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A B S T R A C T   

Large-scale multidimensional cancer genomic and pharmacological profiles have been created by several large 
consortium projects, including NCI-60, GDSC and DepMap, providing novel opportunities for data mining and 
further understanding of intrinsic therapeutic response mechanisms. However, it is increasingly challenging for 
experimental biologists, especially those without a bioinformatic background, to integrate, explore, and analyse 
these tremendous pharmacogenomics. To address this gap, IMOPAC, an interactive and easy-to-use web-based 
tool, was introduced to provide rapid visualizations and customizable functionalities on the basis of these three 
publicly available databases, which may reduce pharmacogenomic profiles from cell lines into readily under-
standable genetic, epigenetic, transcriptionomic, proteomic, metabolomic, and pharmacological events. The 
user-friendly query interface together with customized data storage enables users to interactively investigate and 
visualize multiomics alterations across genes and pathways and to link these alterations with drug responses 
across cell lines from diverse cancer types. The analyses in our portal include pancancer expression, drug-omics/ 
pathway correlation, cancer subtypes, omics-omics (cis-/trans-regulation) correlation, fusion query analysis, and 
drug response prediction analysis. The comprehensive multiomics and pharmacogenomic analyses with simple 
clicking through IMOPAC will significantly benefit cancer precision medicine, contribute to the discoveries of 
potential biological mechanisms and facilitate pharmacogenomics mining in the identification of clinically 
actionable biomarkers for both basic researchers and clinical practitioners. IMOPAC is freely available at 
http://www.hbpding.com/IMOPAC.   

1. Introduction 

The complexity and heterogeneity of tumour genomes bring an 
enormous challenge when developing novel molecular therapeutics [1]. 
These strategies greatly depend on our understanding of the genetic 
events that are causally implicated in malignancy [2]. Observations 
from clinical practice indicate that molecular alterations in the onco-
genome strongly impact the effectiveness of anticancer therapies, and 
dozens of targeted drugs currently utilized in the clinic or developed in 
clinical trials have not been linked to specific molecular events [3]. To 
bridge the gap between precision medicine and cancer heterogeneity, it 
is crucial to systematically shape a comprehensive pharmacogenomic 

landscape of patient-derived cancer models at scale. Recent years have 
witnessed rapidly accumulated large-scale drug sensitivity screens and 
corresponding multiomics across pancancer to characterize pharmaco-
genomics, capture the genetic diversity of cancer and identify drug 
response biomarkers in multiple public databases, including GDSC [4, 
5], DepMap [6,7], and NCI60 [8]; together, they present detailed ge-
netic and pharmacological annotations on more than 2000 cancer cell 
models. Collectively, such data can be used for biological hypothesis 
testing, facilitating pharmacogenomics mining in the discovery or 
repurposing of new anticancer therapeutics and the identification of 
clinically actionable biomarkers. However, it is still significantly chal-
lenging for experimental biologists, especially those without 
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bioinformatic experience, to integrate, explore, analyse, and visualize 
these large-scale pharmacogenomic profiles. Therefore, we developed 
the IMOPAC, an interactive and easy-to-use webserver for comprehen-
sively characterizing the landscape of pharmacogenomic interactions 
and easily visualizing the pharmacogenomic profiles in preclinical 
cancer models. 

