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Go with the Flow: Expanding the Definition of Acute Respiratory
Distress Syndrome to Include High-Flow Nasal Oxygen

High-flow nasal oxygen (HFNO) delivers heated, humidified oxygen
at very high flow rates (20–70 L/min) at concentrations up to 100%
through a specialized nasal cannula. HFNO has several physiologic
advantages compared with conventional oxygen delivery, including a
reduction in dead space, decrease in work of breathing, and provision
of low levels of end-expiratory pressure resulting in increased end-
expiratory lung volume (1, 2). In addition to physiologic benefits,
most patients find HFNOmore comfortable than noninvasive
ventilation (NIV) with a tight-fitting mask. For these reasons, over
the past two decades, uptake of HFNO in the ICU setting as an
alternative to conventional oxygen therapy and NIV has increased
across a variety of settings, including early management of patients
with acute hypoxemic respiratory failure (AHRF) due to acute lung
injury. In 2015, the FLORALI (High-Flow Oxygen through Nasal
Cannula in Acute Hypoxemic Respiratory Failure) trial provided
reassurance that HFNO is a safe substitute for conventional oxygen
delivery or NIV in patients with AHRF and showed a mortality
benefit and increase in ventilator-free days for the group treated with
HFNO (3).

The onset of the global pandemic of coronavirus disease
(COVID-19) due to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection in 2019 has increased the pace for the
adoption of HFNO. This rapid acceleration has been driven by
several unique challenges engendered by the pandemic, including 1)
massive surges in patients presenting with AHRF requiring high
levels of supplemental oxygen; 2) shortages of ICU beds, ICU staffing,
andmechanical ventilators, leading more patients to be managed
when possible with alternatives to invasive mechanical ventilation
(IMV); 3) the need to provide high levels of oxygen supplementation
with HFNO outside of an ICU setting, which is not as feasible for
NIV or IMV; and 4) the implementation of awake proning for severe
COVID-19, which is more feasible with HFNO than NIV. Despite its
widespread adoption, there is currently no firm evidence in the
population of patients with COVID-19 that HFNO confers benefits
in terms of mortality or other clinical outcomes that have been
reported in non–COVID-related AHRF, but few randomized
controlled trials have been published (4, 5). Nevertheless, the
entrenchment of HFNO in the ICU therapeutic armamentarium for
AHRF will be one legacy of this pandemic.

As HFNO has been incorporated into the routine management
of patients with AHRF, some important implications have arisen for
the diagnosis of acute respiratory distress syndrome (ARDS). The
Berlin definition of ARDS (6) stipulates that a patient must be
receiving positive pressure ventilation with a minimum of 5 cmH2O
of continuous positive airway pressure; for moderate or severe ARDS,
invasive mechanical ventilation is required. However, even before the
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pandemic, it was clear that some patients who otherwise met the
Berlin criteria for ARDS (acute onset, bilateral opacities on chest
radiograph, and hypoxemia as measured by PaO2

/FIO2
ratio) could be

managed, at least initially, with HFNO rather than IMV. This
observation suggested that the arrival of HFNO as a therapeutic
strategy could actually be hindering the timely diagnosis of ARDS
and preventing the application of ARDS therapies. This has led
several groups (7, 8) to propose that HFNO be added to the
definition of ARDS based on the following: 1) patients with severe
hypoxemia who otherwise meet the ARDS definition have the
same physiology, biomarkers, and clinical outcomes as ventilated
patients, suggesting they fulfill the conceptual model of ARDS
proposed in both the AECC and Berlin definitions (9, 10); 2) the
low levels of positive airway pressure provided by HFNO fulfill the
requirement for positive end-expiratory pressure (PEEP) specified
in the Berlin definition; 3) this change would allow ARDS to be
diagnosed more readily in underresourced areas where access to
IMV or NIV is limited, but HFNO is available (11), and; 4)
expansion of the definition would facilitate earlier identification
and treatment of patients with ARDS. Indeed, many recent clinical
trials have already allowed enrollment of patients who otherwise
meet ARDS criteria but are being treated with HFNO. Another
group has suggested a more pragmatic modification to define
ARDS in COVID-19 pneumonia based solely on the presence of
AHRF requiring HFNO, NIV, or IMV (12). However, the
potential impact of either change on the overall severity of patients
identified has been difficult to define.

In this issue of the Journal, Ranieri and colleagues (pp.
431–439) provide new data to help inform this discussion (13).
Ranieri and colleagues analyzed outcomes of patients with
COVID-19 pneumonia from four Italian studies, including three
observational and one interventional study. Patients who met all
Berlin ARDS criteria other than IMV who were receiving HFNO
(n = 184) or NIV (n = 131) for at least 12 hours at the time of
study enrollment were included. The majority of patients
progressed to require IMV (61% in the HFNO and 53% in the
NIV group), and 28-day mortality was 19% in the HFNO group
and 24% in the NIV group. In the subset of each group who never
required IMV, mortality was low regardless of modality (4.2% in
HFNO and 1.6% in NIV). The authors conclude that expanding
the definition of ARDS to include patients with PF<300
receiving HFNO would include patients with lower mortality.
These findings are important, but several caveats need to be
considered. First, the patient population was small and highly
selected. Second, all patients were cared for under surge
conditions, which may affect the generalizability of the results.
Third, many patients were cared for outside the ICU, which may
have selected for less acutely ill patients. Fourth, low mortality
was observed in both HFNO and NIV patients who did not ever
require intubation; patients who progressed to require intubation
had substantial mortality (29% for HFNO and 45% for NIV),
suggesting that earlier diagnosis of ARDS in these patients could
provide an important window for early intervention in a group at
high risk of poor outcomes.

