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A Direct Estimate of the Impact of PM2.5, NO2, and O3 
Exposure on Life Expectancy Using Propensity Scores

Joel D. Schwartza,b, Qian Dia,c, Weeberb J. Requiaa,d, Francesca Dominicie, and Antonella Zanobettia     

Background: Many studies have reported associations of air pol-
lutants and death, but fewer examined multiple pollutants, or used 
causal methods. We present a method for directly estimating changes 
in the distribution of age at death using propensity scores.
Methods: We included all participants in Medicare from 2000 to 
2016 (637,207,589 person-years of follow-up). We fit separate logis-
tic regressions modeling the probability of death at each year of age 
from 65 to 98 or older as a function of exposure to particulate matter 
less tha 2.5 µM in diameter (PM2.5), NO2, and O3, using separate pro-
pensity scores for each age. We estimated the propensity score using 
gradient boosting. We estimated the distribution of life expectancy at 
three counterfactual exposures for each pollutant.
Results: The estimated increase in mean life expectancy had the pop-
ulation been exposed to 7 versus 12 µg/m3 PM2.5 was 0.29 years (95% 
CI = 0.28, 0.30). The change in life expectancy had the population 
been exposed to 10 versus 20 ppb of NO2 was −0.01 years (95% CI = 
−0.015, −0.006). The increase in mean life expectancy had the popu-
lation been exposed to 35 versus 45 ppb of O3 was 0.15 years (95% 
CI = 0.14, 0.16). Each of these effects was independent and additive.
Conclusions: We estimated that reducing PM2.5 and O3 concentrations 
to levels below current standards would increase life expectancy by 
substantial amounts compared with the recent increase of life expec-
tancy at age 65 of 0.7 years in a decade. Our results are not consistent 
with the hypothesis that exposure to NO2 decreases life expectancy.

Keywords: Air Pollution, causal, disparities, life expectancy, PM2.5, 
NO2, O3, propensity score

(Epidemiology 2021;32: 469–476)

Survival data are commonly analyzed using proportion-
ate hazard models, which estimate effects of variables on 

the instantaneous rate of events, not the mean time to event. 
Accelerated failure time models can estimate mean age at death 
but are rarely used in health studies because they require assum-
ing a parametric distribution of life expectancies, which may not 
accurately represent the true distribution in humans. Moreover, 
they only estimate exposure association with the mean age at 
death, rather than with the distribution of life expectancies. We 
recently introduced a method to overcome these limitations.1 
Our method allows one to estimate the effect of an exposure on 
the entire distribution of life expectancy without making any 
assumption about that distribution. It allows the effects of expo-
sure and confounders to differ at each age and hence affect the 
shape as well as the mean of the distribution. Since the change 
in life expectancy is a more intuitive concept to policy makers 
than change in the instantaneous mortality rate, this approach 
has advantages. In addition, understanding how pollution affects 
the shape of the distribution of age at death provides insights that 
estimates of mean effects lack.

A large body of literature has reported that long-term 
exposure to air pollution is associated with higher mortal-
ity rates.2–10,11,12 For particulate matter less tha 2.5 µM in 
diameter (PM2.5), this is supported by a substantial toxico-
logic literature, showing particle exposure produces endo-
thelial dysfunction, atherosclerosis, systemic inflammation, 
decreased plaque stability, and electrocardiogram abnormali-
ties.13–21 Ozone effects are also supported by toxicology.22–24 
Fewer toxicologic studies are available that study the role of 
NO2 near current concentrations. The 2015 Global Burden of 
Disease study included ambient PM2.5 and tropospheric ozone 
(O3) exposure among the largest worldwide contributors to 
avoidable early deaths.25 Recent studies have reported asso-
ciations between PM2.5 and mortality at concentrations below 
the 2012 US EPA National Ambient Air Quality Standard or 
WHO guideline.26–28 Fewer studies have reported associations 
of long-term exposure to O3 and NO2, but the number has 
recently grown substantially.12,29–31
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These studies have been criticized for not using causal 
modeling and assuming that the effects of confounders remain 
proportionate as the cohort ages. Recent exceptions using pro-
pensity score methods include a study by Abu Awad (2019), who 
focused on over 10 million movers among Medicare enrollees, 
and a doubly robust additive hazard model applied to Medicare 
enrollees in the Southeast United States by Wang (2017).32,33 
Another exception is the study by Wu (2020)34 who studied 570 
million person-years of observation among Medicare enrollees. 
They provide strong evidence of the causal link between long-
term PM2.5 exposure and mortality. However, these papers only 
examined exposure to PM2.5, leaving the effects of gaseous pol-
lutants, including their potential to confound the PM2.5 effects, 
unknown. None of them examined the effects of pollution on 
life expectancy or the shape of the distribution of life expec-
tancy (i.e., how many early deaths occur at what ages), and 
none of them let the propensity score vary for each year of age, 
allowing confounders to have different effects at different ages.