There are numerous and diverse methods for analysing pharmaco-
genomics. Clustering analysis, based on multiomics, can identify which 
cell line models most closely resemble specific cancer subtypes and 
provide a better understanding of biological mechanisms by directly 
linking in vitro models to patient tumour samples with curated clinical 
data available. Liu et al., for instance, divided SNU398, HepG2 and 
SNU475 cells into three distinct DNA methylation HCC subtypes by 
unsupervised clustering analysis, which can act as a preclinical model 
representing different HCC molecular features to investigate the 
response of HCC cells to DNMTi treatment [9]. Pancancer expression 
analysis is also widely used to facilitate a comprehensive understanding 
of a given gene’s molecular pattern across multiple different cancer 
types. Chai et al. revealed that ACE2 was overexpressed in lung 
adenocarcinoma by pancancer expression analysis [10]. It is generally 
recognized that multiomics alterations, including somatic mutation, 
copy number variation, DNA methylation, transcriptomics, and prote-
omics, remarkably impact the clinical drug response to treatment and, in 
numerous situations, are potential biomarkers for sensitivity to 
chemotherapy [11,12]. Correlation analysis between drug sensitivity 
and multiomics alterations or pathway activity is applied to facilitate 
pharmacogenomics mining in the discovery of the underlying biological 
mechanism of drug resistance. By combining large-scale genomic de-
pendency and pharmaceutical screening datasets within preclinical cell 
line models, Zhou et al. revealed that the combination of ERBB in-
hibitors could augment the efficacy of CDK4/6 inhibitor monotherapy in 
several squamous cell lines both in vitro and in vivo [12]. Cis-regulation 
analysis is used to investigate the correlation among the multiomics 
levels of a specific gene at the same time. In recent studies, several DNA 
methylation-driven genes were identified based on the correlation of 
gene expression and promoter DNA methylation [13]. Transregulation 
analysis is applied to estimate the association among various genes from 
the same or different omics. Because genes with similar expression 
features have a tendency to possess related functions, it is frequently 
desirable to detect genes with expression similarities to a known gene, 
acting as a known tumour chemotherapy target [14]. Gene fusions 
frequently result from rearrangements in cancer genomes. In various 
instances, gene fusions play an important role in oncogenesis [15]. A 
better understanding of the gene fusion detected in cell lines may 
improve diagnosis and further benefit translational research into tar-
geted therapies necessary to treat these malignancies [16]. In addition, 
prediction of clinical drug response for cancer drugs is critical for 
personalized treatment [17]. 

Currently, CellMinerCDB [18], PharmacoDB 2.0 [19] and RNAact-
Drug [20] have provided many useful visualization and analysis tools for 
pharmacogenomic analysis in patient-derived cancer cell lines. CellMi-
nerCDB aims to integrate genomic alterations, molecular signatures and 
specific drug responses of cancer cell lines. PharmacoDB 2.0 has focused 
on integrating across a wider range of pharmacogenomics studies and 
includes major pancancer screening initiatives as well as smaller, 
tissue-specific studies. RNAactDrug is a comprehensive database of 
RNAs, including lncRNAs, miRNAs and mRNAs, associated with drug 
sensitivity from multiomics data, which allows the user to explore drug 
sensitivity and RNA molecule associations directly. While these data-
bases are exceptionally valuable and widely used, many additional 
functions are often requested by experimental biologists but are not 
adequately addressed by existing tools. For example, correlation ana-
lyses between customized pathway activity (by user or originating from 
MSigDB [21]) and drug responses are commonly performed, but this 
function is not available in CellMinerCDB. In addition, while Pharma-
coDB 2.0 provides tissue-specific pharmacogenomic analysis, it does not 

integrate any gene essentiality data and does not allow to explore any 
molecular features associated with drug response. Furthermore, corre-
lation analyses between drug response and other omics, including pro-
teomics, metabolomics, and genetic dependency data, the visualization 
of tissue-specific gene–drug associations, and multivariate analysis of 
drug response with respect to multiple-omic features simultaneously are 
not available in RNAactDrug. None of the existing databases allow 
specific analyses based on cis-regulation (the correlation among the 
multiomics level of a specific gene) and trans-regulation (the association 
among various user-input genes from the same or different omics). The 
effect of DNA methylation in promoter versus gene body CGIs on its 
corresponding gene expression remains contradictory [22]. The phar-
macogenomic analyses based on gene body or promoter DNA methyl-
ation are not available in previous databases. Moreover, none of the 
databases provide a fusion query, molecular classification across pan-
cancer or within specific cancer types, or pancancer expression analysis 
in patient-derived cancer cell lines. Based on the abovementioned needs 
that are not adequately addressed, we developed IMOPAC, a web server 
to deliver fast and customizable functionalities to complement with the 
existing tools. 

