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The healthcare field has long been promised a number of exciting and powerful

applications of Artificial Intelligence (AI) to improve the quality and delivery of health

care services. AI techniques, such as machine learning (ML), have proven the ability

to model enormous amounts of complex data and biological phenomena in ways only

imaginable with human abilities alone. As such, medical professionals, data scientists,

and Big Tech companies alike have all invested substantial time, effort, and funding into

these technologies with hopes that AI systems will provide rigorous and systematic

interpretations of large amounts of data that can be leveraged to augment clinical

judgments in real time. However, despite not being newly introduced, AI-based medical

devices have more than often been limited in their true clinical impact that was originally

promised or that which is likely capable, such as during the current COVID-19 pandemic.

There are several common pitfalls for these technologies that if not prospectively

managed or adjusted in real-time, will continue to hinder their performance in high stakes

environments outside of the lab in which they were created. To address these concerns,

we outline and discuss many of the problems that future developers will likely face that

contribute to these failures. Specifically, we examine the field under four lenses: approach,

data, method and operation. If we continue to prospectively address and manage these

concerns with reliable solutions and appropriate system processes in place, then we as

a field may further optimize the clinical applicability and adoption of medical based AI

technology moving forward.

Keywords: artificial intelligence, machine learning, deep learning, medical software, cloud computing, neural

network, medicine

INTRODUCTION

The powerful applications of artificial intelligence (AI) have long been promised to revolutionize
the healthcare field. AI has been met with a surge of interest in the scientific and medical
communities due to the increasing number of patients receiving healthcare services and the
concomitant increases in complexity of data, which is now available, but often uninterpretable
by humans alone. These technologies demonstrate the ability to identify malignant tumor cells
on imaging during brain surgery (1), unravel novel diseases into explainable mechanisms of viral
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FIGURE 1 | The umbrella of “AI”. AI, artificial intelligence; DL, deep learning;

ML, machine learning.

mutations for therapeutic design (2), predict the progression of
neurodegenerative diseases to begin earlier treatments (3), and
assist with the interpretation of vast amounts of genomic data to
identify novel sequence patterns (4), among a number of many
other medical applications. Ultimately, the applications of AI in
medicine can generally be grouped into two bold promises for
healthcare providers: (1) the ability to present larger amounts of
interpretable information to augment clinical judgements while
also (2) providing amore systematic view over data that decreases
our biases. In fact, one could argue that improving our ability to
make the correct diagnoses if given an opportunity can be seen
as a key duty and moral of the medical field in principle (5).
Given this enormous potential, it is unsurprising that Big Tech
companies have matched the enthusiasm of scientific experts
for AI-based medical devices by investing substantial efforts
and funding in their product development over recent years
(6). Unfortunately, despite these exhilarating observations and
promises, we have yet to truly harness the full potential of AI as a
tool in current practices of medicine.

Many loosely utilize the label “AI” for the medical applications
described above, but providingmore focused definitions for a few
important terms may be beneficial moving forward in this work.
The term “AI” in fact more broadly refers to the idea of machines
being able to intelligently execute tasks in a manner similar to
human thinking and behavior. To date, such applications are
not currently found in the field. Instead, applications where
machines learn from data can more accurately be labeled as
machine learning (ML) based solutions. For simplicity, we will
use these two terms interchangeably throughout the current
manuscript, and outline commonly used terms in Figure 1which
are considered under the umbrella of “AI.”

While not newly described, ML based applications have re-
surfaced interest in the medical community with the rise of the
recent SARS-CoV-2 pandemic (2). International collaborative
efforts from Data Scientists have attempted to take advantage of
differences in disease prevalence across the world as a way of
utilizing early access to data to improve the quick diagnosis and
prognostication of patient outcomes in soon-to-be overwhelmed
hospitals. In fact, novel approaches had immediately begun to
tackle concerns on vaccine developments early in the pandemic

according to possible viral mutations that allow escape from
the human immune system. By framing SARS-CoV-2 protein
sequence data in the context of linguistic rules used in the human
natural language space, ML algorithms may be able to present
to us interpretable mechanisms of how a virus mutates while
retaining its infectivity, similar to how a word change in a human
language may dramatically alter the meaning of a sentence
without changing its grammar (2). Indeed, thousands of exciting
models with increasing collaboration and data sharing had been
immediately proposed throughout the pandemic to improve
the prognostication and clinical management of COVID-19
patients (7, 8). While few clinical applications were found to
demonstrate a true clinical impact on patient outcomes for the
current pandemic, it is important to note that ML applications
have elsewhere demonstrated important clinical applications in
similar contexts (9), such as for improving the allocation of
limited resources (10), understanding the probability of disease
outbreak (11), and the prediction of hospital stay and in-
hospital mortality (12). Therefore, while these models continue
to demonstrate enormous potential to manage large scale clinical
scenarios, further work is still necessary to ensure they can
be quickly and effectively leveraged for clinical translation, a
concern which has been encountered in the field previously.