The recent meetings of EPA’s Clean Air Scientific 
Advisory Committee have highlighted the importance of these 
issues.35 The Chair of the committee rejected the findings of 
multiple papers reporting associations with mortality, indicat-
ing that traditional epidemiologic methods of controlling for 
confounding do not inform causality, and only studies using 
causal methods can be admitted.36 Consequently, EPA recently 
proposed to maintain the current PM2.5 and O3 standards despite 
multiple studies showing deaths and hospital admissions are 
associated with those pollutants at levels below the current stan-
dards. Besides the assumption of the same hazard rate for each 
year of age, to extrapolate Cox models to changes in life expec-
tancy requires additional assumptions and the use of life tables 
derived from populations different from the cohorts. Since pro-
portionate hazard models are not collapsible, this is problematic.

Causal modeling methods represent a valuable approach 
to advance the argument for causality. They try to make an obser-
vational study closely mimic a randomized trial. Specifically, 
standard observational studies compare high exposed people 
with one level of confounders to low exposed people with dif-
ferent levels of confounders and seek to control for the dif-
ference in confounders statistically. Causal methods seek, as 
in a randomized trial, to first make exposure independent of 
confounders so that the subsequent analysis can compare what 
would have happened had people had high versus low exposure 
in a weighted or matched pseudo-population with no differ-
ences in confounders by exposure level. This seems closer to 
most people’s conception of what a causal contrast is. In addi-
tion, causal methods provide marginal estimates of the effects 
of exposure, that is, ones that do not depend on the distribu-
tion of the covariates in the study population.37 As such, their 
use in quantitative risk assessments, such as the Global Burden 
of Disease estimates, is more straightforward. Specifically, 
the coefficients of a standard Cox regression analysis, when 
applied to an individual, produces the marginal effect of an 
increment in exposure, holding all covariates constant in that 

individual. However, because of the lack of collapsibility of 
the proportionate hazard model, the mean of the individual 
marginal effects is not the population marginal effect.38 In con-
trast, causal approaches do produce population marginal effect 
estimates.39 Hence the traditional estimate of attributable risk 
as (RR-1)/RR is only valid if the RR is estimated using the 
marginal effect of exposure in the population, which inverse 
probability of exposure weighting (IPW) analyses provide.

Here, we present a causal model to estimate the mar-
ginal effect of air pollution exposure on the distribution of life 
expectancy in the United States. This model makes no assump-
tion about the distributional form of life expectancy and, under 
appropriate conditions, is a causal estimate. To our knowledge, 
it is the first to apply causal methods to the study of long-
term effects of three major air pollutants. We have applied this 
approach to estimate the effect of annual air pollution (PM2.5, 
NO2, O3) on life expectancy in the Medicare cohort in the con-
tiguous United States between 2000 and 2016.

DATA AND METHODS

Medicare Cohort
We obtained data on all Medicare participants in the 

United States during 2000–2016 from the Center for Medicare 
and Medicaid Services.40 Medicare covers over 95% of the 
population ≥65 years of age in the United States. Participants 
aged 65 years or higher and alive on January 1 of the year 
following their enrollment in Medicare were entered into the 
open cohort for survival, and follow-up periods were calendar 
years. Use of this data was approved by the Harvard School of 
Public Health Human Subjects Committee.

Covariates
From the Medicare file for each calendar year, we 

extracted the age, sex, race, ZIP code of residence for that year, 
whether they were covered by Medicaid that year, and date of 
death (or censoring) of each participant. Age, Medicaid status, 
and ZIP code were updated annually. Race and sex were self-
reported at enrollment. This file is publicly available from the 
Centers for Medicare and Medicaid Services.40

We obtained small area–level social, economic, and 
housing characteristic variables from the U.S. Census Bureau 
2000 and 2010 Census Summary File 341 at the ZIP code tabu-
lation–area level (ZCTA). Variables were updated each year by 
linearly extrapolating between the census years. In addition, the 
county-level percentage of people who ever smoked and their 
mean body mass index scores were obtained from the CDC 
Behavioral Risk Factor Surveillance Survey,42 which were then 
assigned to each ZCTA within the county and updated each 
year. From the Dartmouth Health Atlas, we obtained percent-
age of Medicare participants who had a hemoglobin A1c test, 
a low-density lipoprotein cholesterol (LDL-C) test, a mammo-
gram, an eye exam, and a visit to a primary care physician for 
each year in each hospital catchment area in the United States 
and assigned it to all ZCTAs in that area.43 We also computed 
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the distance from each ZIP code centroid to the nearest hospi-
tal. To capture long-term smoking history of Medicare partici-
pants in each ZIP code, we used the Medicare data to compute 
their hospitalization rate for lung cancer by ZIP code for each 
year. This risks overcontrol because air pollution has been 
associated with increased risk of lung cancer.