2. Materials and methods 

2.1. Web interface implementation 

The IMOPAC website is free for all users, and no login is required to 
access all functions. We run the IMOPAC webserver on Apache (v2.4.38, 
https://apache.org/) with the PHP module as the httpd service on 
Debian 10. Figures shown on the website are in the svg format generated 
by SVG.js (v2.7, https://svgjs.dev/docs/2.7/). Backend analyses and 
figure drawing were performed in R (v4.1.2, https://www.r-project.org/ 
). The IMOPAC web server is compatible with browsers (on Windows, 
MacOS or Linux) that support HTML5 and CSS3. All pages were written 
in HTML5, CSS3, and original JavaScript (Fig. 1A). All IMOPAC source 
codes (back-end, front-end and data processing) can be downloaded 
from the GitHub repository: https://github.com/wolfgangsk07/ 
IMOPAC. 

2.2. Data collection and preprocessing 

IMOPAC is based on multiomics and drug response screens origi-
nating from three publicly available databases (6 omics, 992 cell lines 
from 28 cancer types and 173 drugs are available in GDSC; 12 omics, 
1773 cell lines from 34 cancer types and 22 drugs are available in 
DepMap database; 8 omics, 60 cell lines from 9 cancer types and 695 
drugs are available in NCI60) (Table 1). A flowchart of the IMOPAC 
pipeline is shown in Fig. 1B. The input gene-related CpG sites were 
annotated by the IlluminaHumanMethylation450kanno.ilmn12.hg19 R 
package [13]. The DNA methylation profiles of the gene promoter and 
body were generated by calculating the average DNA methylation value 
of CpG sites in the promoter and body region of the specific gene, 
respectively. Detailed clinical and biological features of all cell models, 
including age, sex, ploidy, microsatellite status, mutational burden, 
culture type, and culture medium, were retrieved from Cell Model 
Passports [23] and DepMap [6]. Whole genes and drugs in this database 
were annotated by the HGNC [24] and pubchem [25] databases, 
respectively. We excluded drugs whose sensitivity values were ‘NA’ in 
greater than 15 % of the cell lines. The gene fusion profile was estimated 
based on RNA-seq data from DepMap Public 22Q1. Data were filtered 
using the following: 1. removing fusion involving mitochondrial chro-
mosomes or HLA genes; 2. removing common false-positive fusions (red 
herring annotations as described in the STAR-Fusion docs); 3. recurrent 
fusions observed in DepMap across cell lines (in 10 % or more of the 
samples); 4. removing fusions where SpliceType 
= 'INCL_NON_REF_SPLICE' and LargeAnchorSupport = 'NO_LDAS' and 
FFPM < 0.1. 
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Fig. 1. Overview of IMOPAC. A. IMOPAC software architecture; B. IMOPAC integrates cancer cell line information from multiple sources and provides ready-made, 
user-friendly analysis tools as well as data download features for further analyses. 
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2.3. Visualization and statistical analysis 

Every figure provides not only a visualization of the results of 
pharmacogenomic analyses but also several statistical analyses. The 
numbers on the right side of the correlation plot present the P/FDR 
values and Pearson/Spearman correlation coefficients estimated by 
comparing the differences between the reference (located in the bottom 
line) and all other variables for users. When multiple hypothesis testing 
is selected for statistical analysis, Benjamini–Hochberg adjusted p-values 
will be provided by our web server. 

2.3.1. Pancancer expression analysis 
A histogram is used to assess the alteration frequency for omics with 

discrete settings (e.g., CNV or somatic mutation), and a boxplot is used 
to investigate the expression abundance for those with continuous set-
tings (e.g., mRNA and so on) of a specific input gene across multiple 
cancer types in the “Cancer Types Summary” module of IMOPAC. 

2.3.2. Drug-omics correlation analysis 
To investigate the association between multiomics molecules and 

drug responses hidden in large-scale pharmacogenomics, two different 
statistical analyses were performed to identify this correlation across 
user-defined cell lines according to data types. 