Leading digital companies have often pioneered the
implementation and excitement of AI technologies in current
medical practices. IBM Watson for Oncology took years of
advanced development and training with physicians from
Memorial Sloan Kettering, ultimately teaming up with the
MD Anderson Cancer Center in 2013, another leading cancer
center in the United States, with promises of improving
oncological diagnoses and therapy decision making. However,
this collaboration was terminated by MD Anderson in 2017 due
to failure of meeting their oncological and patient goals with
this novel software (13, 14). Many believe increasing technical
advancements in computational abilities will reinvigorate the
potential horizons and trust of these technologies in the medical
field moving forward. A new deep learning system made by
Google promises to detect 26 skin conditions with accuracy
comparable to US board-certified dermatologists (15), yet
recent work has already come under substantial controversy
due to underperformance based on underlying inter-individual
differences in demographics, such as gender and skin color
(16). Nonetheless, recent public data continues to demonstrate
increased interest in medical AI software as seen with continued
surges in AI investments in drug design and discovery, attention
in large governmental plans, and focuses on AI in scientific
careers for medical applications compared to each previous
year (17).

The limitations mentioned above are not to say that we
should abandon the field of AI-based medical technologies as a
whole. The ability for human intuition alone to map the brain
for instance, would take insurmountable amounts of time and
effort compared to that which is now possible with AI-based
technology (18–20). As original goals previously hoped that these
technologies would resemble human based intelligence, it is
important to remember To Err is Human. Instead, as with all
emerging fields, further work is necessary to optimize the clinical
applicability of these tools as we move forward to minimize
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FIGURE 2 | The 12 plagues of AI in healthcare. The development of AI

software and deployment into the medical community can be generally

grouped into four processes: approach, data, method, and operation. In each

component, a number of common problems can be encountered which must

be prospectively considered or managed in real-time to ensure efficient and

accurate model performance in high-risk medical environments. Here, we

show the most common pitfalls of AI-based medical solutions within these

components and discuss them throughout the current manuscript.

unnecessary errors and harm. Unfortunately, there is limited
information available in the literature that presents a clear guide
of the common problems that will be encountered with AI-based
software, and more specifically how to overcome them moving
forward in medical practices. Such a gap possibly reflects the
separation of expertise and focus between medical professionals
and data scientists all together.

To address this gap, we provide a clear guide below
on the most common pitfalls to medical AI solutions
based on the previous literature. Specifically, we examine
the field under four lenses: approach, data, method and
operation (Figure 2). Within these core components, we
outline a number of different issues that must be considered
in the development and application of machine learning
technologies for medical based applications, and we elucidate
how to identify, prevent, and/or solve them moving forward
to ultimately create safer, more trustworthy, and stronger
performing models.

APPROACH: WHAT IS THE PLAN?

Problem 1. Relevance: Cutting Cake With a
Laser
Due to a rise in the amount of open-source and advanced
statistical software, it has become increasingly easy to develop

highly elegant and powered computational models. However,
when created with only technical solutions in mind, models
can easily be created to solve an non-existent or irrelevant
problem. In turn, the ultimate users of the technology, such as
the practicing physician in the clinic, will have no interest in the
solution being answered by a specific model. Problems with a
model’s relevance can render even the most elegant application
of data science irrelevant (Figure 3).

A common example of this can be seen with the increased
ability we now have to detect mental illness based on improved
and publicly available maps of the brain connectome (21,
22). If a ML specialist received a dataset including data on
patients with Schizophrenia, their first thought may be to build
a model to detect Schizophrenia. However, current medical
practices are already highly capable of such detection and would
rather see other issues provide more fruitful avenues for ML
applications, such as predicting modulatory treatment responses
for Schizophrenia (23). Therefore, viewing such issues from a
pure computer science or statistical standpoint is inherently
hindering the potential for a current project.

Instead, the ultimate users of the technology should be
included at the very beginning of the development of the model.
Research andDevelopment goals should be grounded in what has
already been suggested in the medical field as important avenues
of future work for clinical improvements. For instance, rather
than attempting to predict an illness which can already be clearly
identified in clinical practice, ML tools can reduce the complexity
of patient information presented in a specific pathological states
(24, 25) and then present statistical irregularities that can be
used by physicians to make more informed decisions for clinical
treatment (26, 27). Ultimately, it must be remembered that AI is a
powerful tool that can be leveraged to answer a difficult questions,
the usefulness of the tool is a function of the appropriateness of
the question being asked.

