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ABSTRACT: Ras GTPase is an enzyme that catalyzes the
hydrolysis of guanosine triphosphate (GTP) and plays an
important role in controlling crucial cellular signaling pathways.
However, this enzyme has always been believed to be undruggable
due to its strong binding affinity with its native substrate GTP. To
understand the potential origin of high GTPase/GTP recognition,
here we reconstruct the complete process of GTP binding to Ras
GTPase via building Markov state models (MSMs) using a 0.1 ms
long all-atom molecular dynamics (MD) simulation. The kinetic
network model, derived from the MSM, identifies multiple
pathways of GTP en route to its binding pocket. While the
substrate stalls onto a set of non-native metastable GTPase/GTP
encounter complexes, the MSM accurately discovers the native pose of GTP at its designated catalytic site in crystallographic
precision. However, the series of events exhibit signatures of conformational plasticity in which the protein remains trapped in
multiple non-native conformations even when GTP has already located itself in its native binding site. The investigation
demonstrates mechanistic relays pertaining to simultaneous fluctuations of switch 1 and switch 2 residues which remain most
instrumental in maneuvering the GTP-binding process. Scanning of the crystallographic database reveals close resemblance between
observed non-native GTP binding poses and precedent crystal structures of substrate-bound GTPase, suggesting potential roles of
these binding-competent intermediates in allosteric regulation of the recognition process.
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■ INTRODUCTION
GTPases are a large family of hydrolase enzymes that bind to the
nucleotide guanosine triphosphate (GTP) and hydrolyze it to
guanosine diphosphate (GDP). The GTP binding and
hydrolysis takes place in the highly conserved P-loop “G
domain”, a protein domain common to many GTPases. Ras
superfamily of proteins are class of small G proteins.1 Ras
superfamily GTPases act as molecular switches that generally
cycle between a GDP-bound “off” state and a GTP-bound “on”
state.2 The conformational changes associated with these
different molecular states are involved in the regulation of
multiple cellular processes.3 Small GTPases function as
molecular regulators and control a wide spectrum of cellular
activities, such as cell proliferation and cell survival.4 Ras family
proteins are generally observed in a monomeric form with
molecular weight of 20−40 kDa,2 and they contain five α helices
(A1−A5), six β strands (B1−B6), and five loop regions (G1−
G5)5 (Figure 1). Contrary to the general trends, where amino-
acid sequence is conserved in β-sheets and α-helical regions of
the proteins, in case of the GTPases, the most sequence-
conserved locations are the loop regions.1 The P-loop (loopG1)
is the structurally most stable location, and it does not undergo
any conformational change during GTPase activity.2 On the
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Figure 1. Systems under investigation: GTPase/GTP system, GTP
bound crystal structure of P21ras GTPase (PDB: 1QRA).
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other hand, switch 1 (loop G2) and switch 2 (loop G3) that
surround the γ-phosphate group of the nucleotide show major
conformational changes during nucleotide exchange.6

The first mutated Ras gene was detected in human cancer in
1982.7 There are three types of Ras genes which are found to be
most frequently mutated genes; these are H-Ras, K-Ras, and N-
Ras.8 Among them K-Ras (85%) is the most frequently mutated
gene followed by N-Ras (12%) and H-Ras (3%).9 The most
common oncogenic mutations are observed in the “P-loop”
region, residues 12, 13, and 61.4,10 Despite significant efforts to
directly target Ras activity, no anti-Ras drug has been developed
and taken into the clinic. Being a nightmare for drug developers,
it has been believed for a long time that they are “undruggable”
due to the high binding affinity of GTP to Ras and relatively
smooth structure of Ras proteins devoid of any deep pocket
where a small molecule could bind.11 More recently, there has
been reported the discovery of multiple covalent binders12−14

such as MRTX84915,16 which are in clinical trials. Moreover
sotorasib17,18 has become the first FDA approved covalent
binder at the switch-2 pocket.
Illustrating the mechanism of GTP binding to GTPase with

atomistic detail and information on metastable binding hotspots
are in demand. Such an attempt would potentially prompt a
revisit to the design principle of new small molecules which can
perturb the bound GTP ligand at the active site via allosteric
networks or pathways. Moreover the potential metastable
hotspots that would be identified in this process can be used
for site-directed mutagenesis studies for further modulating the
GTP binding mechanism. The present work aims to elucidate
the atomistically detailed mechanism of GTP binding to
“undruggable” Ras GTPase by combining ∼0.1 ms long
unbiased classical molecular dynamics (MD) trajectories with
Markov state model (MSM) analysis.19 MD simulation has
remained a method of choice for obtaining an atomistic account
of biomolecular recognition processes.20,21 However, the
stochasticity involved in conformational fluctuation of bio-
molecular systems needs to be addressed in more quantitative
manner. Moreover, the slow event of ligand binding, from
solvent to the native pocket of the receptor, is often difficult to
capture in an individual time-continuous trajectory. In this
regard, adaptively spawned short simulation trajectories, when
integrated with MSM, have elucidated statistically robust
accounts of state-to-state transition in a recognition
event.22−26 In the present investigation, we implement a more
comprehensive scheme to decipher the connection between
GTP recognition and conformational transitions. While our
simulation captures rare spontaneous GTP-recognition events,
the overall process displays the signatures of conformational
plasticity. A close investigation reveals the role of flexible
switches in modulating the binding event, and the GTP-
recognition happens via multiple plausible transition pathways
which involve the existence of a set of metastable binding-
competent states around the ligand. As a key contribution, the
investigation quantitatively dissects the inherent conformational
plasticity in the small GTPase and shows how it would influence
the GTP recognition process.

