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Abstract

How cells divide and differentiate is a fundamental question in organismal development; however, the discovery of differentiation

processes invariouscell types is laboriousandsometimes impossible.Phylogenetic analysis is typicallyused to reconstructevolutionary

processes based on inherent characters. It could also be used to reconstruct developmental processes based on the developmental

changes that occur during cell proliferation and differentiation. In this study, DNA methylation information from differentiated

hematopoietic cells was used to perform phylogenetic analyses. The results were assessed for their validity in inferring hierarchical

differentiation processes of hematopoietic cells and DNA methylation processes of differentiating progenitor cells. Overall, phylo-

genetic analyses based on DNA methylation information facilitated inferences regarding hematopoiesis.
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Introduction

During development, cells divide and differentiate to form a

complete organism. In developmental and evolutionary biol-

ogy, it is important to understand the cell differentiation pro-

cess and the evolution of multicellular organisms. Recent

advancement in omics technologies has enabled us to capture

snapshots of the transcriptomes and epigenomes of various

cell types at different developmental stages (Gifford et al.

2013). However, comprehensive monitoring of these pro-

cesses for multiple differentiating cell types during develop-

ment remains a laborious task. Tissue stem cells, which are

present only in small numbers, can be particularly difficult.

Phylogenetic analysis is generally used to reconstruct evo-

lutionary processes based on inherent genetic and morpho-

logical characters, which can change over many generations.

Similarly, if developmental changes within an individual are

inherited through cell proliferation and differentiation, the dif-

ferentiation process could be reconstructed by phylogenetic

analysis of these developmental changes.

Epigenetic changes are “mitotically and/or meiotically her-

itable changes in gene function that cannot be explained by

changes in the DNA sequence” (Riggs et al. 1996). Cellular

differentiation occurs through a progression of gene

expression patterns, changes of which are recorded as epige-

netic changes in the genome as DNA methylation, histone

modification, and chromatin structure (Rivera and Ren

2013). Differentiating cells possess specific epigenetic patterns

that are inherited through cell division. Thus, phylogenetic

analysis of epigenetic information could reconstruct cell differ-

entiation processes.

DNA methylation is the most well-understood epigenetic

change. It is essential for mammalian development (Smith and

Meissner 2013) and influences cancer development (Estecio

and Issa 2011). DNA methylation status is related to gene

expression and stably maintained after cell division (Cedar

and Bergman 2012; Jones 2012). Underscoring its similarity

to DNA sequence and thus its potential for use in phylogenetic

analysis, DNA methylation status is maintained in a semicon-

servative manner, although it is accomplished by the enzyme

Dnmt1 (Cedar and Bergman 2012). Experimental and simula-

tion studies of DNA methylation status at limited loci in colon

crypt cells suggest that DNA methylation data can be used to

infer stem cell population dynamics and histories of the

human colon (Yatabe et al. 2001; Kim and Shibata 2004;

Nicolas et al. 2007). Therefore, DNA methylation information

could be compatible with phylogenetic analysis.
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In this study, I examined the feasibility of phylogenetic anal-

ysis using genome-wide DNA methylation information of dif-

ferentiated cells to infer cellular differentiation processes in a

murine hematopoietic system. Hematopoiesis is one of the

best-studied cell differentiation processes and the hierarchical

differentiation model is described in textbooks (fig. 1).

Hematopoietic stem cells (HSC) can differentiate into myeloid

or lymphoid lineages, producing six types of differentiated

cells: Erythrocytes (Eryth), granulocytes (Granu), monocytes

(Mono), B cells, helper T cells (CD4), and cytotoxic T cells

(CD8). During hematopoiesis, multipotent progenitor 1

(MPP1), multipotent progenitor 2 (MPP2), common myeloid

progenitor (CMP), megakaryocyte–erythroid progenitor

(MEP), granulocyte–monocyte progenitor (GMP), and

common lymphoid progenitor (CLP) cells proliferate and can

be identified by molecular markers. Furthermore, DNA meth-

ylation has a critical role in hematopoiesis (Suarez-Alvarez

et al. 2012; Jeong and Goodell 2014) and genome-wide

methylation data have recently become available for all of

these cell types (Bock et al. 2012). These data were used for

the phylogenetic analyses described here. The aim of this

study was to determine whether the DNA methylation data

of adult differentiated cells could infer cell differentiation

processes: The hierarchical differentiation process of

hematopoietic cells and the DNA methylation processes of

differentiating progenitor cells.