Problem 2. Practicality: Not Everyone Has
a Cyclotron
Similar to the concerns of relevance mentioned above, advances
in ML abilities have also created concerns of practicality. This
refers to building amodel which has limited practical applications
in the environment of interest due to logistical constraints that
were not considered outside of the environment that the model
was originally created in, such as requiring more computation
than necessary or that which can be feasibly run in a clinic.
Reasonable solutions must commonly consider the current state
of the field and the technical constraints of the model proposed.

To create and train advanced ML models, disparate data is
often harmonized from varying sources and formats to create a
single large dataset of valuable information. Data harmonization
is particularly important in medicine given that small amounts
of data on specific topics are often managed by acquiring data
from varying records and from a variety of centers, all of which
also commonly utilize different electronic health record (EHR)
systems (28). Therefore, to build a model that aims to compare
specific patients to a template/control group, algorithms must
first harmonize large amounts of a patient’s data from varying
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FIGURE 3 | Concerns with the approach to ML product development.

datasets to perform a comprehensive comparison. However, to
do this, many algorithms require datasets to be harmonized as
large cohorts. Unfortunately, outside of the lab, these methods
can become impractical when single (N = 1) patients present to
the clinic. Therefore, these algorithms can fail unless additional
practical solutions are present. Importantly, improved super
computers may hold the computing power to execute a highly
complex model in a lab for a single patient, but a physician
may not be able to analyze a patient’s data with these algorithms
on a less powerful hospital-issued laptop in a time critical
environment where it must perform at the highest level. On
that same note, it is easy to optimistically consider the intricate
problems that can be tackled with ML in the future due to
the improved abilities of modern computational algorithms to
digest highly complex data; however, medical data is often
not available or too limited for specific topics at the current
time. When just utilizing the limited available data obtained
specifically from academic studies to train a model, illusory
results may be obtained given these data are cleaner than
that which would be obtained from the actual target field.
Therefore, investing time in an approach that is too far into
the future may inherently cause difficulties in model preparation
due to the lack of available feedback from the clinical field
of interest.

To prospectively mitigate problems of practicality,
implementation should always be considered from the very
start of any analytical solution. This will prevent any waste
of Research and Development efforts given that alternative
solutions were already considered. A notable increase in recent

efforts has been put forth by cloud providers and hardware
manufactures to provide development frameworks which bridge
the gap between an approach to a problem and the hardware to
support it (29). Ultimately, including the intended users in the
initial development stages will also provide insight on practicality
during model development as the goal environment will have
already been considered.

DATA: WHAT ARE WE USING AND FOR
WHAT PURPOSE?

Problem 3. Sample Size: Looking at the
World Through a Keyhole
A concern inherent to most analytical solutions includes issues
of sample size. When creating and training a model using a
limited sample size, inflated results may be demonstrated when
actually testing it against a control sample. Subsequently, when
introduced into a different, clinical environment, the model’s
accuracy can lessen, and it can fail. This is because the small
sample size may cause a model to present results that are merely
due to chance. Consideration of this is paramount to acquire
reliable results (Figure 4).

In an age of increasingly available data,ML algorithmsmust be
trained on adequately sized and diverse datasets. While this will
likely require the harmonization of data from multiple centers,
this point is imperative if we are to believe our models are robust
enough to consistently provide reliable results at different time
points and in a number of different environments. A recent
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FIGURE 4 | Concerns with the data a model is being trained and tested on.

systematic review assessed 62 comprehensive studies detailing
new ML models for the diagnosis or prognosis of COVID-19
utilizing chest x-rays and/or computed tomography images and
found a common problem among studies was in the limited
sample size utilized to train models (8), with other reviews noting
similar observations (30). Amongst the 62 models assessed, more
than 50% of diagnostic focused studies (19/32) utilized <2,000
data points. Unlike rare brain tumors which may require years
of small amounts of data collection, there have been more than
2 million cases of COVID-19 to date (31). Therefore, it is
unsurprising that developing a model to understand a complex
biological phenomenon on only 2,000 data points can lead to
unreliable results in the intended environment (8).

As in all aspects of medical research, newer ML models must

be trained on a large and diverse dataset to provide reliable

results. A clear solution is to implement an active and ongoing

effort to acquire more data from a variety of sources. ML models,

unlike physical medical devices, can be continually updated and

improved to provide more reliable and accurate performances.
As more data becomes available, models can be retrained with
larger sample sizes and then updated for the best performance in
the field. Ultimately, this may require a model to be pulled from
a clinical practice, retrained and tested based on more data which
is now available, and then placed back into the environment of
interest. However, with the increased demand for more data, one
must consider the possibility that an ML modeler may acquire
and include data for which they have no patient consent. Once
the new data is incorporated into the model and the model is
input into the field, it is very difficult to identify which data was

utilized. A possible solution to these patient consent concerns
with increasing data is implementing in each image a certificate
stating patient consent, such as through non-fungible tokens
(NFTs) (32).