■ METHODS AND MATERIALS

Unbiased Binding MD Simulations
The X-ray crystal structure of small GTPase p21ras in complex with
GTP (PDB ID 1QRA) is used for conducting unbiasedMD simulation.
The ligand was removed from the active site, and the protein without
the substrate was used as the starting point of all binding simulations.

All unbiased MD simulations were performed using the GROMACS
2018 simulation package27 using a leapfrog integrator with a time step
of 2 fs. The binding simulations were initiated with the substrate-free
GTPase placed at the center of a cubic box of dimension 7.1 nm in each
direction with explicit solvent. The minimum distance between the
protein surface and the box was 10 Å. The system was solvated with
10897 water molecules, and 8 copies of Mg2+ were added to the system
to keep sufficient magnesium ion concentration. Two GTP molecules
were placed at random positions and at random orientations in the bulk
solvent media of the simulation system (far away from the protein
surface) by using the combination of insert-molecules and editconf
modules of GROMACS software. This corresponds to a GTP
concentration of 11.98 mM. There was no direct contact between
GTP and the protein at the onset of the simulation. The final system
had a total 35406 atoms. The all-atom CHARMM36m28 force field was
used for protein and ions with the backbone CMAP correction. The
CHARMM parameters was used for GTP and ions while the water
molecules were modeled via TIP3P water model.29 The simulation was
performed in the NPT ensemble at an average temperature of 300 K
using the Nose−Hoover thermostat30 with a relaxation time of 1.0 ps
and at 1 bar constant pressure with Parrinello−Rahman barostat31 with
a coupling constant of 5.0 ps. The Verlet cutoff scheme32 was employed
with a minimum cutoff of 1.2 nm for the Lennard-Jones interaction and
short-range electrostatic interactions throughout the simulation. Long
range electrostatic interactions were treated by the Particle Mesh
Ewald33 (PME) summation method. All bonds connected to hydrogen
atoms were constrained using the LINCS algorithm.34 The bonds and
the angles of TIP3P29 water molecules were constrained using the
SETTLE algorithm.35 All the independent simulations were started
from different configurations by randomly inserting the GTPmolecules
in the simulation box. All the particles of each of the configurations are
assigned with random velocities. We carried out multiple independent
multi-microsecond-long unbiased simulations. The substrate-binding
process was verified by computing the Root Mean Squared Deviation
(RMSD) of GTP between each simulated conformation ofMD-derived
trajectories and the crystal structure, after removing the rotational and
translational motions of protein. The simulation lengths of the longer
binding trajectories were 2.6 μs, 10.2 μs, and 13.6 μs with a total
simulation time of 26.4 μs.
From our primary analysis of long unbiased GTP binding

trajectories, we observed that both GTP and GTPase are modulating
conformations and orientations of each other. For exhaustive sampling
of the ligand movement and protein conformational space, we
adaptively spawned numerous copies of short-length trajectories.
Figure S1 provides the adaptive sampling scheme employed in this
work. These simulations were initiated after clustering the simulated
trajectory frames into a set of cluster centers. We used the regular space
clustering36 algorithm for this purpose. For sampling protein
conformations, we used root-mean-squared deviations of switch 1
(residue id 25−36) (denoted here as RMSD1) and of switch 2 (residue
id 59−67) (denoted here as RMSD2), after fitting rest of the protein
backbone, as metric in the clustering algorithm (see Figure S1A).
Similarly, for sampling the ligand native and non-native states, we used a
distance cutoff based contact matrix as metric in the clustering
algorithm (see Figure S1B). We iteratively performed sampling along
both protein and ligand phase space until the explored FES converged
to a final landscape. In total, we conducted 401 short simulations each
for sampling protein and ligand conformations (i.e., total 802
trajectories) and each of these adaptively sampled simulations was
100 ns in length. These short trajectories, with a cumulative length of
80.2 μs were utilized to improve the statistics of the underlying Markov
state model (MSM, discussed later). Overall, an aggregate of about 106
μs of unbiased trajectories was simulated. All binding simulations
benefitted from usage of a graphics processing unit (GPU) in the in-
house computing facilities.

Development of the Markov State Model
We initially attempted to build a comprehensive MSM for resolving
both ligand states and protein conformations simultaneously. But our
initial attempts in this regard were not very fruitful as there was mixing
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among the states. As would be elucidated later, this is mostly because
protein conformational dynamics and ligand binding dynamics in this
GTPase/GTP complex involve different time scales, which are difficult
to reconcile in a single model. Subsequently, we built two MSMs in this
investigation: One of the MSMs was focused on resolving the GTP
binding dynamics from its unbound state to its native bound pose. The
other MSM involved dissecting the key metastable states that GTPase
adopts. We have used PyEMMA software37,38 for MSM construction.
The MSM was performed using the relative location of one of the two
GTP molecules. In the case of the long-time-scale binding trajectories,
we considered the specific copy of the GTP ligand which had either
eventually bound to the native pocket or had approached the binding
pocket. For the rest of the short-length adaptively sampled simulations,
we randomly selected either of the two GTP ligand copies, to avoid any
bias. For theMSM involving ligand dynamics, we have used the residue-
wise protein−ligand contact matrix as an input feature, which is based
on a 0.6 nm cutoff on the pairwise minimum distances between any
protein residue heavy atom with any ligand heavy atom. Thus, each
frame of the trajectories was converted into a row vector with 166
elements, each corresponding to a residue−ligand pairwise distance of
the 166-residue long protein. To further increase resolution of the
underlying binding kinetics and simplify the complexity of the raw
dimensions, we used the time lagged independent component analysis
(TICA)39,40 as a dimensional reduction technique. We finally reduced
the 166 dimensional input into the top 10 (slowest) TICA dimensions
and used them as an input for discretization and MSM construction.
Figure S2a shows the MSM reweighted Free Energy Surface (FES)
along the first two TIC dimensions. The free energy landscape in Figure
S2a shows the projection of dimensionally reduced TICA data along the
slowest two TICA-generated dimensions. The FES along this latent
TICA space gives us an idea about the number of local minima present
and the energetic barrier among them. The FES provided in Figure S2a
highlights (and is also annotated with) the locations of 7 distinct free
energy basins.We applied a k-means clustering algorithm41 to discretize
the trajectories into 100 microstates. We then built a 100 microstate
MSM at varying lag times. Finally, a lag time of around 100 steps (i.e.,
10 ns) was chosen as the minimum value of lag time at which the
implied time scale (ITS) becomes flatter as a signature of the
Markovian nature of the model (see Figure S2b. The chosen lag time
suggests the presence of eight time-scale-separated MSM macrostates.
In order to coarse-grain the 100-microstates into eight macrostates, we
used the Perron Cluster Cluster Analysis (PCCA+)42,43 method. Figure
S1c shows the state map decomposition of the phase space into 8
macrostates along the top two TICA dimensions (TIC1, TIC2). We
have also validated the construction of this 8-macrostate MSM by
performing the Chapman−Kolmogorov test44 with Bayesian error
estimation (see Figure S3B).
We obtained the stationary state populations for each of the

