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Botulinum toxinA (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-
A blocks the release of acetylcholine, thereby decreasing the ability of a spasticmuscle to generate forceful contraction, which results
in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to
manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect
of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-
A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle
contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence
on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius,
and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits 𝛼 and 𝛽 was found
following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and
AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-
A injection.

1. Introduction

Treadmill exercise, both full weight-bearing and partial
weight-bearing, is a dynamic training approach that provides
intervention for walking and gait analysis. In patients with
neuromuscular disorders, such as stroke, spinal cord injury
(SCI), or cerebral palsy (CP), treadmill exercise is a frequently
used rehabilitation training model that has been shown to
yield functional improvements [1–4]. Clinical investigations
showed that in patients with CP, treadmill training can
improve walking endurance, walking speed, and standing
performance [5, 6]. In stroke rehabilitation, partial-support

treadmill training is also a widely used training mode for
gait correction [7, 8]. Spasticity is a sign of upper motor
neuron lesion with increased stretch reflex depending on
movement velocity, which can be caused by stroke, spinal
cord injury, brain injury, cerebral palsy, or other neurological
conditions [9]. One of the treatment choices for spasticity is
the intramuscular injection of botulinum toxin A (BoNT-A)
[10, 11]. Although several studies support the beneficial effects
of treadmill training,most excludedBoNT-A-treated patients
or did not mention these patients [12–14]. The effects of
treadmill training on the physiological adaptation to paralysis
effects caused by BoNT-A remain poorly understood. In this
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paper, we review the mechanisms of treadmill exercise and
BoNT-A treatment and discuss their combined effects on the
central nervous system, physiological activity, and changes
in the muscle and neuromuscular junction (NMJ). This
may contribute to our understanding of the mechanisms
underlying currently used treatments and, possibly, suggest
directions for future research.

2. The Therapeutic Effects of Treadmill
Training and Mechanism

In neurorehabilitation, locomotor training is based essen-
tially on principles that promote the movement of the limbs
and trunk to generate sensory information consistent with
locomotion. Whether full weight-bearing or partial-weight
bearing, treadmill training can be used as a strategy for
locomotor training in people with certain disabilities to
improvemuscle adaptation andwalking ability. Amajor focus
of research has been to elucidate the benefits of treadmill
training, such as functional recovery or restoration in neural
plasticity. One of the major questions limiting the reha-
bilitative implementation of treadmill training pertains to
the molecular mechanisms through which treadmill training
promotes synaptic plasticity and functional recovery. Clinical
investigations have shown beneficial effects of treadmill
training, which is often used in patients with cerebral palsy
(CP) or stroke for walking and gait training [13–16]. In
patients with CP, walking speed and gross motor function
improved significantly after treadmill training [17]. A recent
systemic review showed that gait impairment and activity
level were improved after body weight supported treadmill
training [16]. Recently, robotic-assisted treadmill trainingwas
developed and was found to improve walking and standing
performance in patients with CP [18]. In patients with CP,
the neural modulation of soleus H-reflex suppression was
proposed as the mechanism accounting for the improvement
in functional gait pattern after treadmill training therapy [19].

In animal models of SCI, locomotor training using a
body weight supported treadmill (BWST) suggested that
interneurons in the lumbar cord formed circuits for rhyth-
mic and alternating hindlimb flexion-extension movement
[20, 21]. Because this conceptual mechanism included the
responsiveness of the spinal central pattern generators to
sensory input with locomotion, BWST training provides an
environment in which one can learn to execute the stepping
leg movement [22–24]. The amplitude and coordination of
the firing of motor units in leg muscles were also found to
increase after considerable BWST training in patients with
complete or incomplete chronic SCI. The animal and human
studies led to the suggestion that BWST training may tap
into this central pattern generator subsystem and contribute
to enabling walking in highly impaired patients [25–28].
Treadmill training also increased the expression of nerve-
associated factors, such as the brain-derived neurotrophic
factor (BDNF) and neurotrophin-3 (NT-3) in the spinal cord;
this expression may be related to the improvement in local
neural circuitry [29–33]. Although an isolated spinal cord
learned to stand on a stationary treadmill or step on amoving

treadmill [34], the training effect for SCI did not transfer to
the other task [35]. Hence, the cord has a limited capacity for
relearning multiple tasks in the absence of supraspinal input
[36]. Thus, factors such as task specificity, training intensity,
or training duration are issues that warrant attention in future
experiments [37].