Where does this leave the global critical care community
with regard to the definition of ARDS? A Global Consensus
Conference was convened in 2021 to consider whether a change
in the definition of ARDS is currently warranted. From a
practical standpoint, as HFNO continues to gain traction as a

therapy for AHRF, the inclusion of patients requiring HFNO
seems a sensible expansion. Given the low level of PEEP provided
by HFNO, it would also serve to preserve the intent of the Berlin
definition to identify patients with substantial hypoxemia that
does not resolve with the application of PEEP. However, the
concern that such an expansion would identify patients with less
severe disease also has merit, and multicenter, prospective studies
in both COVID and non-COVID ARDS will be needed to answer
this question. From a therapeutic standpoint, expanding the
definition of ARDS to include patients treated with HFNO would
facilitate testing and application of new therapies in patients at
high risk of poor outcomes.�
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Preemptive Noninvasive Ventilation to Facilitate Weaning from
Mechanical Ventilation in Obese Patients at High Risk of Reintubation

Weaning from mechanical ventilation and extubation are critical
procedures in mechanically ventilated patients, as weaning failure
and reintubation occur in up to 10–30% of cases and are
associated with increased mortality (1). Different tools have been
proposed to prevent and treat postextubation respiratory failure,
but there is a substantial lack of final evidence regarding the
optimal tool for the management of patients undergoing scheduled
extubation in the ICU.

Although the uncontrolled use of preemptive noninvasive
ventilation (NIV) using pressure support ventilation with positive
end-expiratory pressure (PEEP) in unselected cohorts of critically ill
patients may lead to delayed reintubation and worsen mortality (1), it
may be of benefit as a bridge to full spontaneous breathing in
hypercapnic patients and in selected cohorts of hypoxemic subjects at
high risk of weaning failure (2).

Heated and humidified high-flow nasal cannula (HFNC)
appears as the optimal tool to administer oxygen to hypoxemic
patients in the weaning phase (3, 4). HFNC allows accurate delivery
of the set FIO2

, provides a low PEEP level (,5 cmH2O), and reduces
work of breathing by favoring CO2 clearance from upper airways
(5, 6). Preemptive HFNC has been shown to reduce the need for
reintubation in a large randomized trial when compared with low-
flow oxygen after the extubation of critically ill patients at low risk of
weaning failure (7), and seemed as effective as NIV in patients at high
risk of weaning failure (8).

These data indicate that, in patients who have high risk of
extubation failure, both HFNC and NIV are promising techniques
andmay finally improve clinical outcomes (9). Further evidence
regarding the best balance between these two techniques came from a
recently published multicenter clinical trial, in which 641 critically ill
patients showing at least one risk factor for extubation failure (i.e., age
.65 yr, underlying chronic cardiac or lung disease, 50% of patients
were recovering from respiratory failure) were randomly assigned to
receive NIV alternating with HFNC or HFNC alone as preemptive
treatments after scheduled extubation in the ICU (8). NIV was
delivered for sessions of at least 4 hours, with a minimal treatment
duration of 12 hours per day in the initial 48 hours, and was applied

through a face mask and specific settings: pressure support titrated to
obtain an expiratory VT between 6 and 8ml/kg of predicted body
weight and PEEP ranging between 5 and 10 cmH2O. Study results
showed that the preemptive combined use of NIV and HFNC
resulted in a lower rate of reintubation at 7 days and in a lower
incidence of postextubation respiratory failure as compared with
HFNC alone.

In this issue of the Journal, Thille and colleagues (pp. 440–449)
report the results of a post hoc analysis of the trial, in which
intergroup differences in study outcomes were analyzed after
classifying patients according to whether they were obese (BMI> 30
kg/m2; 206 patients), overweight (25 kg/m2<BMI, 30 kg/m2; 204
patients), or normal/underweight (BMI, 25 kg/m2; 213
patients) (10). The research question addressing the potential
heterogeneity in NIV effects according to different BMI is
sound, as obesity significantly interferes with the physiology of
respiratory system; this may affect the effect of applied
interventions (11, 12).

Study results showed that, in the subgroup of patients who are
obese or overweight, the rate of reintubation rate at Day 7 was
significantly lower in patients treated with NIV alternating with
HFNC than in those who received HFNC alone (7% [15/204] vs. 20%
[41/206], with an absolute risk reduction of 13% and a number
needed-to-treat of 8). This result was accompanied by significantly
lower time in the ICU and 90-day mortality in patients treated with
NIV alternating with HFNC.

Conversely, no intergroup difference in study outcomes was
found in patients who had BMI,25 kg/m2.

These results have a robust physiological rationale. Obesity
is associated with increased absolute values of pleural pressure,
which favors the development of atelectasis; atelectasis yields
intrapulmonary shunt and consequent hypoxemia (11), which
is the most frequent cause of extubation failure. Atelectasis may
also cause reduction in lung and respiratory system compliance,
which increases the muscle workload to generate an adequate
VT. PEEP, by counterbalancing pleural pressure, maintains
positive transpulmonary pressure, prevents atelectasis due to
alveolar collapse, and favors a more homogeneous ventilation
(11). Also, airway closure and expiratory flow limitation are
magnified in patients who are obese (13, 14). Application of
PEEP may reduce work of breathing by preventing airway
closure and limiting the isometric muscle workload needed to
generate inspiratory flow. This, together with the inspiratory
assistance provided by pressure support, may reduce the
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