity due to the change of
a BS for TF GAGA. Our findings might be helpful for
the marker-assisted selection in dairy cattle.

Methods

Animals and measures of milk fatty acids

We used 1065 Chinese Holstein cows from 44 sire fam-
ilies with an average of 24 daughters per sire for the as-
sociation analyses in this study. The cows were from 23
dairy farms of Sanyuanlvhe Dairy Farming Center
(Beijing, China), a leading dairy company in China,
where the standard performance testing for dairy herd
improvement (DHI) has been regularly conducted since
1999, and all the cows were fed with the same regular
total mixed ration (TMR) composed of concentrated
feed and coarse fodder across all subordinate farms.
From November to December of 2014, we collected 50
mL milk samples for each cow during 1 ~240days of
the first lactation.

Then, we used 2 mL milk samples to measure 16 milk
fatty acids (C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:
0, C15:0, C16:0, C17:0, C18:0, C20:0, C14:1, C16:1, C17:1
and C18:1cis-9) with the gas chromatography described
in the previous GWAS [23] in Beijing Dairy Cattle

Center (www.bdcc.com.cn). In addition, we calculated
C14 index, C16 index, C17 index, C18 index and total

index based on the formulas; ——is=2 unsaturated % 100
cis—9 unsaturated+saturated

[37], and summarized SFA, UFA, SFA/UFA.

SNP identification and genotyping
We extracted semen DNAs of 44 Holstein bulls who
were sires of the above-mentioned cows using the salt-
out procedure, and extracted blood DNAs of the 1065
Chinese Holstein cows with the TIANamp Blood DNA
Kit (Tiangen, Beijing, China) according to the manufac-
turer’s instructions. We measured the quantity and qual-
ity of extracted DNA using a NanoDrop™ ND-2000
Spectrophotometer (Thermo Scientific, Hudson, DE,
USA) and 2% agarose gel electrophoresis, respectively.
Based on the genomic sequence of the bovine PRKG1
(Gene ID: 282004), we designed 33 pairs of primers
(Additional file 1: Table S1) corresponding the entire
exons and 3000bp of 5" and 3" flanking regions using
the Primer 3.0 (http://primer3.wi.mit.edu/). The primers
were synthesized in Beijing Genomics Institute (Beijing
Genomic Institute, Beijing, China). We diluted the gen-
omic DNA of each bull into the concentration of 50 ng/
pL, and randomly pooled them into two equal pools


http://www.bdcc.com.cn
http://primer3.wi.mit.edu/
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(each pool included 22 sire DNAs). The final reaction
volume of PCR included 2 pL genomic DNA, 1.25puL
each primer (10 mM), 12.5 pL Premix TaqTM (Takara,
Dalian, China) and 8 puL. DNase/RNase-Free Deionized
Water (Tiangen, Beijing, China).The PCR amplifications
for the pooled DNAs were performed, and the proce-
dures were as follows: initial denaturation at 94 °C for 5
min, followed by 35 cycles of 30s at 94 °C, annealing at
60 °C for 30s, extension at 72 °C for 30s, and a final ex-
tension at 72 °C for 7 min. Then, we bidirectionally se-
quenced the PCR products by ABI3730x] DNA analyzer
(Applied Biosystems, CA, USA), and aligned them with
the bovine reference sequences (UMD 3.1.1) using
BLAST  (https://blast.ncbi.nlm.nih.gov/Blast.cgi)  to
search the potential SNPs.

For the SNPs identified in PRKGI gene, we used the
matrix-assisted laser desorption/ionization time of flight
mass spectrometry (MALDI-TOF MS, Sequenom Mas-
sARRAY, Bioyong Technologies Inc. HK) to perform the
genotyping for the 1065 Chinese Holstein cows.

Prediction of the transcription factor binding site (TFBS)
We used Genomatix software suite v3.9 (http://www.gen-
omatix.de/cgi-bin/welcome/welcome.pl?s=

d1b5¢9a9015b02bb3b1a806f9c03293f) to predict the
change of TFBS caused by the SNP g.8344262A > T in 5’
flanking region of PRKGI gene. In the prediction, we in-
put 30 bp of up/down-stream sequences of g.8344262A >
T, namely AGTTTAATATTTATGAAATGTCTCTCTCT-
C[A]JCACACACACACACACACACTCACACGCACA
and AGTTTAATATTTATGAAATGTCTCTCTCTCIT]-
CACACACACACACACACACTCACACGCACA, to re-
search the different transcription factor (TF) bound for
allele A and T.