Although injured axons in peripheral nerves have better
regeneration than those in the central nervous system and
despite the recent advances in microsurgical techniques,
the functional outcomes in injured peripheral nerves are
clinically poor [38–40]. Some studies had evaluated the
effects of treadmill training on axon regeneration following
peripheral nerve injury. In animal studies of nerve tran-
section following repair, treadmill training was shown to
facilitate growth in the length of regenerating axons, to
retrieve restoration of H-reflex, and to increase the amplitude
of CMAP in injured peripheral nerves [41, 42]. In the
sciatic nerve crush animal model, Ilha et al. [43] found
improvement in sciatic functional index (SFI) scores and a
bettermorphology of regenerating nerve fibers after treadmill
training. As BDNF is highly expressed in active neurons,
BDNF-mediatedmachinerymay be responsible for the spinal
central pattern generation induced using treadmill locomotor
training [44–46]. Both theWilhelm group [47] and Ying and
colleagues [30] provided evidence that the effect of treadmill
training on axon regeneration requires BDNF produced by
the regenerating axons themselves. This neurotrophic factor
was a likely mechanism of the effect of treadmill training
in enhancing axon regeneration following peripheral nerve
injury.

In normal rats, the adaptation of the energy transporta-
tion system was found after treadmill training. Chow and
colleagues demonstrated that after 8 weeks of training, a
significant increase in mitochondrial-related mRNAs was
observed [48]. They also found that mitochondrial DNA
and mitochondrial transcription factor A were upregulated
in the trained muscle. Safdar and colleagues have advocated
treadmill endurance exercise as a medicine and a lifestyle
approach to improve systemic mitochondrial function. They
showed that 5 months of exercise resulted in a substantial
increase in mitochondrial oxidative capacity and respiratory
chain assembly, restored mitochondria morphology, blunted
the process of apoptosis, and prevented mitochondrial DNA
depletion and mutations [49].

Several muscle adaptation mechanisms have been
observed in normal or diseased animal models following
treadmill training. In one recent study thatmeasured changes
in denervated soleus muscle via sciatic nerve resection and
treadmill training, Jakubiec-Puka et al. [50] showed that
the number of capillary blood vessels, amount of myosin
heavy chains, and muscle fiber nuclei were increased, with
concomitant decreases in the number of severely damaged
muscle fibers and amounts of collagen. These training effects
weremore evident in the animals with longer training [50]. In
diabetic rats, treadmill running has been shown to increase
the level of nerve growth factor in the soleus muscle, and
apoptotic cell death was suppressed via accelerating p-PI3-K
activation [51]. In summary, the adaptation mechanisms
induced via treadmill exercise are multifactorial with cellular
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changes inside the muscle fibers as well as changes in per-
ipheral and central nervous systems.