First, for omics with discrete settings (e.g., somatic mutation), we 
first divided cell models into two subgroups according to the mutation 
status of a given gene and performed a user-defined statistical analysis, 
including Wilcoxon's sign rank test and Student's t-test, on the drug 
response data of these two subgroups. A significant difference in phar-
macological profiles between these two subgroups suggested that the 
mutation status of this specific gene has an impact on drug sensitivity 
[26]. 

Second, for omics with continuous settings (e.g., mRNA and so on), a 
user-defined correlation analysis, including Pearson and Spearman 
methods, was performed to evaluate the correlation between drug 
response and molecular expression values of multiomics molecules. 

The user-defined parameters, including the type of omics, input 
gene, drugs, cell lines, threshold values of correlation coefficient, sta-
tistical method of correlation analysis, P-values and adjusted P-values 
were used to obtain significant results. All correlations between mo-
lecular alterations of the user-defined gene and the response of user- 
defined drugs were visualized in the “Drug-Omics” module of IMOPAC. 

2.3.3. Drug-pathway correlation analysis 
A user-defined correlation analysis was performed to evaluate the 

correlation between drug response and the activity of the specific 
pathway, which was calculated by gene set variation analysis [27] based 
on a transcriptomic geneset originating from user customization or 
MSigDB [21]. 

The user-defined parameters, including transcriptomic geneset, 
drugs, cell lines, threshold values of correlation coefficient, statistical 
method of correlation analysis, P-values and adjusted P-values were 
used to obtain the specific result. All correlations between the activity of 
a specific pathway and the response of user-defined drugs were visual-
ized in the “Drug-Pathway” module of IMOPAC. 

2.3.4. Cancer subtype analysis 
Cancer subtype analysis could provide an unsupervised clustering 

analysis for identifying cancer subtypes based on a geneset from user- 
defined multiomics. IMOPAC provides three feature selection methods 
for unsupervised clustering analysis, with distinct metric and linkage 
parameters available, to identify the key features in a multiomics 
dataset. The “Cancer Subtype” module presents a heatmap based on the 
results of cancer subtype analysis, in which the samples are separated 
into 2–4 subgroups according to the user's choice. 

2.3.5. Cis-regulation analysis 
Cis-regulation analysis was performed to investigate the correlation 

among the multiomics levels of a specific user-input gene. The mRNA 
expression of this input gene is generally chosen as a reference. 

If the other variable is also numeric (for example, the expression 
level of microRNA), IMOPAC will estimate the correlation between the 
reference and the microRNA data through the Pearson or Spearman 
method according to the user demands. If the other variable is cate-
gorical, IMOPAC will perform a Wilcoxon's sign rank test or Student's t- 
test to check whether there is a significant difference in expression be-
tween these two groups. The user-defined parameters, including input 
genes, cell lines, threshold values of correlation coefficients, statistical 
methods of correlation analysis, P-values and adjusted P-values were 
used to obtain the results, which were visualized in the “Omics-Omics 
(cis-regulation)” module of IMOPAC. 

2.3.6. Trans-regulation analysis 
Trans-regulation analysis is used to estimate the association among 

various user-input genes from the same or different omics. 
When a numeric variable is chosen as a reference, IMOPAC will go 

over all other variables in the figure and perform an appropriate test. If 
the other variable is also numeric (for example, the expression level of 
microRNA), IMOPAC will estimate the correlation between the refer-
ence and the microRNA data. If the other variable is categorical, IMO-
PAC will perform a Wilcoxon's sign rank test or Student's t-test to check 
whether there is a significant difference in expression between these two 
groups. In contrast, the chi-square test will be utilized when the refer-
ence and the other data are all categorical, and the Wilcoxon's sign rank 
or Student's t-test will be adopted when the reference is categorical and 
the other variables are numeric. The user-defined parameters, including 
input genes, type of omics, cell lines, threshold values of correlation 
coefficient, statistical method of correlation analysis, P-values and 
adjusted P-values, were used to obtain the results, which were visualized 
in the “Omics-Omics (transregulation)” module of IMOPAC. 