Results

To examine the validity of phylogenetic analysis based on DNA

methylation data for inferring cell differentiation processes, I

first examined how DNA methylation levels change during

hematopoiesis. The genome-wide DNA methylation data for

13 murine hematopoietic cells contain information on meth-

ylation levels (0.0–1.0) for 83,505 sites. These sites were clas-

sified as “STABLE,” “UP,” “DOWN,” and “OTHER” based on

the changes during differentiation of each of six cell lineages

(from HSC to Eryth, Granu, Mono, B cells, CD4, and CD8; see

fig. 1). UP or DOWN classifications were assigned to 1,830–

7,223 DNA methylation sites, depending on the cell lineage

(fig. 2). These classifications indicated that these sites could be

phylogenetically informative. Detailed clustering results for

each lineage are available in the supplementary material S1,

Supplementary Material online.

If DNA methylation patterns contain phylogenetic informa-

tion, an inferred phylogenetic tree could reflect the cell differ-

entiation process. On the basis of all 83,505 methylation sites,

phylogenetic trees were inferred for six differentiated cell

types—MEP, Granu, Mono, B cells, CD4, and CD8—with

three progenitor cells—HSC, MPP1, and MPP2—as an out-

group. The erythrocyte lineage showed a high amount of de-

methylation (fig. 2), so MEP was used instead of Eryth to relax

the long branch attraction effect (Felsenstein 1978). The

methylation levels of most sites were near 0.0 or 1.0 (see

supplementary material S2, Supplementary Material online).

Therefore, the level (0.0–1.0) was first converted to binary (0

or 1), then phylogenetic trees were reconstructed with max-

imum parsimony (MP) and maximum likelihood (ML) methods

(see Materials and Methods for detail). The reconstructed MP

and ML trees had the same topology (fig. 3), which separated

the leukocyte lineages (B cells, CD4, and CD8) with bootstrap

probabilities of 100. This result was consistent with the known

lineage (fig. 1), although the monophyly of myeloid lineages

(MEP, Granu, and Mono) was violated by the outgroup.

The phylogenetic analysis identified 418 “homoplasy”

sites, where the same DNA methylation changes (methylation

or demethylation) occurred independently in multiple line-

ages. Such sites could hinder the correct phylogenetic infer-

ence. On the other hand, 2,392 sites were identified as

“nonhomoplasy” sites, which could be suitable for phyloge-

netic inference. To characterize these DNA methylation sites,

their target genes were examined and a gene enrichment

analysis was performed on each group (homoplasy and

nonhomoplasy sites). The results showed a clear difference

between the two sets. Table 1 shows the enriched GO

terms specific to nonhomoplasy sites. For example, transcrip-

tion, immune response-regulating signal transduction, and

hematopoiesis were specific to nonhomoplasy sites,
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FIG. 1.—Differentiation model of hematopoiesis based on 13 cell

types: HSC, MPP1, MPP2, CMP, MEP, GMP, CLP, Eryth, Granu, Mono,

B cells, helper T cells (CD4), and cytotoxic T cells (CD8). For discussion of

the thick branch and dotted line, see text.

Koyanagi GBE

700 Genome Biol. Evol. 7(3):699–705. doi:10.1093/gbe/evv024 Advance Access publication January 31, 2015

F
n
)
-
-
)
`STABLE', 'UP', `DOWN'
`
'
,
F
`
'
`
'
 to 
F
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv024/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv024/-/DC1
 &mdash; 
 &mdash; 
 &mdash; 
F
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv024/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv024/-/DC1
F
F
`
'
`non-homoplasy'
non-homoplasy
`non-homoplasy'
`non-homoplasy'


corresponding to the importance of their function in this dif-

ferentiation process. On the other hand, homoplasy sites

showed no specific function.

To determine whether the DNA methylation states in pro-

genitor cells can be inferred from those of differentiated cells,

the ancestral DNA methylation state for each internal node

was estimated based on the adult differentiated cells. These

results were compared with the progenitor cells (CLP, GMP,

and CMP) for the tree representing known differentiation pro-

cesses (fig. 1). The percent identities between internal nodes

and progenitor cells were calculated among 3,182 sites

(table 2), in which at least one differentiated cell had a differ-

ent methylation state. Because the exact positions of progen-

itor cells in the tree (fig. 1) were unknown (e.g., CLP could be

positioned somewhere in the branch from node e to b repre-

sented by a thick line in fig. 1), columns of the start and end

positions (two internal nodes) for each progenitor cell are

shaded in table 2. Underlined and italicized numbers represent

the most similar progenitor cell for each internal node and

the most similar internal node for each progenitor cell, respec-

tively. The results demonstrated that 77.0–88.8%, 78.4–

87.3% and 80.8–89.8% of the DNA methylation sites were

correctly inferred for CLP, GMP and CMP, respectively.