3. Efficacy and Reliability of Current Measures
of Spasticity

Spasticity is a clinical symptom of upper motor neuron lesion
that is characterized by a velocity-dependent increase in
stretch reflexes [9]. Although some objective methods of
measuring spasticity such as the Hoffmann reflex (H-reflex),
the Tendon reflex (T-reflex), and the Stretch Reflex (SR) have
been developed, the clinical and experimental use of the three
methods is limited due to moderate reliability and sensitivity
[52]. Clinically, the six-point-ordinal Modified Ashworth
Scale (MAS) is now the most commonly used measure of
spasticity [53]. Mutlu et al. showed that in cerebral palsy,
the MAS is a marginally reliable assessment of spasticity.
They suggested that the use of the scale should therefore
be interpreted with great caution [54]. In another study
evaluating the reliability for ankle plantar flexor in patients
with traumatic brain injury, a low reliability was concluded
[55]. Although some controversy to the MAS approach has
been recognized,most of the literature supports the reliability
of the MAS. Ghotbi et al. [53] showed that the reliability
was good for the distal ankle plantar flexors but not for
the proximal hip adductors. Bohannon and Smith [56] have
advocated the MAS as a reliable test of elbow flexor muscle
spasticity. In an assessment of knee extensor, Ansari and
colleagues [57] showed a good reliability for MAS evaluation
on the poststroke knee extensor. Pandyan and colleagues
[58] showed that the reliability of the scale is better in the
upper limb. Platz et al. [59] suggested that a high interrater
reliability of the MAS can be clinically achieved but not in
all circumstances. Therefore, we contend that the clinical
reliability of applying the MAS for spasticity evaluation may
depend on the joints and muscles tested [54, 60].

4. Neuromuscular Junction: Structure and
Molecular Mechanism

The neuromuscular junction (NMJ) in vertebrates is a favor-
able model system for investigating the molecular mecha-
nisms of synapse formation and neural plasticity. The NMJ
is a region where the axons of motor nerves connect with
the skeletal muscles and serves to efficiently communicate
the electrical impulse from the motor neuron to the skeletal
muscle to signal contraction [61, 62]. Neurotransmitters,
such as acetylcholine (ACh), are formed in the neuron body
and then transported to the synapse along the axon. In the
terminal axon of a nerve, neurotransmitters are packed in
vesicles. When an impulse from the central nervous system
is transmitted to the NMJ, ACh is released, which binds with
acetylcholine receptors on the postsynaptic muscle fibers
[63]. Calcium-related signal transduction will be recruited,
causing muscle contraction.

The nicotinic acetylcholine receptor (AChR) is a
transmembrane ligand-gated ion channel. This receptor is

composed of four homologous subunits: 𝛼, 𝛽, 𝛿, and 𝛾 or
𝜀 [64]. During myogenesis, the expression of the muscle
regulatory factors (MRFs) family is associated not only with
activated satellite cells and myonuclei but is also crucial in
regulating the ongoing rates of AChR gene transcription [65–
67].The expression of theAChR subunits and the distribution
of these receptors among muscular fibers are regulated
developmentally, with AChR gene expression at its highest
levels during myogenic differentiation [68]. The soluble N-
ethylmaleimide-sensitive-factor attachment protein receptor
(SNARE) is the most widely studied element of the
intracellular machinery involved in intracellular trafficking
[69]. SNARE proteins are a large protein superfamily
consisting of more than 60 members. The core exocytotic
machinery is composed of three SNAREs: (1) vesicle-
associated membrane protein synaptobrevin (VAMP), (2)
synaptosomal-associated protein of 25 kD (SNAP-25), and
(3) syntaxin-1 on the plasma membrane [70–73].

5. Botulinum Toxin A (BoNT-A): Structure
and Cellular Mechanism

The botulinum toxin was first described as a “sausage poison”
and “fatty poison” because this bacterium often caused toxic-
ity by growing in improperly handled or preparedmeat prod-
ucts [74]. In the late 1960s, Scott and Schantz were the first
to work on a standardized botulinum toxin preparation for
therapeutic purposes. Scott, an ophthalmologist, first applied
tiny doses of the toxin to treat “crossed eyes” (strabismus) and
“uncontrollable blinking” (blepharospasm) [75]. In Decem-
ber 1989, BoNT-A (Botox, Allergan Inc., Irvine, CA, USA)
was approved by the US Food and Drug Administration
(FDA) for the treatment of strabismus, blepharospasm, and
hemifacial spasm in patients over 12 years old. Dysport (Ipsen
Ltd., UK) is another brand of BoNT-A used for therapeutic
purposes.