2.3.7. Performing fusion queries 
A Circos plot was used to visualize the comprehensive gene fusion 

landscape of the user-defined cell line in the “Fusions” module of 
IMOPAC by the R package circlize[28]. 

2.4. Predicting drug response by machine learning algorithms 

Ten algorithms with 5-fold stratified cross-validation were provided 
in our portal based on the GDSC dataset, including random forest per-
formed by randomForest R package, neural networks performed by nnet 
R package, adaboost performed by adabag R package, gradient boosting 
machine performed by caret R package, support vector machines per-
formed by e1071 R package, decision tree performed by rpart R package, 
k-nearest neighbor performed by kknn R package, ridge regression 

Table 1 
The available omics in three public datasets.  

The available omics in three public datasets  

GDSC DepMap NCI60 

Mutation Yes Yes Yes 
CNV Yes Yes Yes 
mRNA Yes Yes Yes 
DNA methylation (Body) Yes No Yes 
DNA methylation (Promoter) Yes Yes Yes 
DNA methylation (CpG site) Yes No Yes 
Fusion No Yes No 
microRNA No Yes Yes 
Protein No Yes Yes 
Metabolomics No Yes No 
Global Chromatin No Yes No 
Metastatic Potential No Yes No 
RNAi dependency No Yes No 
CRISPR dependency No Yes No  
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performed by glmnet R package, lasso regression performed by glmnet R 
package, logistic regression performed by glm R base function, which 
were used to construct model and predict the response of user-defined 
drug with default hyperparameters in the “Machine Learning in Pre-
dicting Drug Response” module of IMOPAC. The KNN method from 
impute R package was used to impute the deletion value of the multio-
mics profiles. The predictive model used normalized multiomics signa-
ture by the scale method as the input and the sensitive or resistant label 
of cell lines as dependent variable. All R packages were downloaded 
from https://cran.r-project.org/web/packages/. For a specific model, 
the average AUC（Area Under Curve）of selected drug was calculated 
to investigate the predictive performance of user-defined multiomics 
signature. In addition, the available coefficients of the specific model 
will be presented in the pop-up windows. 

2.5. More features of the web server  

1. Automatic prompt and completion function are applied when 
inputting genes;  

2. More detailed information on the drug, cell line, and CpG site can be 
viewed in the pop-up windows when moving mouse over any cell 
line, drug and CpG site's text or any bar in the histograms and 
boxplots;  

3. Web links, located in the pop-up windows, are generated to obtain 
more detailed annotations of cell lines and drugs from external da-
tabases and resources;  

4. All figures are presented in print size, which is marked on the top and 
left of the plot area;  

5. When the figure is large and complex, the user can reduce the size of 
the figure by zooming on a specific part. To do this, the user has to 
click "+ " at the top of the plot area. The user can also zoom out again 
by clicking the "-" button and reset the size by clicking the double 
circle button. Zooming does not affect the downloading of the figure;  

6. The outputs from all analyses, including tables (csv) and high- 
resolution figures (pdf, tiff, svg, and eps), can be easily down-
loaded from IMOPAC. 

3. Results 

3.1. Home 

IMOPAC provides a graphical interface that briefly introduces in-
formation for all three datasets used in this project and is a web server 
that aims to provide interactive multiomics and pharmacological ana-
lyses between multiomics molecules, cells and drugs in human cancers. 
As shown in Fig. 1B, seven modules based on three datasets were pro-
vided: (i) pancancer expression analysis, (ii) drug-omics correlation 

Fig. 2. Examples of pancancer expression analysis in the “Cancer Types Summary” module. By clicking the "START" button, this module will present a 
histogram (A) for input omics with discrete settings (the CNV status of CTNNB1), which shows the frequency of the variable in descending order across cancers, as 
well as a boxplot (B) for input omics with continuous features (the mRNA level of TP53), which shows the expression abundance in ascending order across cancers. 
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analysis, (iii) drug-pathway correlation analysis, (iv) cancer subtype 
analysis, (v) omics-omics (cis-regulation) correlation analysis, (vi) 
omics-omics (transregulation) correlation analysis, and (vii) fusion 
analysis. 