Discussion

The results of this study supported the validity of a phyloge-

netic approach using DNA methylation information for infer-

ring processes of cell differentiation in hematopoiesis. First,

DNA methylation levels of most of the nonstable sites (91%

on average) were gradually increasing or decreasing during

cell differentiation. This result suggests that most DNA meth-

ylation changes are not highly variable (fig. 2). Variable

changes (e.g., a zigzag pattern) were only found for limited

sites in the monocyte and T-cell lineages (see supplementary

material S1, Supplementary Material online). Thus, DNA

methylation changes were compatible with phylogenetic anal-

ysis. Second, the phylogenetic trees inferred from DNA meth-

ylation information were similar to known cell differentiation

processes of hematopoietic cells (fig. 3), although some incon-

sistencies were observed (discussed below). Thus, phyloge-

netic analysis using DNA methylation data was able to

reconstruct the hierarchical differentiation process of hemato-

poietic cells. Third, target genes of “nonhomoplasious” sites

were involved in immune response-regulating signal transduc-

tion and hematopoiesis (table 1). This result is consistent with

their lineage-specific roles in the differentiation of hematopoi-

etic cells (Novershtern et al. 2011). In addition, enrichment of

target genes involved in transcriptional regulation reflects the

regulated expression by DNA methylation during differentia-

tion. Thus, the epigenetic changes in these genes could con-

tain appropriate phylogenetic information and reflect cell

differentiation processes. Finally, the ancestral state estimation

was able to infer the DNA methylation states of differentiating

progenitor cells from adult differentiated cells with 77.0–

89.8% accuracy (table 2). Thus, a phylogenetic approach

could infer DNA methylation processes. Cluster analysis per-

formed with omics data often produces similar trees but

cannot infer the states of progenitor cells. These results

show phylogenetic analysis based on DNA methylation infor-

mation of differentiated cells can be used to infer cellular dif-

ferentiation processes, at least for hematopoiesis. While this

manuscript was under submission, Capra and Kostka (2014)

reported that a phylogenetic approach can be used to infer

missing (masked) methylation states using both adult differ-

entiated cells and progenitor cells also based on the data from

Bock et al. (2012), which also shows the feasibility of phylo-

genetic analysis by DNA methylation.

The limitations of this study can be summarized in four

points. First, the analyzed data were averaged DNA methyla-

tion levels for cell populations. As a result, heterogeneity in the

source populations could affect the phylogenetic results. For

example, lymphoid cells have the potential to differentiate into

myeloid cells (dotted line in fig. 1 and Katsura and Kawamoto

2001), which might account for the inconsistent topology of

the myeloid lineage (fig. 3). In addition, different granulocytic

subtypes are derived from different progenitor cells:

Neutrophils from CLP and basophils/eosinophils from CMP

(Gorgens et al. 2013), which might also account for the para-

phyly of the myeloid lineage (fig. 3). However, new single-cell

technologies are emerging (Shapiro et al. 2013; Tsioris et al.

2014) and methods for obtaining genome-wide DNA meth-

ylation information from a single cell have been reported (Guo

et al. 2013; Smallwood et al. 2014), which can overcome this

problem. In addition, DNA methylation data from single cells

are binary so that binarization of continuous values, which

means loss of information, is not necessary, although contin-

uous characters can be used for phylogenetic analysis

(Webster and Purvis 2002). Second, phylogenetic inference

could be incorrect for some cases. For example, global de-

methylation occurs in the erythrocyte lineage (fig. 2 and

Shearstone et al. 2011). Such a lineage represents a long

branch on a phylogenetic tree, which could lead to incorrect

topology, known as the long branch attraction problem in MP

(Felsenstein 1978). Third, the model of hematopoiesis itself

has been under debate due to recent advancements in lineage

tracing technologies—several models other than the classical

model (fig. 1) exist as of this writing (Kawamoto et al. 2010;

Ema et al. 2014). One of these models shows early branching

of the erythrocyte lineage, which is consistent with the tree

inferred in this study (fig. 3). Thus, further experimental studies

are awaited. Finally, the results here are for hematopoiesis;

the extent to which these conclusions can be generalized is

unknown. These limitations could be the subject of future

work.

The differentiation process estimated here could be differ-

ent from the cell lineage tree, which is the history of cell divi-

sion. The complete cell lineage was first revealed in
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FIG. 2.—DNA methylation sites classified by their changes during cell differentiation. The categories are STABLE (the DNA methylation level was stable),

UP (increasing), DOWN (decreasing), and OTHER (not classified into the aforementioned three categories).