macrostates from theMSM and estimated the binding free energy using
following relation:
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where πbound is the stationary state population of the native-bound state,
πunbound is the stationary state population of the unbound (ligand in
bulk) state. Similarly, Vunbound is the simulated solvent volume and V0 =
1.663 nm3 is the volume at standard temperature and pressure. The
ratio of these volumes corresponds to the standard state correction into
the ligand binding free energy.
In Table 1, the free energies reported for each of the ligand bound

metastable macrostates (S1 to S7) are computed relative to the
unbound population (state S0).
The kinetic parameters were calculated from the mean first passage

time (mfpt), where the on rate and off rates are defined as

= =k C k1/(mfpt ); 1/(mfpt )on on off off (2)

where C is the concentration of GTP molecules in the simulation box.
Similarly, the dissociation constant (Kd) is defined as

=K
k
kd

off

on (3)

We employed transition path theory (TPT)22,45,46 to obtain the net
transition pathways and their fluxes. Here, we will discuss it briefly and
direct readers to other sources22,45,46 for additional details on how to
estimate paths and fluxes. TPT analysis provides a flux network from
source state A to sink state B that passes through intermediary states
(nodes). Each state (node) has a stationary probability, forward
committor, and backward committor (see eq 4). Every edge (path) has
an associated flux, which is usually net flux (see eq 5). The pathways and
their associated weights (fraction) from A to B can be calculated using
the flux network. The TPT analysis was carried out among the ligand
macrostates by considering State L0 as the source state (A) and State L7
as the sink state (B). In the TPT calculations, the committor probability
functions are used to define the direction of the transitions. The
committor probability function q+ is designated as the forward
committor and q− is designated as the backward committor. If the
simulation is started at point z, the intermediate phase space point
between path A and B reaches sink state B without visiting source state
A, then the forward committor value is assigned to the phase space
point (z). Similarly, If the simulation is started at point z and visits
source A without visiting sink state B, then the backward committor is
assigned to the process. For equilibrium processes, q− = 1 − q+. The
gross flux, i.e., average number of transitions going frommicrostate i → j
as a part of the A →B transition is computed as follows:

= +f q P qij i i ij j, , (4)

where q+ and q− are forward and backward committor probabilities as
mentioned before and πiPij is the equilibrium flux. Finally, the net fluxes
are computed from the difference between forward gross flux and
backward gross flux represented as follows:

= { }+f f fmax 0,ij ij ji, (5)

The dominant pathways and their percentages in the total binding
were obtained using the pyemma.msm.tpt.pathways module provided in
the pyEMMA37,38 software, which makes use of eq 5 to estimate the
maximumnet flux occurring among each of these states (nodes) present
between states A and B.
Similarly, for resolving protein conformational dynamics, we used

the RMSD of the switch 1 and switch 2 regions of the protein relative to
native conformation (denoted previously as RMSD1 and RMSD2) as
the features for MSM construction. Figure S2d shows the MSM
reweighted Free Energy Surface (FES) along RMSD1 and RMSD2. We
then discretized the input phase space into 1000 microstates using the
k-means clustering algorithm.41 Based on the ITS plot, we built the
MSM at lag time of 40 ns, i.e., 400 steps (see Figure S2e). Subsequently,
based on ITS, a 5 macrostate coarse-grained MSM was built using the
PCCA+42,43 method. Figure S2f shows the state map decomposition of
the phase space into 5 macrostates. We further validated the
construction of this five-state MSM by performing the Chapman−
Kolmogorov test44 with Bayesian error estimation (see Figure S3B).
Finally, in order to elucidate the mechanism of protein conformational
changes, TPT22,45,46 was employed to obtain the net transition

Table 1. Equilibrium Populations of the Key Ligand Binding
Competent States Obtained from the MSM

binding competent states populations (%) binding free energy (kcal/mol)

State L0 (Unbound) 7.30 ± 0.04 0
State L1 1.52 ± 0.11 −2.25 ± 0.16
State L2 9.41 ± 0.08 −3.35 ± 0.03
State L3 11.24 ± 0.01 −3.45 ± 0.02
State L4 18.17 ± 0.07 −3.74 ± 0.03
State L5 16.13 ± 0.13 −3.67 ± 0.04
State L6 14.02 ± 0.01 −3.59 ± 0.02
State L7 (Bound) 22.18 ± 0.04 −3.86 ± 0.02
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pathways and the final rates of the transitions among the protein
macrostates.