3.2. Pancancer expression analysis 

Pancancer expression analysis is generally performed to investigate 
the molecular pattern of a specific gene across multiple different cancer 
types. Accordingly, the “Cancer Types Summary” module will present a 
histogram for input omics with discrete settings, which shows the mu-
tation frequency of the input gene in descending order across cancers, or 
a boxplot for input omics with continuous features, which shows the 
expression abundance in ascending order across cancers. The example 
shows that CTNNB1 CNV alteration frequencies are the highest in head 
and neck carcinoma, kidney carcinoma, and oral cavity carcinoma 
(Fig. 2A), and the mRNA level of TP53 is the highest in lymphoma, 
mesothelioma, and lymphoblastic leukaemia in the GDSC database 
(Fig. 2B). 

3.3. Drug-omics correlation analysis 

Correlation analysis between drug sensitivity and multiomics alter-
ations or pathway activity is applied to facilitate pharmacogenomics 
mining in the discovery of the underlying biological mechanism of drug 
resistance or repurposing of new anticancer therapeutics and the iden-
tification of clinically actionable biomarkers. Therefore, in the “Drug- 
Omics” module, IMOPAC allows users to investigate the correlation 
between the omics level of user-input genes and the response of all 
selected drugs across user-defined cell lines. This module will present a 
correlation plot based on the user's custom parameters, in which the 
samples are ordered ascendingly by the omics level of the input and the 
statistical results are shown on the right-hand side. For example, users 
can examine the correlation coefficients between the mRNA level of 
TP53 and 17 drugs targeting the PI3K/MTOR signalling pathway 
(Fig. 3A) and the association between the mutation status of TP53 and 
15 drugs targeting the DNA replication signalling pathway across all 

selected cell lines based on the GDSC dataset (Fig. 3B). 

3.4. Drug-pathway correlation analysis 

The drug-pathway module is designed to explore the association 
between the activity of a specific pathway and the response of all 
selected drugs across user-defined cell lines. This module will present a 
correlation plot based on users' custom parameters, in which the samples 
are ordered ascendingly by the activity of the specific pathway, and the 
statistical results are shown on the right-hand side. For example, users 
can examine the correlation coefficients between the activity of HALL-
MARK_ANGIOGENESIS and 7 drugs targeting EGFR signalling (Figs. 4A 
and 5) and the correlation coefficients between the activity of hypoxia 
signalling calculated by the user’s customized geneset and 17 drugs 
targeting PI3K/MTOR signalling (Fig. 4B) across all selected cell lines 
based on the GDSC dataset. 

3.5. Cancer subtype analysis 

Cancer subtype analysis, based on multiomics, can identify which 
cell line models most closely resemble specific cancer subtypes and 
provide a better understanding of biological mechanisms by directly 
linking in vitro models with patient tumour samples with curated clin-
ical data. Consequently, the “Cancer subtype” module is developed to 
provide an unsupervised clustering analysis for identifying cancer sub-
types from multiomics raw data to result visualization based on a user- 
defined geneset. In the heatmap, red colour indicates a high expression 
pattern, whereas blue colour indicates a low expression pattern. Mean-
while, the clustering result of cell models will be presented in tabular 
form when there is not enough space to list the names of cell lines under 
the heatmap. For example, users can obtain three specific subgroups by 
selecting specfic metric (euclidean) and linkage (ward.D) parameter 
across all selected cell lines based on the DepMap dataset. 

3.6. Omics-Omics (cis-regulation) correlation analysis 

In the “Omics-Omics (cis-regulation)” module, cis-regulation 

Fig. 3. Examples of drug-omics correlation analysis in the “Drug-Omics” module. By clicking the "START" button, this module will present a correlation plot 
based on users' custom parameters, in which the samples are ordered ascendingly by the omics level of the input; white colour is used to present NA values, and the 
statistical results (for input omics with continuous settings (A), black colour represents that the absolute correlation coefficients are more than the user-defined cut- 
off. When the data type of input omics is discrete (B), black colour represents that P or FDR values are less than 0.05) are shown on the right-hand side. The IC50 
values of all user-defined drugs illustrated in the figure were normalized by deviation standardization. 
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analysis is performed to investigate the correlation among the multio-
mics level of a specific user-input gene at the same time. For example, 
the correlation among the mRNA, CNV, mutation status, DNA methyl-
ation of CpG sites located in TP53-related regions, TMB, ploidy, and MSI 
status across all selected cell lines based on the GDSC dataset is visual-
ized in Fig. 6. 