In the peripheral and central nervous systems, neuronal
plasticity plays a pivotal role in the recovery process after
injury. However, the intrinsic neuronal determinants for
the regulation of this fundamental process remain poorly
defined. The intramuscular injection of botulinum toxin is
a unique strategy for investigating the process of neuronal
plasticity in motor nerves and entails the elimination of
regulated neurotransmitters while leaving the viability of the
nerve endings unaltered [76]. Seven botulinum neurotoxins
(A to G) have been found, and all act in the postsynaptic
cholinergic nerve terminals [10]. BoNT-A is a type of bacterial
zinc-dependent endopeptidase that acts specifically at the
neuromuscular junction [10, 77]. The complex of BoNT-A
comprises a 150 kD neurotoxin protein, as well as nontoxin
nonhemagglutinin proteins. The 150 kD neurotoxin protein
is the biologically active component, while the nontoxin
nonhemagglutinin protein stabilizes and protects the active
neurotoxin component [78].The 150 kDneurotoxin protein is
pharmacologically inactive until the disulfide bond is cleaved
to form one 100 kD heavy chain and one 50 kD light chain.

After the endocytotic uptake of BoNT-A from postsynap-
tic terminals, the light chain of BoNT-A cleaves SNAP-25
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[79, 80]. This renders ACh-containing vesicles unable to
dock and fuse to the presynaptic membrane. By inhibiting
the release of acetylcholine at the NMJ, neuroparalysis and
denervation of the involved muscles occur, which decreases
the ability of the muscles to generate force [79, 80]. Once
paralysis has been produced byBoNT-A, newnerve sprouting
is elicited, and the newly created synapses are responsi-
ble for the initial synaptic transmission [81]. A previous
study showed that the effect of botulinum toxin lasts for
approximately 3 to 6 months. The muscle that received the
BoNT-A injection then regains muscle mass and recovers its
contraction ability [82].

6. Changes in Muscle Physiology,
Neuromuscular Junction, and Gene
Expression following BoNT-A Injection

One to two weeks after BoNT-A injection, muscle mass
and force were significantly reduced but returned to nearly
normal at 3–6 months after injection. Studies showed that
muscle mass following BoNT-A injection was reduced by
approximately 70% to 30% within 1 to 6 months [82–84]. A
30% to 90% (approximately) reduction in muscle force was
reported in animal studies [83, 85–87]. The wide range of
reduction in muscle mass and force generation occurred in
a dose-dependent manner [85, 88].

The mass and structural integrity of contralateral mus-
cles that received BoNT-A injection and those of non-
injected peripheral muscles were affected in both clinical
and animal studies. Clinically, the diffusion of the injected
BoNT-A to adjacent muscles was reported in patients with
spasmodic torticollis, facial hemispasm, blepharospasm, or
palmar hyperhidrosis [89–91]. Fortuna et al. [83] showed that
muscle atrophy and decreased muscle force were observed in
the quadriceps muscles of the contralateral hindlimbs. In a
rat model that used the contralateral gastrocnemius muscle
for comparison, the injected toxin was found to have no
effect on the force of the contralateral leg using a 1 unit/kg
injection dose. This toxin spreading effect was suggested to
be dependent on toxin dosage [92].

Neuroparalysis produced via BoNT-A elicits nerve
sprouting and newly created synapses that are responsible
for the initial synaptic transmission at the onset of recovery
[81, 93]. However, whether synaptic transmission occurs at
the newly developed sprouts has not been directly demon-
strated. Recently, Rogozhin and colleagues [94] advocated
that the original synaptic sites play the predominant role in
functional restoration after BoNT-A rather than the nerve
sprouts, as previously thought. At approximately 90 days
after exposure to BoNT-A, the restoration of parent NMJ
functioning and a concomitant retraction of the outgrowth
neurites could be found [76].