■ RESULTS

Spontaneous GTP Binding at the Native Pocket Captured
by Unbiased Atomistic MD Simulations
Conformational flexibility of a protein in mediating protein−
ligand binding has been demonstrated to be an integral factor in
molecular recognition studies. However, the dual role of ligand
flexibility in addition to protein flexibility in the overall
recognition process has been relatively sparsely explored.
GTPase/GTP (Figure 1) represents one such protein/ligand
system in which both the protein (GTPase) and the ligand
(GTP) are conformationally flexible.
In a bid to capture GTP in the act of finding and binding to its

designated cavity on GTPase, we spawned three long unbiased
MD trajectories which simulated the kinetic process of diffusive
exploration of the ligand in the bulk solvent as well around the
protein and ranged between several hundred nanoseconds and
multiplemicroseconds. In one of these threeMD trajectories, we
discovered that GTP spontaneously identified the native
binding site of GTPase at around 400 ns and got bound in a
pose which is exactly the same as the crystallographic bound
pose of the ligand (PDB ID 1QRA) (see zoomed view (inset) of
Figure 2A). A time profile of RMSD of the simulated GTP with
respect to its crystallographic bound-pose gradually went well

below 0.2 nm, indicating that the simulated GTP wanders into
the aqueous media and around the GTPase and eventually gets
bound into a pose that recapitulates the actual crystallographic
pose (see Figure 2A).
However, a visual inspection of the bound simulated pose also

indicated that while the ligand has already attained the
crystallographic bound pose, the corresponding simulated
conformation of the protein still deviates considerably from
the crystallographic pose of the protein (see Figure 2B). In
particular, the simulated trajectory shows that the highly flexible
loops in the binding trajectory (see Figure 2C), namely, the
switch 1 and switch 2 loops of GTPase, visit their respective
native poses (or location) but do not remain stable in the
crystallographic native pose. They were found to be relatively
open and disordered relative to the crystallographic pose and
remained in the open conformation for most of the simulation
time as shown in Figure 3A. A residue-wise analysis of the root-
mean-square fluctuation (RMSF) of GTPase of this binding
trajectory reveals the higher flexibility of the switch 1 and switch
2 loops (see Figure 2C). From this analysis, it can be envisioned
that movement of constituent residues of switch 1 (from residue
25 to 36) and switch 2 (from 59 to 67) would be themost crucial
factors for guiding the GTP-binding process. Extending this
simulation trajectory by one additional microsecond (far
beyond the ligand-binding event, i.e., from 1.5 μs onward) did
not make the protein conformation converge to its proper native

Figure 2. (A) A representative binding trajectory (Traj-1) of GTP binding to GTpase. The rmsd of GTP is calculated with respect to the bound crystal
structure as a function of time. (B) Conformational plasticity of GTPase: The highly flexible switch 1 (S-1; Blue) and switch 2 (S-2; Red) in GTP
binding trajectory (Traj-1) do not remain stable at crystallographic native pose. (C) The root-mean-square fluctuation (RMSF) analysis of the GTPase
protein from the GTP binding trajectory (Traj-1).
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crystallographic pose. This occurrence of the protein being
trapped in a non-native conformation while the ligand has
already attained the native crystallographic pose is the classic
instance of protein conformational plasticity.23,47

The investigation of the other two long binding trajectories
revealed that GTP explores different sites on the dynamically
changing protein surface, which are chemically compatible
pockets, and in this process of explorationGTP halts on different
sites. In fact, in these extensively long trajectories (traj-2, 10.2 μs,
and traj-3, 13.6 μs), the ligand became bound transiently during
the simulation, before shifting away from the native pose (see
Figure 3). Although the GTP came very close to the active site,
with its RMSD attaining a value below 0.8 nm (see Figure 3A,B),
it remained trapped in metastable states for most of the
simulation period. The snapshots extracted from these two
trajectories corresponding to these metastable states or locations
(see Figure 3A,B insets) show that the nucleotide-based ligand
has partially formed stable interactions with the native site
residues, either using its semiflexible, polar guanosine head part
(shown in Figure 3A as Ori-1, Ori-2) or using its highly flexible,
charged triphosphate tail (shown in inset of Figure 3B as Ori-1,
Ori-2, Ori-3). The RMSF of these two binding trajectories also
shows higher flexibility of switch 1 and switch 2 loop residues
(see Figure S5). It is also observed from trajectory visualization
that the GTP easily switched back and forth between these
metastable states but hardly attains the proper ligand binding
pose, and this is due to the higher flexibility of the GTPase loops
and the overall protein active site residues. None of the
independent multi-microsecond MD simulation trajectories, in
aggregate 26.4 μs, produced a crystallographically accurate
protein native pose, but they were able to produce ligand-bound
pose only.
The aforementioned efforts in capturing the GTP in the act of

recognizing the protein via long time-scale all-atom simulations
implied that the conformational flexibilities of both the protein
(GTPase) and the ligand (GTP) create bottlenecks trapping the
protein and the ligand in diverse non-native poses. The inherent
conformational plasticity of the protein, as displayed in Figure 2,
suggested that the protein-conformational as well as ligand-
diffusional landscapes need to be exhaustively sampled, well
beyond the long simulation trajectories. Accordingly, as
illustrated in Figure S1 we undertook an endeavor of adaptively
sampling the unexplored phase-space via initiating short-time-

scale MD trajectories from various frames of the existing long-
time-scale trajectories. In particular, many short independent
trajectories were initiated from different intermediate states
obtained after clustering of long binding trajectories by
considering both protein conformation and ligand location
(see Methods and Materials). A set of simulations were also
initiated from the crystallographic native ligand-bound pose of
the protein to ensure the sampling of this crucial location as well.
The process of spawning new trajectories was iterated in
multiple cycles so that the protein conformational and ligand
binding landscapes were sufficiently explored. These short
trajectories, with a cumulative length of 80.2 μs were utilized to
improve the statistics of the underlying Markov state model
(discussed later). Overall, an aggregate of about 106 μs of
unbiased trajectories was performed. For a comprehensive
understanding of the ligand binding in this flexible system, these
cumulative data were used to build a kinetic network of
transition among key binding-competent states within the
framework of the MSM.
A Microscopic Network Model Identifies Native Bound
State and Non-Native Binding Hotspots