3.7. Omics-Omics (transregulation) correlation analysis 

In the “Omics-Omics (transregulation)” module, trans-regulation 

analysis is used to estimate the association among various user-input 
genes from the same or different omics. For example, a numeric vari-
able (the mRNA level of TP53) was chosen as a reference, and the cor-
relation is visualized in Fig. 7A. Meanwhile, the reference can also be 
categorical (the mutation status of TP53), and the association is visu-
alized in Fig. 7B. 

3.8. Fusion analysis 

Gene fusions frequently result from rearrangements in cancer 

Fig. 4. Examples of drug-pathway correlation analysis in the “Drug-Pathway” module. By clicking the "START" button, this module will present a correlation 
plot based on users' custom parameters, in which the samples are ordered ascendingly by the activity of the selected pathway. The activity of the specific pathway 
was calculated by gene set variation analysis based on a transcriptomic gene set originating from user customization (A) or MSigDB (B). White colour is used to 
present NA values, and the statistical results (black represents that the absolute correlation coefficients are more than the user-defined cut-off) are shown on the right- 
hand side. The IC50 values of all user-defined drugs illustrated in the figure were normalized by deviation standardization. 

Fig. 5. Examples of cancer subtype analysis in the “Cancer subtype” module. By clicking the "START" button, this module will present a heatmap based on the 
unsupervised clustering analysis, with distinct metric and linkage parameters available. In these results, red colour indicates a high expression pattern, whereas blue 
colour indicates a low expression pattern. 

Fig. 6. Examples of omics-omics (cis-regulation) correlation analysis in the “Omics-Omics (cis-regulation)” module. By clicking the "START" button, this 
module will present a cis-regulatory correlation plot based on the input gene, in which samples are ordered ascendingly by the mRNA level of this gene, white colour 
is used to present NA values, and the statistical results (for input omics with continuous settings, black colour represents that the absolute correlation coefficients are 
more than the user-defined cut-off; when the data type of input omics is discrete, black colour represents that P or FDR values are less than 0.05) are shown on the 
right-hand side. Except for DNA methylation profiles, the omics levels of variables with continuous settings and the values of ploidy and log2(TMB) illustrated in the 
figure are normalized by deviation standardization. 
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genomes. In various instances, gene fusions play an important role in 
oncogenesis. In this module, a circos plot was used to visualize the 
comprehensive gene fusion landscape of the user-defined cell line in the 
“Fusions” module of IMOPAC. For example, the fusion landscape of 
HUH28, one of the bile duct cancer cell lines, was visualized based on 
the DepMap dataset in Fig. 8. 

3.9. Prediction of drug response analysis 

In the “Machine Learning in Predicting Drug Response” module of 
IMOPAC, users could investigate the performance of multiomics signa-
ture, including mRNA, DNA methylation, CNV to predict the response of 
user-defined drug using ten maching learning algorithms with 5-fold 
stratified cross validation, which was visualized by AUC curve in 
GDSC dataset. For example, the ability of hypoxia signature in 

Fig. 7. Examples of Omics-Omics (transregulation) correlation analysis in the “Omics-Omics (transregulation)” module. By clicking the "START" button, this 
module will present a trans-regulatory correlation plot based on users' input omics-gene lists, in which the samples are ordered ascendingly by the omics level of 
reference, white colour is used to present NA values, and the statistical results (for reference with continuous settings (A), black colour represents that the absolute 
correlation coefficients are more than user-defined cut-off; when the data type of reference is discrete (B), black colour represents that P or FDR values are less than 
0.05) are shown on the right-hand side. Except for DNA methylation profiles, the omics levels of variables with continuous settings illustrated in the figure were 
normalized by deviation standardization. 