Following BoNT-A injection, genes related to NMJ
remodeling and myogenesis, including subunits of AChR,
IGF-1, MRFs, MuSK, and p21, eventually lead to NMJ stabi-
lization andmuscle function recovery [95–97]. In neuromus-
cular disorders, an electrophysiological study is an objective
evaluation tool. A treadmill walking study in cats showed

that after a temporal reduction in ankle extensor activity via
BoNT-A injection, the functional deficit recovery was not
associated with the return of the electromyogram (EMG)
pattern [98]. However, the EMG burst of the synergistic
muscle that was not poisoned by BoNT-A was increased.
The authors concluded that this early functional recovery is
not due to muscle hypertrophy but is instead attributable
to neuronal adaptation due to an increased gain in stretch
reflex or central drive [99, 100]. The compound muscle
action potential (CMAP) represents the summation of a
group of nearly simultaneously activated action potentials
from a muscle or a group of muscles that are innervated
by the same nerve. The reduction in CMAP parallels the
decrease in the mean rectified voltage during a maximal
voluntary contraction [101]. A recent study showed that
the CMAP amplitude was significantly reduced, while no
changes of distal latency were found in the gastrocnemius
following a BoNT-A injection for 4weeks [84].This result was
compatible with the results of a previous study demonstrating
that an injection of BoNT-A caused localizedmuscle paralysis
but no disruption in axonal transport [102]. After BoNT-A
injection, the CMAP amplitude typically requires more than
3 months for full recovery [101].

7. Treadmill Training Models and the
Training Effects on Muscle Activity and
NMJ following BoNT-A Injection

In rat exercise training models, the two most frequently
used models are either voluntary wheel running or forced
treadmill training. In the wheel running training model,
voluntary running activity occurs in a nonstressed envi-
ronment. However, the training speed and duration are
technically challenging to monitor [103–105]. The alternative
to wheel running is treadmill training. In the treadmill
training model, different training paradigms have been used.
Some groups use ramp protocols [106], and others use the
model with a consistent speed and exercise duration [84, 107].
The advantage of treadmill training is that the animals can
be made to exercise at a desirable training intensity and
duration. However, the experimental conditions are often
stressful, and the training pattern is far removed fromnormal
mouse behavior [108].

The interaction effect between treadmill and BoNT-
A injection has not been clearly demonstrated. Combined
BoNT-A injection and 7 days of voluntary wheel running
exercise in juvenile rats attenuated the BoNT-A-induced loss
in muscle fiber size [109]. Although the number of Myo-
D positive nuclei was increased after BoNT-A injection, the
results showed that exercise had no effects on myonuclear
production. The authors concluded that this early effect of
combined BoNT-A and exercise may be due to the passive
stretching of paralyzed muscle fibers. This passive stretch
effect was supported by a study that showed an increased
expression of mechanosensitive CARP and the Ankrd2 gene
in rats receiving BoNT-A gastrocnemius injection and 3
weeks of wheel running exercise [110].
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Figure 1: The influence of treadmill exercise on muscle activity and NMJ following BoNT-A injection. Representative pictures of H&E
staining of (a) the normal architecture of the gastrocnemius without botulinum toxin injection and (c) atrophy in the gastrocnemius muscle
4 weeks after botulinum toxin injection. Immunohistochemistry staining of neuromuscular junction (NMJ) receptors of (b) the normal
configuration of NMJ and (d) changes in the NMJ 4 weeks after BoNT-A injection. A widening of the NMJ (which loses its normal
configuration), as well as the diffuse extrajunctional staining of acetylcholine receptors, was noted. Red: NMJ receptors. Green: neurofilament.
Scale bar = 50 𝜇m.