We initially had aimed to develop a comprehensive statistical
model which would connect the key ligand locations around
GTPase with the possible native and non-native conformations
of the protein. However, our initial attempts to resolve the
kinetics by combining both protein conformation and ligand
location around the protein were futile and resulted in
intermediates which were spatially and temporally mixed. In
fact there are precedents of such scenarios48 and generally these
are pathological signs of protein conformational plasticity.
Accordingly, we decided to build two individual MSM-based
kinetic networks by separately considering protein conforma-
tion and ligand-location. (See Methods and Materials)
The statistical model obtained by discretizing the trajectories

based on the ligand location suggested a kinetic network
involving eight key binding-competent states in which ligand
locations were predicted (see Methods and Materials for
details). Figure 4 annotates the representative snapshots
covering a wide spectrum of each of the ligand bound states
interpolating between two limiting cases: the GTP-unbound
state (denoted here as State L0) in bulk solution and the
perfectly bound native state (denoted here as State L7). Apart

Figure 3.Two other representative long binding trajectories (A) Traj-2 and (B) Traj-3, where the GTPwas trapped inmetastable states for most of the
simulation lengths but also got bound transiently. See GTP orientations-1, and -2 in the inset near switch 1 (S-1; Blue) and switch 2 (S-2; Red)).
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from the solvated and native-bound pose, the kinetic model also
predicts the presence of a set of metastable intermediates
(denoted here as State L1 to State L6) each localized on
different parts of the dynamically changing protein surface.
Figure 5 shows the key interactions of each of the GTP bound

metastable intermediate states and Table S1 reports the type of
interactions and interacting residues from these non-native sites.
In general, we observe that in all of the macrostates GTP is
mainly stabilized by strong polar interactions like hydrogen
bonds, salt bridges, and cation−π interactions between polar and
charged residues of the protein sites (see Figure 5 and Table S1).
In the native bound pose State L7 (Figure 4), GTPase attains its
perfect native conformation, where switch 1 and switch 2 are
positioned in their stable native locations. However, we observe
that there exists an intrinsic flexibility in the proper native
conformation. In the native ligand-bound pose of State L7,
GTPase is found to be present in dynamic equilibrium of two
conformations similar to the GDP-bound “off-open” state and
GTP-bound “on-closed” state (see Figure 4D; enlarged view of

State L7). These are reminiscent of the GTPase conformations
denoted as “STATE-1” and “STATE-2” by Geyer and co-
workers:49,50 in STATE-1 the Tyr32 residue is oriented outside
or away from the GTP phosphate tail (see Figure 5H), while in
STATE-2 the Tyr32 residue is oriented inside (see Figure 5G),
toward the GTP phosphate tail also called “Tyr32-out” and
“Tyr32-in” state.49,50 These two orientations of Tyr32 are
predominantly observed inmanyGDP bound open, andGTP or
GTP-derivative bound closed GTPase structures are manifested
after the Thr35 from switch 1 and Gly60 from switch 2 lose the
coordinated interaction with the manganese ion and the third
phosphate of the GTP ligand after its hydrolysis. More
interestingly, in simulations also it is found that the ”Tyr32-in”
conformation is present in higher population than the ”Tyr32-
out” conformation, as was observed in the polarization transfer
31P NMR experiments by Geyer and co-workers.50 More
interestingly, in State L4, we observe that the GTP is
simultaneously interacting with switch 1 via hydrogen bonding
with Glu31 and also with the G5 loop via a salt-bridge

Figure 4. Kinetic mechanism of GTP binding to GTPase protein: The net flux network is obtained from TPT (Transition Path Theory) analysis.
These TPT calculations were done by considering State L0 as the source state and State L7 as the sink state. (A) Eight distinct representative snapshots
of the ligand macrostates obtained from MSM along with their corresponding protein conformations. Only 50 snapshots of the ligands are shown for
simplicity. (B) The network connects eight macrostates that are represented as a circular discs. The sizes of the discs are proportional to their stationary
populations (see Table 1) and are placed according to their respective committor value. The committor scale is drawn at the bottom of the panel. The
committor value of 0 corresponds to the unbound State L0 and value of 1 corresponds to the bound State L7, while the committor values between 0
and 1 correspond to the intermediate states. The states are connected with the arrows and whose thickness is proportional to the amount of net flux of
the transition within the macrostates. The flux values of corresponding transitions are written over the arrow. (C) The resulting major pathways along
with their path percentage. (D) The enlarged view of State L7 showing intrinsic flexibility of switches.
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interaction with Arg149 of the protein (see Figure 4D; enlarged
view of State L7). Table 1 provides the equilibrium populations
and ligand-binding free energies (relative to unbound state) of
these 8 macrostates. Additionally, while the model correctly
predicts the highest population for the native ligand-bound pose
ascertaining a free-energy favorable GTP binding process, we
find that (see Table 1) the population of this bound state
(equivalent to 22.18%) is just relatively higher than other non-
native intermediates. In particular, we observe that many of
these non-native intermediates are considerably populated (10−
18%), relatively comparably to the native bound state
population, suggesting that these non-native macrostates
would potentially mediate the GTP binding process. Overall,

this further shows inherent complexity of GTP binding
dynamics due to its larger size and highly flexible, highly
charged nature.
GTP Recognition Takes Place via Multiple Binding
Pathways