Recombinant plasmid construction and luciferase assay
In this study, we used the luciferase assay to verify
whether the SNP g.8344262A > T changed the transcrip-
tional activity of PRKGI gene. We synthesized (Genewiz,
Suzhou, China) two fragments (Fig. 3a), A and T of
g.8344262A > T, including Nhel and HindIII restriction
sites at the 5' to 3’ termini, respectively, and cloned
them into the pGL4.14 Luciferase Assay Vector (Pro-
mega, Madison, USA). We sequenced these two plasmid
constructs to confirm the integrity of the insertions.
Then, we purified all the plasmids using the Endo-free
Plasmid DNA Mini Kit II (OMEGA, omega bio-tek,
Norcross, Georgia, USA).


https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.genomatix.de/cgi-bin/welcome/welcome.pl?s=d1b5c9a9015b02bb3b1a806f9c03293f
http://www.genomatix.de/cgi-bin/welcome/welcome.pl?s=d1b5c9a9015b02bb3b1a806f9c03293f
http://www.genomatix.de/cgi-bin/welcome/welcome.pl?s=d1b5c9a9015b02bb3b1a806f9c03293f
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Fig. 3 Dual-luciferase assay. a Sketches of recombinant plasmids with g.8344262A > T in the 5’ flanking region of PRKG1 gene. The nucleotides in
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We cultured Human Embryonic Kidney (HEK)-293 T
cells in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco, Life Technologies, USA) containing 10% heat-
inactivated fetal bovine serum (FBS; Gibco) at 5% CO,
and 37 °C. We seeded approximately 2 x 10° cells per
well in the 24-well plates, and then used Lipofectamine
2000 (Invitrogen, CA, USA) to transfect the cells accord-
ing to the manufacturer’s protocol. We transfected 500
ng constructed plasmid DNA along with 10 ng of pRL-
TK renilla luciferase reporter vector (Promega) into each
well. The experiments were conducted in three repli-
cates for each construct.

We harvested the cells about 48 h after transfection,
and measured the activities of firefly and renilla lucifer-
ases using a Dual-Luciferase Reporter Assay System
(Promega, Madison, USA) on a Modulus microplate

multimode reader (Turner Biosystems, CA, USA). We
used the average statistics of three replicates as the nor-
malized luciferase data (firefly/renilla).

Estimation of the linkage disequilibrium (LD)

We estimated the LD among the SNPs identified in
PRKGI gene in this study using Haploview 4.1 (Broad
Institute of MIT and Harvard, Cambridge, MA, USA),
and identified the haplotype block. In the process, 95%
confidence bounds on D’ were generated and each com-
parison was called “strong LD”, “inconclusive” or “strong
recombination”. If 95% of informative (i.e. non-
inconclusive) comparisons were “strong LD”, a block
would be created [38]. In addition, we used the r? to rep-
resent the correlation coefficient between two loci.



Shi et al. BMC Genetics (2019) 20:53

We also performed LD analysis between 8 SNPs in
PRKGI gene and 24 SNPs in SCD gene to detect
whether the significant effects of PRKGI on milk fatty
acids were caused by SCD. As the significant SNPs of
the two genes identified in two previous studies (Add-
itional file 2: Table S2) [23, 28] were not genotyped in
this study, we herein used the database of 1000 Bull Ge-
nomes Project [39] to estimate the LD between PRKGI
and SCD. The database of 1000 Bull Genomes Project,
including 1575 individuals involved in 48 breeds (Add-
itional file 3: Table S3), was different from our popula-
tion, while its worldwide correlation implied that the
result could be as the indirect support for this study.

Association analysis

We analyzed the associations between each SNP/haplo-
type block and 24 milk fatty acids using SAS9.2 software
(SAS INSTITUTE Inc., Cary, NC, USA) with the follow-
ing mixed animal model:

Y = mu + herd + lactation stage + b+ M + G + A
+e

For each fatty acid trait, Y is the phenotypic value; mu is
the overall mean; herd is the fixed effect of farm; lactation
stage is the fixed effect of stage of lactation; M is the fixed
effect of calving month; b is the regression coefficient of
covariate M; G is the fixed effect corresponding to the
genotype or haplotype combination; A is the random
polygenic effect that is distributed as N (0, A ‘731)’ in which,
the numerator relationship matrix (A-matrix) was con-
structed by using Fortran95 code. Pedigree information of
the genotyped animals was traced back for three genera-
tions. As a result, the total number of animals included in
the analysis reaches 3335. In addition, e is the random re-
sidual, distributed as N (0, I ag), with identity matrix I and
residual error variance o¢2. The Bonferroni correction for
multiple testing was performed based on the number of
SNPs. The significant levels of the single SNPs after cor-
rection for multiple testing at P <0.05 and P <0.01 were
0.0083 and 0.0017, respectively. In addition, we calculated
the additive effect (a), dominant effect (d), and substitu-
tion effect () using the following formulas [40]: K = 44-88
,d =AB-4488 and a =R+ d(g-p). In which, AA, AB
and BB are the least square means of fatty acid traits cor-
responding to the genotypes, and p and g are the frequen-
cies of A and B, respectively. Here, the P values for
significant effects were P < 0.05 and P < 0.01.

Additional files

Additional file 1: Table S1. PCR primer information of PRKGT gene.
(XLSX 12 kb)
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Additional file 2: Table S2. Information of significant SNPs used for
estimating the Linkage disequilibrium (LD) between PRKGT and SCD. (XLSX 10 kb)

Additional file 3: Table S3. 48 breeds for 1575 individuals in the
database of 1000 Bull Genomes Project. (XLSX 9 kb)
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