In a study by Chen et al. [109], a muscle atrophy at-
tenuation effect was observed in gastrocnemius following
BoNT-A injection after 1 week of exercise. Another study
found that muscle mass was not changed after 3 weeks
of wheel running. Recently, Tsai et al. showed that after
BoNT-A injection, the gastrocnemius mass did not increase
after 4 weeks or 8 weeks of treadmill training [84, 86]. As
previous studies have shown that there is no significant effect
of treadmill training on muscle mass following BoNT-A
injection, it is reasonable to postulate that the strength of
muscle following BoNT-A with or without treadmill training
is likely unchanged [84, 86, 110]. However, one recent study
showed that after the intramuscular injection of BoNT-A into
the gastrocnemius, treadmill training improved the recovery
of muscle contraction strength [85]. In the study, an increase
in CMAP amplitude was observed in the gastrocnemius of
BoNT-A-injured rats after 4 weeks of treadmill running.This
functional improvement was confirmed via the improvement
of the sciatic functional index (SFI). In sciatic nerve injury,
rats lose their ability to spread their hind toes. The SFI is
an experimental method used for the functional assessment
of the extent of sciatic nerve injury and for the monitoring

of recovery [111–113]. In one recent study, Tsai et al. [87]
demonstrated an increase in IGF-1, GAP-43, MyoD, Myf-
5, and myogenin expression, as well as the upregulation of
AChR 𝛼 and -𝛽 subunit expression, in the BoNT-A-paralyzed
gastrocnemius after 8 weeks of treadmill running. Synaptic
transmission at the NMJ is mediated through the AChR, and
control of AChR transcription is crucial for the regeneration
and maintenance of synapses in muscle. The expression and
transcription of AChR genes are governed by the sequential
expression of MRFs [65–67]. Charbonnier et al. [66] showed
that when the neuromuscular junction begins to differentiate,
MyoD,Myf-5, andMRF4 display different specificities for the
transactivation of the genes encoding the different subunits
of the AChR. Taken together, after treadmill training the
upregulation of IGF-1, GAP-43, MRFs, and AChR may be
related to the increased activity of distal nerve sprouting,
increased activity of AChR, and original NMJ regeneration,
thus explaining the better recovery of muscle strength.

8. Conclusion

Although effort was put forth to create animal models sim-
ulating spasticity [114–117], there is currently no universally
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adopted free-moving animal model that can be used to
mimic the spastic changes in clinical situations such as
cerebral palsy or stroke [118]. In human clinical situations,
a stroke may cause spasticity. In the rat stroke model, such
as the suture method or the middle cerebral artery ligation,
paralysis instead of spasticity is typically observed over the
contralateral side of the brain lesion. Some commonly used
spastic animal models, such as spinal cord transection and
S2 transection spastic rat tail models, are generated for the
purpose of observing neuronal overactivity [118].Thus, many
studies observing the effects of BoNT-A or combined effects
of BoNT-A and exercise training in muscles use normal
animals [82–85, 87, 94, 96, 109, 110]. To discover a free-
moving spastic animal model is therefore an important
pursuit for future research.

The temporal blockade of neuromuscular function by
BoNT-A is a useful method for investigating changes in
muscle physiology from paralysis to recovery. Figure 1 sum-
marizes the effects of treadmill training on muscle activity
and the NMJ of BoNT-A-induced muscle atrophy. The major
effect of BoNT-A is predominantly in the peripheral muscles,
especially in the blockade of NMJ functions that cause
muscle atrophy and weakness. The adaptation mechanisms
induced via treadmill training are multifactorial and include
enhanced axon regeneration, activation of the spinal central
pattern generator, and functional recovery in the SFI, H-
reflex, and CMAP [42, 43, 84, 119]. The molecular mecha-
nisms through which treadmill training promotes synaptic
plasticity and functional recovery include the enhancement
of IGF-1, MRFs, AChR, and neurotrophin expression [29,
30, 44, 47, 87]. Based on the review, the muscle and nerve
recovery effects of treadmill training may counteract the
spasticity reduction effect from BoNT-A. When consider-
ing the therapeutic strategies of combining BoNT-A and
treadmill training in the practice of neurorehabilitation,
clinicians should take this potential counteractive effect
into consideration. In this review paper, we highlighted the
mechanisms of cellular effects following BoNT-A injection
and treadmill training and further showed how the combined
effects of both treadmill and BoNT-A influence muscle and
NMJ activity. This work may improve our understanding of
the mechanisms underlying currently used treatments.
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