Problem 4. Discriminatory Biases: Rubbish
in, Rubbish Out
Perhaps the most commonly discussed problem concerning AI
technologies is their potential to exacerbate our current societal
biases in clinical practice. Even more alarmingly, developing
models with historical data may perpetuate our historical biases
on a variety of different patients in ways we have since
improved from.

Issues concerning discriminatory bias may manifest as a
model demonstrating high performance on a single sample of
patient data, but then failing on different subsets of individuals.
For instance, an increasing focus in ML based applications has
been to create algorithms capable of assisting dermatologists
in the diagnosis and treatment of diseases of the skin (33).
While racial inequalities to healthcare delivery are becoming
more and more documented across the world, recent work
has suggested one of the major sources of these inequalities
stems from the lack of representation of race and skin tone
in medical textbooks (34). Medical schools in recent years
have immediately begun to address these concerns by updating
textbook images for increased inclusivity, yet deep learning
(DL) image-based classifier algorithms often continue to use
low quality datasets for training, which commonly contain
unidimensional data (e.g., mostly lighter skin images) (35).
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In turn, these algorithms will perform better on the image
type it is trained on, and subsequently propagate biases that
were represented in the original datasets. This cycle ultimately
provides the chance for profound failures with specific groups
of peoples. In a study examining three commercially available
facial recognition technologies (Microsoft, Face++, and IBM)
based on intersectional analyses of gender and race, differences
in error rates of gender classification were demonstrated to be
as high as 34.7% in darker-skinned females compared to 0.8% in
lighter-skinned males (36). Ultimately, even if some diseases are
more common in specific races or genders, such as melanoma
in non-Hispanic white persons, all patients with a variety of
skin types should be included for the potential benefits of these
algorithms in the future (35). While these concerns may be more
obvious, even the location of the image acquisition center can
bias a model’s performance. This is due to the demographical
makeup of the surrounding community in which images were
trained and tested. Thus, when the model performs in a different
environment, its performance will drastically differ based on the
new demographics encountered.

Improved patient related factors must be considered when
building datasets for the training of a model. By building models
on data from a variety of different sites with increased awareness
of the specific populations included, we may begin to mitigate
the potential biases in our results. Ultimately, improvements in
DL algorithms remain relatively nascent, and there has been an
increased focus on classification performance across gender and
race, providing us with impetus to ensure that DL algorithms can
be successfully used to mitigate health care disparities based on
demographics (35–37).

Problem 5. Generalization to New
Populations: From the Few, but Not the
Many
Expanding on concerns of discriminatory biases, problems with
generalization may occur due to the expansion of global software
markets. Aside from differences in gender and skin color alone,
a model may fail based on datasets trained on individuals from
a single population due to underestimating the differences in
population driven variability.

Most consider that using multi-centric data improves the
external validity of a model’s results given that it tests samples
of individuals from a variety of locations. However, if all the
centers providing data are within a single country, such as in
the United States for instance, how will these models perform
in China where there are unique individual characteristics that
are concomitantly shaped by differences in the environment? For
example, one of the most accepted neurobiological models of
language suggests a dominant left-lateralized system. However,
many of these models were based on participants that speak
English or are from the United States (38), while other studies
including Chinese participants suggest a right-lateralized white
matter system related to learning Mandarin (39). In fact, other
studies have suggested these results also expand to non-Chinese
subjects who learned Mandarin as a non-native language,
such as European subjects (40), suggesting that differences in

white matter connectivity may be more pronounced for some
tonal languages. However, it is also reasonable to conjecture
based on the effects of these subtle differences that there
are likely additional underlying inter-individual differences
not being considered in this paradigm outside of just tonal
languages alone (41). Without consideration of differences
across separate datasets (42), unexpected performances in
ML-based brain mapping software could jeopardize market
expansion into different areas outside of where the model was
originally developed.

To prevent and manage issues of generalization, a number
of solutions exists. First, similar to what was described above,
data must be accumulated from a variety of sources. However, to
provide the most generalizable results, these sources must span
several different sites inside and outside of the country of origin
where the model was developed. Surely, inter-individual factors
must be considered during production to improve the robust
ability of a model in different environments. Nonetheless, it is
also likely that site-specific training should also be considered
as an optimal avenue to tailor models based on the specific
populations where a model is going to be implemented. Then,
external validation testing in separate adequately sized datasets
(43) can ensure that an algorithm can model data from different
sites similarly to that which it trained on.