We simulated the GTPase−GTP binding process in the absence
of other GTPase activity regulators such as guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins
(GAPs). Therefore, we need to compare the kinetic constants
of intrinsic GTPase activity only (i.e., studies conducted of the
apoprotein or in absence of GTPase regulators). The binding
on-rate constant, as predicted by the MSM, (kon = 0.1088 × 106
M−1 s−1) is in good agreement (within one order) with the

Figure 5. (A−H)Representative atomistic interactions of each ligand-boundmetastable state. In all of the states, theGTP ismainly stabilized by strong
polar interactions like hydrogen bonds, salt bridges, and cation−π interactions between polar and charged residues of switch 1 and switch 2 and the
other protein sites. Hydrogen bonds are shown with blue lines, salt bridges are shown with yellow dashed lines, and cation−π interactions are shown
with orange dashed lines. The interactions are evaluated using PLIP-server.53
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experimental value (kon = 2.9 × 106 M−1 s−1),51 indicating
adequate sampling of GTP movement around the protein.
However, as displayed in eq 1 and eq 2, the MSM significantly
overestimates the ligand dissociation constant (kd) of the GTP,
when compared to the experimentally reported kd value of 6.0 ×
10−10 M. This is because, the off-rate constant, as predicted by
the MSM, (koff = 101.18 s−1) is very far from the experimental
value (koff = 8.0 × 10−5 s−1).51 Since in our unbiased MD
simulation set up, we were unable to observe (or sample)
sufficient unbinding events of a highly charged, flexible tight
binder like GTP, the MSM was unable to characterize this
reverse unbinding process very well, and this could be the source
of the discrepancy in the Kd and koff values compared to the
experimental values.24,52

The kinetic ligand binding network shows multiple
recognition pathways of GTP to the GTPase protein (see
Figure 4B,C). Each of these pathways shows connection from
the unbound State L0 to the bound State L7 via diverse sets of
metastable intermediates (see Figure 4A). We found that there
are multiple on-pathway metastable intermediates of GTP−
protein complex on the GTPase surface before GTP lands into
the native site of the protein. However, there is only one major
ligand binding pathway. It involves GTP transitioning through
unbound State L0 → State L4 → State L6 → State L7 (see
Figure 4B). This pathway accounts for 81% of the total binding

pathways (see Figure 4C). In this major pathway, the ligand
moves from bulk (State L0) to a location close to switch 1 of
GTPase and resides there creating a metastable State L4. It then
transitions from State L4 to another metastable State L6. Here,
although the ligand has already been bound at the crystallo-
graphic binding site and has formed many stable native
interactions with active site residues (see Figure 5), the native
interaction of the ligand with switch 1 of the GTPase is still
missing in this state. As discussed before, switch 1 does not
remain stable in the native conformation because of its higher
flexibility and mostly prefers being in its fully open
conformation, but it plays an important role in the GTP
recognition. This becomes more evident after plotting the
kinetic rate matrix (or transition matrix) of the underlying MSM
(see Figure S4). We can see that the rate of transition is more on
the path which involves interaction with the switch 1, also mfpt’s
are slightly faster on this path relative to all other paths.
Apart from the major pathway involving metastable

intermediates of ligand location near switch 1 and switch 2,
there exist multiple secondary competing pathways (see
pathways 2 and 3 from Figure 4) and minor pathways (see
pathways 4 and 5 from Figure 4) where the GTP is transitioning
from the unbound State L0 to multiple combinations of protein
non-native sites. In these secondary pathways, the GTP is
transitioning from the unbound State L0 to different protein

Figure 6. Kinetic mechanism of conformational plasticity of GTPase protein: The net flux network is obtained from TPT (transition path theory)
analysis. These TPT calculations were done by considering State P0 as the source state and State P4 as the sink state. (A) Five distinct representative
snapshots corresponding to most probable states for each of the protein macrostates. In each state, 50 snapshots are shown for simplicity. (B) The
network connects five protein macrostates, States P0, P1, P2, P3, and P4. State P4 corresponds to the native state of the protein, while other states
corresponds to non-native states. These states are represented as circular discs, and the sizes of the discs are proportional to their stationary population.
The states are connected with the arrows, and the thickness of the arrows is proportional to the amount of net flux of the transition within the
macrostates. The flux values of corresponding transitions are written over the arrow. (C) The resulting major pathways along with their path
percentage.
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non-native sites such as near helix-5 in state L1, near helix-3 in
State L2, and near helix-4 in State L3, similarly, near switch 2 in
State L5 (see state snapshots from Figure 4C). These pathways
show nearly equal contributions in the overall binding. The
pathways 2 and 3 contribute nearly 5−8% and pathways 4 and 5
nearly 2%, which indicates a complex and competitive GTP
binding mechanism among these paths. It is noteworthy to
highlight in this context that, the common presence of State L4
in most of these binding pathways (1, 2, 4, and 5) suggests that
the highly flexible switch 1 (loop 1) serves as the crucial
intermediate location for GTP to latch onto before making the
move to the native site. Similarly, the common presence of State
L5 in the subsequent pathways (2, 3) suggests that switch 2
(loop 2) also helps GTP to anchor onto the GTPase surface
before jumping into the stable, native bound pose. This
involvement of both switch 1 and switch 2 in the stabilization
of metastable states clearly implies their role in the GTP binding
mechanism. Although the comparable stationary state pop-
ulations of State L4 and State L5 (see Table 1) also suggest
definite role of switches (switch 1 and switch 2) in the GTP
binding mechanism, according to major pathway we conclude
that State L4 and hence switch 1 plays a greater role in the GTP
binding than the switch 2. Similarly, comparable stationary state
populations of the other macrostates (State L2 and State L3)
also suggest the important role of these non-native binding sites
in the GTP binding (see Table 1).
GTPase Displays Conformational Plasticity in the Presence
of GTP