Fig. 8. The circos link plot is provided in the “Fusions” module based on users' custom input cell line.  
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prediction of Nilotinib is visualized in Fig. 9 using random forest 
algorithm. 

3.10. Documentation 

The tutorial and examples of IMOPAC are available and can be 
accessed by clicking the ‘HELP’ link in the top right navigation bar. The 
tutorial contains the description of each module function, the query 
procedure and the introduction of parameters in each module as well as 
the results of each analysis. Meanwhile, all data involved in IMOPAC can 
be downloaded at the ‘DOWNLOAD’ page. 

4. Discussion 

IMOPAC is an interactive web application for interactive multiomics 
and pharmacological analyses of patient-derived cancer cell lines orig-
inating from three publicly available databases, including GDSC, Dep-
Map, and NCI60, using the output of a standard processing pipeline for 
pharmacogenomics. 

It was primarily developed to comprehensively characterize the 
landscape of pharmacogenomic interactions and easily visualize the 
pharmacogenomic profiles in preclinical cancer models. Our web server 
provides biologists, without the need for complex programming tech-
nology or expertise, with the ability to perform pharmacogenomics 
mining in the discovery of the potential biological mechanism of drug 
resistance or repurpose new anticancer therapeutics and identify clini-
cally actionable biomarkers by the correlation analysis between drug 
sensitivity and multiomics alteration or pathway activity and allows 
users to easily identify which cell line models most closely resemble 
specific cancer subtypes and provide a better understanding of biolog-
ical mechanisms by directly linking in vitro models with patient tumour 
samples with curated clinical data. What’s more, by utilizing the over-
lapping drug response data of the same cell lines in both the DepMap and 
GDSC databases and conducting correlation analysis, we have found 
that the two databases maintain good consistency (Fig. S1). In addition, 
users can also perform pancancer expression analysis to assess a 
comprehensive understanding of a given gene’s molecular pattern 
across multiple different cancer types in our portal. Because genes with 

similar expression features have a tendency to possess related functions, 
it is frequently desirable to detect genes with expression similarities to a 
known gene, acting as a known tumour chemotherapy target. In doing 
so, cis- and trans-regulation correlation analysis can be performed in 
IMOPAC to identify multiomics molecules with homologous expression 
patterns. Because gene fusions play an important role in oncogenesis, 
the comprehensive gene fusion landscape of the user-defined cell line 
can also be visualized in our tool. Finnally, the drug response prediction 
module in IMOPAC on the basis of GDSC database, which provides 10 
different machine learning algorithms for predicting response to various 
drugs based on user-defined omics data and gene sets, presents its po-
tential value in guiding anti-cancer drug selection. However, it is crucial 
to note that the predictive model may be affected by other factors, and it 
is necessary to conduct further validation on an independent dataset in 
the future analysis. 

At the same time, the custom drawing parameters of IMOPAC allow 
users great freedom to customize the visual output, for example, by 
selecting the type of omics, the method of correlation analysis, cluster 
algorithm, form of display for P-values, or ascertaining the cut-off of 
regression coefficient. 

IMOPAC will be updated quarterly, with more analytical functions 
and interactive visualizations developed, as well as additional valuable 
cohort-based public datasets integrated in the future, which will collect 
multiomics and drug screens from patient-derived tumour xenografts 
and organoids. With these further developments, IMOPAC will com-
plement other available tools to assist biological and clinical researchers 
in characterizing pharmacogenomics, capturing the genetic diversity of 
cancer and identifying drug response biomarkers across pancancer. 

IMOPAC is a time-saving and intuitive web-based tool that provides 
users, especially biologists without background knowledge of computer 
programming, with a powerful tool for biomarker discovery, drug 
repurposing, and precision treatment. With continuous user feedback 
and further enhancement, IMOPAC has the potential to become an in-
tegral part of routine data analysis for experimental biologists. 
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