Importantly, improved collection of multi-site data
simultaneously raises concerns of patient anonymity, patient
agency and informed consent. Fortunately, a great deal of
progress has been demonstrated with methods of federated
learning to deal with the bias of models when trained with
homogenous populations (44). Federated learning methods
improves the maintainability of data anonymity when
sharing patient data across numerous sites, thus allowing
for improved research collaboration and model performance
across heterogenous populations (44). However, given the ability
for various ML systems to re-identify individuals from large
datasets, a key improvement in the future suggested by Murdoch
(45) will likely also include recurrent electronic informed
consent procedures for new uses of data and further emphasis
on the respect for the ability of patients to withdraw their data at
any time.

Problem 6. Emergence of New Trends:
Surfacing Creatures From the Depth
This problem is likely the most relevant to the current conditions
of the world with the recent SARS-CoV-2 pandemic. As such,
problems related to the emergence of new trends refers to when
a new trend emerges in the data that the initial model was not
built to account for, thus altering the new statistical comparisons
being made between variables.

Previously, ML techniques have been commonly applied to
predict changes in seasonal diseases, such as influenza (46),
to further allow hospitals to appropriately prepare for medical
supply needs, such as bed capacity, and to appropriately update
both vaccine developments and citizens themselves of prevalent
circulating strains. This is because many viruses commonly
mutate and produce a variety of strains each year, yet vaccines
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can only account for a number of the most prevalent strains. In
such paradigm, ML tools can be applied to estimate which strains
will be most common in upcoming seasons with high accuracy
to be included in upcoming seasonal vaccines (46). However,
unexpected changes can occur in the environment, such as
a new pandemic, which drastically alters the environmental
landscape and therefore changes the way two variables may
be modeled based on new environmental parameters. If there
is not an ongoing monitoring system in place, these models
can lead to potential harm as results are no longer reliable.
Similarly, medical devices are constantly being altered and
upgraded to improve their diagnostic and visualization abilities,
such as for functional magnetic resonance imaging (fMRI)
scanners. However, magnetic field inhomogeneity between
different scanners, such as a 3 Tesla vs. a newer 7 Tesla, could
lead to differences in relative blood oxygen level-dependent
(BOLD) signal intensity, and therefore contains poor inter-
scanner reliability (47). As such, when utilizing brain mapping
software on an individual patient with different scans, erroneous
brain network anomalies may arise and can lead to inappropriate
neurosurgical treatments just merely due to the inability of
a model to account for differences in functional magnetic
resonance imaging (fMRI) scanners utilized.

Models in production should be created with a set of test
reflective environmental data to ensure expected performances
in situ. Furthermore, alongside changes in current clinical
practices, models must be continually monitored and tested with
new data to assess for reliability and validity. This continual
external validation testing with separate adequately sized datasets
than which it was trained on provides a necessary avenue for
improvement as the field of healthcare and the environment itself
is continually changing.

METHOD: HOW DOES THE TECH
APPROACH PLAY OUT?

Problem 7. Reproducibility: Bad Copies
Concerns of replicability are not a newly discussed phenomena
for a number of different fields that require the processing of
large amounts of data (48). However, failure of a model to
demonstrate the same results time and time again presents a
profound risk of inconsistencies in the delivery and quality
patient care, and therefore should be considered in future ML
developments (Figure 5).

To ensure an ML algorithm applied in the healthcare setting
is fully reproducible, some (49) have suggested that a study
should produce the same results according to (1) technically
identical conditions (related to code and dataset release), (2)
statistically identical conditions (related to differences in sampled
conditions still yielding the same statistical relationships), and
(3) conceptually identical conditions (related to how the results
are reproduced in accordance with pre-defined descriptions of
the model’s effects). When these methods of reproducibility
are not met, the one who created the model would be unable
to replicate its results on subsequent runs. Furthermore, when
others are attempting to assess the model, possibly to improve its

applicability, they too will be unable to obtain the reported effects
by the original authors. As such, recent methodological and
reporting standards have been proposed to address these issues,
such as the Transparent Reporting of a multivariable prediction
model for Individual Prognosis OR Diagnosis (TRIOPD), and its
recent statement for ML-prediction algorithms (TRIPOD-ML)
(50, 51).

In addition to the obvious potential improvements in patient
safety following more rigorous evaluations of clearly reported
methodology, improved reporting of ML algorithms can also
provide an important way to advance the field as a whole. A
number of different Data Scientists may spend countless hours in
designing complex ML models to address an imminent question,
such as what we saw for COVID-19, yet increasing errors
will commonly be identified from just the smallest differences
across algorithms (8). Instead, if models and datasets are clearly
reported following a study, then others can appropriately assess
these models and collectively improve upon them to produce
more robust pipelines. This will ultimately improve our ability
to bring these tools to clinical practice as a model becomes more
accurate without repeating the same mistakes. The increased
requirements for adherence to rigorous, ML reporting guidelines
across many major peer-reviewed journals is a promising
improvement moving forward.