A key finding of our initial investigation has been that the
GTPase protein is highly flexible. More importantly, as shown in
Figure 2, in all of the binding trajectories of the GTPase protein,
switch 1 and switch 2 loops were found to be highly flexible and
disordered. These two loops remained deviated from the proper
crystallographic native conformation for most of the simulation
time, while the ligand GTP became bound in its native pose.
Accordingly, for a comprehensive understanding of the protein
conformation in the presence of GTP, we built a separate kinetic
network model by discretizing all simulation trajectories along
the RMSD of switch 1 and switch 2 loops (see Methods and
Materials). We finally constructed a five-state model to resolve
the complex protein conformational dynamics (see Figure
S2d,e,f).
The resulting network shows that ensembles of conformations

of GTPase involve multiple disordered and open conformations
of both switch 1 and switch 2 loops, apart from recovering the
native tertiary fold of the GTPase (see Figure 6). In particular,
State P0 represents a GTPase conformational ensemble in which
switch 1 is opened at its full extent, while State P4 represents the
ensemble of the properly folded native state (relative to both
switch 1 and switch 2). Similarly, State P3 represents a
conformational ensemble where switch 1 is partially (or half)
in the open state, while State P2 represents a protein
conformation where both switches are open and in a disordered
state. Again, State P1 represents the conformation where switch
2 is in a highly disordered state with respect to the native state.
The statistical model recovers the native fold of GTPase (State
P4) as the highest populated conformation. However, the model
also indicates the presence of conformational heterogeneity
involving competitive protein ensembles. This can be
anticipated from the reweighed FES along RMSD1 and
RMSD2 (see Figure S2d), which shows five distinct minima
with similar free energies separated by an accessible thermody-

namic barrier. Similarly, having significant equilibrium state
populations for each macrostate (see Table 2) further indicates

the importance and definite role of each of these macrostates in
the GTPase conformational dynamics. Figure 6B,C shows the
net transition (net flux) pathways among protein macrostates.
We find that the conformational transition of the GTPasemainly
occurs via two paths and the net conformational flow is in favor
of the native state conformation State P4 (see Figure 6C). In the
key major path (pathway 1), GTPase protein transitions from
the fully open state (State P0) to the perfect native state (State
P4) via an intermediate State P3. This path accounts for almost
74% of the total path. However, there also exists another major
pathway, in which the GTPase conformation shuttles to the
native fold via the intermediate State P2, where both switch 1
and switch 2 are in a semidisordered state, and then to the State
P3 before transitioning to the native pose. This path accounts for
26.20% of the total flux. On the committor scale plotted in the x-
axis (bottom of the Figure 6B), we find that State P1, State P2,
and State P3 have a similar committor value of 0.25, which is
close to zero. This suggests that these intermediates are
conformationally closer to State P0 and are therefore more
easily susceptible to undergoing further opening of switch 1 (or
to visiting State P0) than the closing of switch 1 (or to visiting
native State P4) of the GTPase. While the transition rate matrix
(or rate network from Figure S6) shows mutual transitions
between all of the protein macrostates, the overall protein
fluctuations are in slight favor of the native state (State P4). Note
that there are more inward transitions coming from State P1,
State P2, or State P3 toward the final native State P4 than
outward transitions from State P4 to these states. This is also
reflected in the equilibrium state populations shown is Table 2,
where all of the protein macrostates hold significant populations
due to these mutual transitions, with the native state (State P4)
showing slight dominance over other conformations due to its
preferred thermodynamic stability.

■ DISCUSSION
“Undruggability” of GTPase is a puzzle for the drug discovery
community. Although these oncoproteins may be cracked using
innovative systems biology and high-throughput techniques,
understanding the sequence of events toward molecular
recognition and binding of the Ras GTPase protein could lead
to the design of GTP-competitive inhibitors. This article
examines this process at an atomistic level. While the simulation
could capture a rare event of GTP binding to its crystallographic
pose, a major bottleneck was found as the protein conformation
could not be reconciled with the crystallographic conformation.
To that end, the data of around 0.1 ms simulation trajectories
were processed using a statistical model. In one of the models,
we explored the transition of the ligand from the solvated state to
the crystallographic bound pose, where the key finding revealed
the important roles of switch 1 and switch 2 in the recognition

Table 2. Equilibrium Populations of the Key Protein
Conformations Obtained from Protein MSM

protein states population (%)

State P0 15.29 ± 0.02 (fully open)
State P1 11.16 ± 0.01
State P2 19.20 ± 0.07
State P3 24.63 ± 0.01
State P4 29.69 ± 0.03 (native)
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Figure 7.Comparison of ligandMSMmacrostates with existing PDB references. For simplicity, only ligands are highlighted from these reference PDBs
(a few of them are labeled here). A more comprehensive list of PDB IDs is provided in Table S2.