CD8CD4

B cell

Mono
Granu

MEP

200

100

100

100

100

CD8
CD4

B cell

MonoGranu

MEP

100

100

100

100

0.05

FIG. 3.—MP (left) and ML (right) trees inferred from DNA methylation information. A total of 83,505 sites were used. Numbers represent bootstrap

probabilities. HSC, MPP1, and MPP2 were used as an outgroup.
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Caenorhabditis elegans by direct observation (Sulston et al.

1983) and has been analyzed for other organisms by various

cell lineage tracing methods (Stern and Fraser 2001; Blanpain

and Simons 2013). Cell lineage trees can also be analyzed by

phylogenetic analysis of somatic mutations such as microsat-

ellites (Frumkin et al. 2005), polyguanine repeats (Salipante

and Horwitz 2006), and substitutions (Behjati et al. 2014);

however, the number of mutations per genome is rather

small compared with the number of epigenomic changes.

Cell lineage trees represent the history of cell divisions,

whereas a differentiation process estimated by epigenomes

would not reflect cell divisions. The same epigenetic status

can be maintained after cell division, whereas it can change

during development without cell division. Thus, the differen-

tiation process estimated in this study could be considered as

an average landscape of epigenetic changes through hema-

topoiesis rather than a history of cell divisions. Combining the

phylogeny of epigenomes and the cell lineage tree, together

with transcriptome and proteome data from single cells will

deepen our understanding of organismal development.

Materials and Methods

Genome-wide DNA methylation data for murine hematopoi-

etic cells were obtained from supplementary table S2 of Bock

et al. (2012). These data include high-confidence DNA meth-

ylation measurements determined by reduced representation

bisulfite sequencing (RRBS), which is an enrichment strategy

for capturing the majority of CpG islands and promoters in the

genome (Gu et al. 2011). DNA methylation levels (0.0–1.0) are

described for each 1-kb genomic region (called DNA methyl-

ation sites in this study) with sufficient RRBS coverage.

Uncertain DNA methylation sites lacking concordance be-

tween two biological replicates were excluded from the anal-

ysis. In total, 83,505 DNA methylation sites were available for

HSC, six differentiating progenitor cells (MPP1, MPP2, CMP,

Table 1

Enriched GO Annotation for Nonhomoplasious Sites

Enriched GO Annotationa P Value Benjaminib

Transcription GO:0006350 2.68E-07 5.52E-05

Immune response-regulating

signal transduction

GO:0002757, GO:0002764, GO:0002429, GO:0050851, GO:0002768 2.98E-07 5.76E-05

Negative regulation of

transcription

GO:0016481, GO:0000122, GO:0045934, GO:0045892, GO:0051172,

GO:0051253, GO:0010629, GO:0009890, GO:0010558, GO:0031327,

GO:0010605

9.33E-07 1.70E-04

Positive regulation of

transcription

GO:0045944, GO:0031328 1.37E-06 2.12E-04

Hematopoiesis GO:0002520, GO:0048534 7.67E-06 8.79E-04

Intracellular signaling cascade GO:0007242 1.16E-05 1.24E-03

Embryonic development GO:0048568, GO:0043009, GO:0009792 4.16E-05 3.57E-03

Blood vessel morphogenesis GO:0048514 4.94E-05 4.12E-03

Tube development GO:0035295, GO:0035239 6.25E-05 5.08E-03

Cell migration GO:0016477 8.60E-05 6.63E-03

aThe representative biological terms associated with the clusters were manually summarized. P value and Benjamini of the top GO terms are shown.
bMultiple-testing corrected P value.

Table 2

Percent Identities of DNA Methylation Sites between Internal Nodes and Progenitor Cells (%)

Progenitor Cells

Internal Nodes MP-ACCTRAN MP-DELTRAN ML

CLP GMP CMP CLP GMP CMP CLP GMP CMP

(a) CD4, CD8 68.4 58.4 63.9 69.1 59.9 65.4 64.2 55.6 60.3

(b) B cell, CD4, CD8 83.5 73.6 79.6 84.2 74.6 80.6 77.0 65.7 71.6

(c) Granu, Mono 86.0 87.3 88.7 87.3 87.1 89.1 70.9 81.8 73.2

(d) MEP, Granu, Mono 86.7 85.6 89.3 86.4 84.8 89.8 75.9 78.4 80.8

(e) MEP, Granu, Mono,

B cell, CD4, CD8

88.8 84.0 89.2 86.4 83.7 88.8 84.6 85.4 86.8

NOTE.—Shaded columns represent the start and end points of differentiation for each progenitor cell (see fig. 1). Columns with highest identity in each line and row are
shown in underline and italic, respectively. Alphabets in parentheses correspond to those in figure 1.
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MEP, GMP, and CLP), three differentiated myeloid cells (Eryth,

Granu, and Mono), and three differentiated lymphoid cells

(CD4, CD8, and B cells).