Problem 8. Explainability: The Black Box
Problem
One of the largest concerns of AI-based devices in medicine
concerns physicians’ lack of trust for model performance (52).
Unfortunately, as ML models have increased in complexity,
this improvement has often been met with a trade-off in
explainability, in which there is increasing uncertainty regarding
the way these models actually operate (53).

This problem is often described as a model operating in a
“black box,” in which irrespective of model performance, very
little can be elucidated about why a model made a specific
decision. A common example of this can be seen with a highly
powered ML technique known as deep learning (DL). DL
applications can maintain hundreds of stacked representations
across hundreds of layers, a relationship that no human can
truly accurately comprehend in full detail. However, a number
of important improvements can be made in the field as we
improve concerns of lack of explainability, to which a whole field
has been dedicated known as Explainable Artificial Intelligence
(XAI) (53). Ultimately, ML tools are capable of taking highly
dimensional data and quickly making accurate decisions in
highly time-critical medical scenarios, a feat that humans may
never physically nor cognitively be capable of performing (54).
However, if we could explain the various decisions being executed
by a certain model and the specific features being analyzed to
produce a certain outcome (24), physicians can better interpret
these results based on logic and previous knowledge. Then,
healthcare providers may not only be able to better trust these
algorithms, but providers may also continually improve the
model’s performance when the system presents an error that is
likely based on a specific wrong answer possibly being executed
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FIGURE 5 | Concerns of the methodology utilized to develop an ML model.

in a portion of a decision tree. In fact, since these models are
highly capable of detecting novel patterns in large amounts of
data which are invisible to the human eye (4), interpretable and
explainable models may also unlock new insights in the scientific
world that spur further improvedML developments in the future,
creating a positive reinforcing cycle of innovation.

Outside of the trust of a practicing healthcare provider, the
patient themself, if diagnosed by a ML tool to have a malignant
skin lesion, may too require an interpretable and justifiable
reason why specific results were provided, such as why the tumor
was diagnosed as malignant. Thus, it is important that a clinician
is able to interpret the decisions made by a specific algorithm,
but this also raises concerns of violating patient-physician
relationships and liability for AI technology in general (55). A
core component of the Hippocratic Oath requires physicians to
do no harm and act upon their greatest judgement for improved
patient care. With the incorporation of machine-learning guided
clinical care, failure to understand a model’s decision making
can shift fiduciary duties away from the physician and hurt the
patient-physician alliance (56). Furthermore, if a model provides
a piece of information that leads to a poor outcome for a
patient, is it the machine’s fault or is it the healthcare provider’s
medical error? Unsurprisingly, promotion of interpretability of
a model is outlined as a main principle within the recent World
Health Organization (WHO) guidelines on Ethics & Governance
of Artificial Intelligence for Health (57). Both the model and
provider must be able to clearly elucidate these findings to

the patient if we are to truly incorporate ML into standard
medical practices.

Movement toward white-box, also called glass-box, models
provides a solution to address concerns of explainability. These
models can often be seen with linear (58) and decision-tree
based models (24), although a number of other applications are
increasingly being developed (53). In fact, DL based networks
make up the majority of the highly sought after radiological-AI
applications for the medical field (1), such as the systems that can
diagnose brain cancer during surgery. Such networks provide the
enthusiasm for the recent large scale efforts in the field to improve
the explainability of advanced ML techniques (59). Specifically,
by utilizing white box models as first line modeling techniques,
one can ensure findings are being appropriately made based
on ground truths provided by current scientific knowledge. For
example, a number of recently developed practical approaches
have been introduced using input vector permutation to better
understand how specific inputs impact the predictions of a model
and may be particularly useful to gain insight into how models
make specific decisions (60, 61). Explainable AI approaches,
such as deconvolution methodology, can be applied to more
complicated models, such as convolutional neural networks
(CNNs) and ensembles, to improve the interpretability of the
more complex models (62). However, further research is needed
in the field of explainable AI to better understand model-specific
techniques that can be leveraged to ultimately improve the
transparency of these models in the healthcare setting.
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Problem 9. Accidental Fitting of
Confounders: Guilt by Association
ML tools are able to digest highly complex datasets by continually
assessing and scanning different features until optimal
performance is achieved. As such, concerns of accidentally
fitting confounders can easily surface and a model that was
thought to be capable of predicting an outcome is instead
making a prediction based on factors unrelated to that outcome
of interest. If so, these models can produce not only unreliable
results in clinical practice, but can also present profound
risks of patient harm, such as by under- or over-estimating
specific diagnoses.