Figure 8. Comparison of protein MSM macrostates with existing PDB references. The reference PDB structures are aligned on top of only a single
representative macrostate snapshot using pymol and are shown in green color in all of the state images. Also, each of the states is further labeled with
respective PDB IDs.
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process. The other network model showed the conformational
transitions of the protein before it reaches its crystallographic
conformation.
Our investigation indicated the presence of a set of non-native

binding-competent states of GTPase/GTP complex (States
L1−L5), which act as metastable hotspots (or halting points) in
the GTP binding mechanism. The relevant questions are Are
there any precedents of these identified states in previous
experimental or crystallographic reports? What could be the
realistic implications of these states? To address these questions,
we surveyed the RCSB database to identify K-Ras entries with
additional allosteric ligands (PDBs with ligands other than
GTP/GDP/GXX). We found 85 entries with allosteric ligands,
which we have reported in Table S2. Figure 7 also shows the
structure of these 85 protein−ligand complexes. For simplicity,
only allosteric ligands along with parent ligand GTP/GDP/
GXX are shown after aligning the respective proteins onto the

single GTPase protein structure (from PDB 1QRA). After
obtaining this basic alignment of all the PDB structures, we
observed thatmultiple allosteric ligands clustered at specific sites
on the GTPase protein (see Figure 7, sites 1−5.) We then
visually compared these GTP binding site locations from the
PDB structures with the GTP bound intermediate sites obtained
from the ligand MSM after aligning the protein using Pymol
software.54 Interestingly, these allosteric ligand binding sites
(locations on the protein) coincided with many of the MSM-
derived metastable hotspots. For example, site-3 from Figure 7
accurately matches with the location of State L5 (see State L5
snapshot from Figure 4). Similarly, site-4 and site-5 match with
the non-native State L3 and State L1 identified in the present
work, respectively. Furthermore, site-1 and site-2 are surpris-
ingly found to match with the subensembles of macrostate State
L5. One functional implication of our work could be the use of
all of these binding hotspot locations and GTP conformations at

Figure 9. Potential allosteric binding pocket prediction algorithm: (A) The druggable pocket sites (PS) predicted for native input structure PDB
1QRA. The enclosed table lists the pockets according to the descending order of the druggability probability and also provides the pocket volume and
corresponding label of the GTP bound state. (B) Recurrences of druggable pocket sites capturing GTP molecule in various binding competent states
obtained fromMSM.The displayed pockets are the consistent pockets estimated using two independentmethods, fpocket56 andDoGSite57 estimation
method integrated in the PockDrug online web server.55
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these sites to identify new allosteric ligands for this undruggable
protein.
Sites 1, 2, and 3 are biologically crucial because these are the

sites where the switch 1 and 2 pockets manifest due to the
conformational changes happening during the GTP hydrolysis
and GDP−GTP exchange.1,2 Similarly, sites 1, 2, 3, and 5
correspond to the sites where the GTPase regulating proteins or
the effector proteins such as GAPs and GEFs bind to the
GTPase, which is essential for its functional activity.3 Any prior
binding of allosteric GTP or GTP-like allosteric ligand at these
protein sites can significantly hinder the proper recognition of
these GTPase regulating proteins by GTPase and hence can
alter or define the fate of the GTPase “on−off” cycle. On similar
note, site 4 is biologically significant because it includes the G4-
loop, which is important for GTP recognition. Site 4 is the site
where the G4-loop residues participate in the hydrogen bonding
network for stabilizing the guanine ring of the native boundGTP
(in its native pose).1,2 Having an alternative, allosteric (GTP or
GTP-like) ligand at site 4 which interacts with G4-loop residues
will make G4-loop residues unavailable for stabilization of the
native GTP pose, thereby perturbing the stability of the native
bound GTP. Therefore, all of the sites 1−5 are biologically
important considering the GTPase activity. Hence, obtaining
detailed atomistic insights into GTP interactions at these sites is
of utmost importance for improving our understanding of GTP
recognition and can pave the way for developing new allosteric
binders for this clinically challenging system.
Similar to ligand location, for comparing MSM-derived

GTPase protein conformations with the experimental RCSB
database, we curated K-Ras PDB entries with keywords such
“open conformation”, “closed conformation”, “disordered”, and
“fully opened or extended conformations”. We then compared
each of the PDB structures with the MSM obtained protein
conformation by aligning these conformations. Finally we
attributed individual PDB structures to each of the protein
conformations based on the best fitting of both structures.
Figure 8 shows comparisons of protein MSM macrostates with
existing PDB references, and Table S3 provides lists of the PDB
IDs.
In order to test our hypothesis that the binding competent

sites identified in the present investigation corresponds to GTP
bound at potential allosteric binding sites around GTPase, we
employed the pocket prediction algorithm using the “PockDrug-
Server”,55 an online pocket Web server (http://pockdrug.rpbs.
univ-paris-diderot.fr.). The Web server provides options for
pocket estimation based on either ligand proximity or the input
protein structure. We made use of the second approach for
testing our previously stated hypothesis. The server uses two
pocket predictions algorithms, “fpocket”56 and “DoGSite”57

which are not biased by the ligand position in the input structure.
We first performed pocket estimation on the native GTP bound
input structure (PDB 1QRA) to use its result as a reference. We
then repeated the same approach on the respective protein
conformations corresponding to each of the GTP bound non-
native macrostates (denoted as States L1−L7 in Figure 4). The
server predicts the presence of multiple pockets both in the
crystallographic bound pose (Figure 9A) and in the ligand-
bound non-native macrostates (Figure 9B). Very gratifyingly, we
find that the location of GTP in each of the ligand-bound non-
native poses coincides with one of the pockets predicted by the
pocket-finding tools (see table present in Figure 9). In addition,
the server also provides an empirical “druggability score”55 for
each of the pockets identified by these tools. Almost all of the

pockets predicted for the native PDB structures hold significant
druggability probability values. Together the analysis highlights
the effective role ofMSM to systematically integrate information
from diverse reported structures and emphasize the potential
druggability of discovered non-native sites in GTPase.
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