To characterize how DNA methylation changes throughout

cell differentiation, I first performed k-means clustering

(k = 100) for 83,505 DNA methylation sites in each cell lineage

(fig. 1). For example, the erythrocyte lineage differentiates

from HSC>MPP1>MPP2>CMP>MEP to erythrocyte.

The DNA methylation levels (0.0–1.0) for these six cell types

represent the putative time-course methylation changes

through differentiation. These six values were treated as a

vector for each DNA methylation site. On the basis of these

vectors, 83,505 sites were clustered into 100 clusters using the

kmeans() function in R (3.0.2) with Lloyd’s algorithm.

Each cluster was then classified as STABLE, UP, DOWN, or

OTHER based on the pattern of methylation changes during

cell differentiation. A third-order polynomial was fitted to the

pattern for each cluster using lm() in R. If the estimated poly-

nomial function was flat, where the difference between the

maximum and the minimum values of the function was within

0.2 and all gradients for each time point (cell) had values be-

tween �0.1 and 0.1, the cluster was classified as STABLE. If

the estimated polynomial function was increasing, where all

gradients had positive values (greater than �0.1 after ac-

counting for fluctuation), the cluster was classified as UP.

If the polynomial function was decreasing, where all gradients

had negative values (less than 0.1 after accounting for fluctu-

ation), the cluster was classified as DOWN. The remaining

clusters were classified as OTHER. According to this proce-

dure, all the DNA methylation sites belonging to any clusters

were classified into STABLE, UP, DOWN, and OTHER.

For phylogenetic analyses, the DNA methylation level (0.0–

1.0) was transformed into binary data as 0 for 0.0–0.4

(unmethylated) and 1 for 0.4–1.0 (methylated). The rationale

for the cut-off value of 0.4 was based on Bock et al. (2012)

who reported “genomic regions with intermediate DNA

methylation levels in the range of 40% to 60% turned out

to be even more powerful predictors.” Adult differentiated

cells (Granu, Mono, B cells, CD4, and CD8) and MEP (see

Results section) were used for the phylogenetic analyses

with progenitor cells (HSC, MPP1, and MPP2) as an outgroup.

MP Method: On the basis of the binary DNA methylation

data, the MP tree was inferred using PAUP 4.0 (Swofford

2003). The character type was treated as undirected (cost of

methylation was equal to that of demethylation) and an ex-

haustive search was performed. Branch support was esti-

mated by 1,000 bootstrap replicates. To examine whether

the DNA methylation states of progenitor cells can be inferred

from adult differentiated cells, the ancestral state for each

node was inferred with accelerated transformation

(ACCTRAN) and delayed transformation (DELTRAN) algo-

rithms based on the fixed tree topology shown in figure 1.

A methylation site whose CI was estimated as 1.0 was defined

as a site of nonhomoplasy, and a methylation site whose CI

was estimated as less than 1.0 and showed same DNA meth-

ylation changes (methylation or demethylation) in multiple lin-

eages was defined as a site of homoplasy in this study.

ML Method: On the basis of the binary DNA methylation

data, the ML tree was inferred using RAxML v8.1.2

(Stamatakis 2014) with the GTR + GAMMA + I model.

Branch support was estimated by rapid bootstrap analysis

with 1,000 replicates (-f a option). Ancestral states for internal

nodes were estimated (-f A option) based on the fixed tree

topology shown in fig. 1.

To characterize each DNA methylation site, target genes for

each site were obtained from supplementary table S2 of the

article by Bock et al. (2012) and then gene enrichment analysis

was performed. To compare the characteristics of DNA meth-

ylation sites identified as nonhomoplasy sites and those iden-

tified as homoplasy sites, enriched Gene Ontology (GO)

annotation terms of biological processes were explored by

using the Functional Annotation Chart tool of the Database

for Annotation Visualization and Integrated Discovery (DAVID)

v6.7 (Huang da et al. 2009). GO terms with a Benjamini-

corrected P value, which is a multiple-testing correction of

the EASE score (a modified Fisher’s exact test), less than

0.01 were considered significantly enriched. Enriched GO

terms were compared between the two sets (nonhomoplasy

vs. homoplasy sites), so that enriched GO terms specific to

each set were identified. To summarize the results, GO

terms were clustered by using the Functional Annotation

Clustering tool (default settings).

Supplementary Material

Supplementary materials S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjournals.

org/).
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