An example of this problem can be seen with a model that
is purported to show great performance in detecting autism.
However, if not carefully assessed for confounders, one may miss
that the model is actually detecting head motion. For instance,
patients with autism often move more in fMRI scans and this
can cause head motion artifacts that compromise fMRI data due
to altering voxel and stable state magnetization. Ultimately, this
will cause scans to show false regions of increased/decreased
brain activity that are misused to diagnose autism (63). If head
motion is not corrected for, the performance of these models
will collapse (64). Unfortunately, these childrenmay have already
received unnecessary treatments (65) that resulted in increased
financial burden (66) and possibly decreased treatments for other
diagnoses (67). Alarmingly, the literature presents a number of
additional examples of this problem that have may have gone
unnoticed in certain ML algorithms.

First, an ML specialist must have a strong understanding of
the data being modeled. Then, when actually developing the
model, one should carefully explore and rule out any concerns
for confounders. In addition to previous descriptions of “white-
box” models, improved understanding of the features being
mapped may allow further appropriate critical evaluations of
model performances and in turn lead to increased trust in the
medical community.

OPERATION: IN THE FIELD

Problem 10. Model Drift: Like a Rolling
Stone
For many of the reasons discussed above, over time a model will
likely begin to make an accumulating number of errors. This
could be due to issues withmodel drift, in which a model that was
deployed into production many years ago would begin to show
performance decay over time (Figure 6). Different than problems
with the emergence of a new trend, model drift represents a
multifactorial issue that likely reflects the relationship between
two variables changing with time, ultimately causing a model
to become increasingly unstable with predictions that are less
reliable over time.

Generally, the training of ML models follows an assumption
of a stationary environment; however, two types of model drift
based on non-stationary environments have been described,
including: (1) virtual concept drifts and (2) real concept drifts
(68). Virtual drifts refer to when the statistical characteristics

or marginal distributions of the actual data changes according
to a change in time without the target task itself also adjusting
similarly (e.g., the regression parameters). Real drifts refer to
situations when the relationships between two or more variables
in a model are based on a function of time, such that parameters
in which the model was trained now becomes obsolete at
different points in time (e.g., Pre-Covid vs. Post-Covid) (69).
Without considering the possibility of a model drifting, a model
can begin to predict outcomes in an unexpected way, which
in a healthcare setting could immediately represent incorrect
diagnoses being made.

To account for model drift, both active and passive methods
have been proposed, of which the later represents the easiest
solution to implement (68). Active methods refer to the
methodology for detecting this drift and then self-adjusting its
parameters to retrain the system to account for this shift, such
as by forgetting old information and then updating based on
new data (70). However, this methodology is more practical
when data is available as a continual stream that will allow a
model to continually adapt to recent data inputs. Differently,
passive learning methods are reliable in that the performance
of a model will be continually or periodically monitored by
developers, such as through each release cycle, thus ensuring
consistent and reliable results according to the model’s original
results. As more data becomes available, passive methods could
allow users to adapt the model and retrain it based on new
data and updated scientific knowledge. Thus, this method could
allow for more transparency over time concerning the model’s
performance, avoiding scenarios where a model may make
decisions on new relationships that are non-interpretable or even
scientifically unsound.

Problem 11. Practicality Over Hospital
Context: Will the IT Department Say Yes?
Systems should be developed according to the environment in
which they will be deployed. While this may seem intuitive,
there are a number of strict requirements that technology must
follow in a healthcare setting that may not be accounted for,
especially with cloud-based computing software. Thus, a system
should be developed based on how hospitals are organized
and specifically how healthcare providers will plan to use
these models.

A key concern can be seen with the Health Insurance
Portability and Accountability Act of 1996 (“HIPAA”) (71)–as
well as other patient and individual privacy standards across the
globe. Only those who require the handling of patient of data at a
given time for the ultimate care of the patient are permitted access
to patient data. Therefore, a cloud-based computing system that
leaks data to the cloud presents a clear violation. This is not
to say cloud-based software cannot be used in medicine given
that internet-based methodology demonstrates several beneficial
ways to increase the capacity of a hospitals operating system.
In fact, current EHR systems represent the standard for the
digital storage, organization, and access to healthcare records,
and thus cloud-based computing will likely become standard
IT infrastructure in the future. Nonetheless, specific rules and
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FIGURE 6 | Concerns with the operations of an ML-system.

FIGURE 7 | Standard labeling system according to Key Performance Indicators (KPIs).

regulations must be considered prospectively to adjust a specific
system to the HIPPA and IT requirements of a given healthcare
system (72, 73). Furthermore, as mentioned previously, if the
system implemented is too computing heavy, the model itself
may become impractical as it can take hours to run on a less-
powered healthcare provider’s laptop.

To consider impending concerns of meeting the rigorous
standards and requirements contained in the hospital context,
developers should meet with the end users and product
stakeholders at the beginning of production. In turn, this
will allow a clear delineation of the current restraints of an
environment that will allow developers to prospectively include
user requirements in solution designs.

Problem 12. Hacking: One Voxel Attack
Despite the novelty of advanced ML systems that are highly
capable of managing complex data relationships, it must be
remembered that ML systems are inherently IT systems which
can be similarly fooled and hacked by outsider users.

One of the most common applications of AI is for image
classification of radiologic scans. Deep neural networks are highly
capable of analyzing imaging scans, allowing them to determine
if a scan presents an image of a malignant or benign tumor (1) or
can even differentiate between different types of highly malignant
tumors often within a time frame unimaginable for humans.
Nonetheless, the ability to fool AI models is a long-understood
threat, possibly accomplished just by rotating the imaging scan
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(74). One particular well-known threat is described as the “one-
pixel attack,” referring to the ability to drastically fool a neural
network by just changing a single pixel in the image being
analyzed (75). In turn, this causes the model to classify the image
as being of a different class than what is actually represented in
the image. Ultimately, this single form of hackingmerely suggests
the vulnerable nature of ML systems, and also contributes to the
truth that we do not always fully understand how a model may
be working. Therefore, when a model is failing, we may not be
fully aware of this failure. As such, there are profound concerns
of similar cyber attacks on ML software in the medical field,
especially given the often mere dichotomous classifications asked
for by providers with these image-based classification methods
(e.g., malignant or benign). Such attacks also present enormous
danger to the field of AI itself, which following an attack–could
spur long-periods of mistrust with the medical community.

A number of methods have been proposed to prevent
the damage from these adversarial attacks. Re-training the
model with robust optimization methodology can increase the
resistance of a model to these attacks. Increase detectionmethods
to identify attacks may also be appropriate (76). Other methods
have also been similarly described, but it remains uncertain the
degree to which these methods are better than others for a
given scenario. Nonetheless, what is certain is that the integrity
and robustness of an AI system must be rigorously examined
against known attacks to achieve further safety and trust with
applications in the medical field.

FUTURE DIRECTIONS: A STANDARD
LABELING SYSTEM FOR MEDICAL AI

Addressing each of the concerns above provides a way to
rigorously create a robust model that performs safely and
accurately in a field full of potential concerns. However,
one way to further advance the field and improve the
widespread adoption of these robust technologies is through a
standard labeling system that can accurately detect and then
convey anomalies in an ML-based system’s performance and
quality (77).

Common to the most successful business plans are the use of
key performance indicators (KPIs) as a way to document success
and efficiency. KPIs demonstrate the achievement of measurable
landmarks toward reaching company and consumer goals. For an
ML model, standard labeling could display KPIs possibly related
to the (1) sample it trained and tested on, (2) its quantitative
accuracy including information on false positive and negatives,

and (3) its risk of specific biases (Figure 7). Importantly, these
KPIs need to be clearly defined and continuously updated in
order for healthcare providers to appropriately examine and
incorporate specific ML-based systems into standard clinical
practices. Ultimately clinicians will need to assess a model’s
success to understand where and when to apply it in a given
scenario. To make this decision, it will require the use of accurate
performance metrics for each model on the target population.

An important concern where standard medical labeling may
be of use is in determining medical liability. While it is justified
to create incentives for risk control based on the environment of
application, the degree of responsibility is less clear cut, and who
is ultimately responsible: themachine or the healthcare provider?
While the ethics of AI are outside the scope of this paper, further
objective information on a model’s performance for a given
population with a standard labeling system, possibly contained
in the legal section of an ML system, will ultimately improve our
objective insight into their performance abilities. In turn, this can
give healthcare providers more complete information on whether
or not to incorporate these advanced systems in specific scenarios
or not.

CONCLUSION

Advancements in the field of artificial intelligence have promised
a number of exciting and promising applications for the
medical field to improve the quality and delivery of health
care services. While there have been remarkable advances in
previous years, these applications have yet to fully demonstrate
their true potential in clinical applications due to failures in
demonstrating reproducible and reliable results as well as the
general mistrust of these technologies in the medical community.
We outline many of the problems that future developers
will likely face that contribute to these failures, specifically
related to the approach, data, methodology, and operations of
machine learning based system developments. If we continue to
prospectively address and manage these concerns with reliable
solutions and appropriate system processes in place, then we as a
field may further optimize the clinical applicability and adoption
of medical based AI technology.
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