Finally, to account for the potential for omitted con-
founders that vary over time, we included year as a covariate 
as well.

Exposure Assessment
We assigned annual exposure to PM2.5, NO2, and O3 to 

each participant based on their residential ZIP Code for each 
year. The exposures came from models we fit that provided daily 
estimates for a 1 km grid of the contiguous United States.44,45 
The models used data from predictions of chemical transport 
models (GEOS-Chem, CMAQ, CAMS, and MERRA-2), mete-
orologic data from NOAA, land-use terms from the National 
Land Cover Dataset, road density data from the Census, traffic 
data from ESRI, and satellite-based measures of aerosol opti-
cal depth, NO2, O3, NDVI (a measure of greenness), surface 
reflectance, and absorbing aerosol index. Using these variables, 
we trained three models: a neural network, a random forest, and 
a gradient boosting machine to United States Environmental 
Protection Agency (EPA) Air Quality System monitoring data 
from the contiguous United States to generate daily predictions 
of each of these three pollutants (PM2.5, O3, and NO2) on a 1 × 
1 km grid. We combined the predictions from the three mod-
els for each pollutant in a nonlinear geographically weighted 
regression to generate a single prediction per day per grid cell 
for each pollutant. The models performed well, with 10-fold 
cross-validation on held out monitoring sites yielding an out 
of sample R2’s of 0.89 for PM2.5, 0.86 for O3, and 0.84 for NO2 
for annual average predictions of each. The daily O3 predictions 
were for the 8-hour daily maximum, the NO2 predictions were 
for the 1-hour maximum, and PM2.5 predictions were for the 
daily mean. Predictions for all grid cells whose centroids were 
inside the Zipcode boundary were averaged for each year and 
assigned to participants in that Zipcode in that year.

Statistical Methods
We fit a separate logistic regression for death at each 

year of age, conditional on the participant having survived 
until that age, as a function of long-term exposure to each of 
the three pollutants. If we control for covariates in each of 
these age-specific models, then the effect of pollutants and 
covariates can also vary by age, freeing us from the propor-
tionate hazard assumption.

The function of randomization in a trial is to ensure 
that the exposure of interest is independent of the covari-
ates. Propensity score methods seek to recover that property 
in observational studies by making the distribution of the 
exposure independent of the covariates.39,46 For a continu-
ous exposure, the generalized propensity score first models 
the dependence of exposure on covariates.37 The probability 

density of the residual for each observation is the probabil-
ity density of the subject receiving their observed exposure 
level at that age given their covariates at that age. We used 
this to create inverse probability weights for analyses. In IPW, 
this density is the denominator of the IPW, and the numera-
tor is the marginal probability density of exposure.47 If the 
logistic regression for surviving each year of age is weighted 
by the IPW for that age, and the analysis used to derive the 
weights was correctly specified (i.e., it included the neces-
sary interactions and accounted for nonlinearity), the expo-
sure should be independent of the covariates in the weighted 
sample. Then, if all confounders were included, the analysis 
should provide a causal estimate just as randomized treatment 
would. This has several advantages over traditional methods. 
First, it acts in the same manner as randomization, albeit with 
more uncertainty since we must estimate the probability of 
exposure instead of assigning it. Second, it provides marginal 
estimates of the effect of exposure, whereas when we control 
covariates in the model for the outcome, the estimated effect 
of exposure is conditional. The marginal estimate allows us 
to consider a causal contrast: what would happen underex-
posure a, compared with under exposure a′. Finally, using a 
propensity score-based approach allowed us more flexibility 
to fit the effect of confounders. By using gradient boosting, 
we fit a model that allowed highly nonlinear effects of con-
founders and high-order interactions among confounders if 
the data indicated that was necessary. We fit a separate gradi-
ent boosting model for each year of age and each pollutant to 
ensure the weights properly captured such features. For each 
year of age, the gradient boosting machine included 100 trees 
with a depth of 5 for each tree. The covariates included in the 
propensity score model included, for each pollutant, the other 
two pollutants. The other covariates are those described above. 
These covariates were updated each year, so time trends due 
to, for example, trends in income, population density, or racial 
composition in each ZIP code were captured by these vari-
ables, with the calendar year term capturing trends due to 
other factors.

These covariates were chosen to control for different 
factors that may be confounders of the association between air 
pollution and mortality. Specifically, the percent of the popu-
lation that is Black or Hispanic controls for area level racial 
composition that may be predictive of the presence, or pres-
ence upwind, of pollution sources; individual race controls 
for any confounding by race on an individual level. We used 
percent with less than a high school education, percent below 
poverty, median household income, and individual Medicaid 
eligibility control for income-related socio-economic status 
that may predict air pollution concentrations; median hous-
ing value and percent of owner-occupied housing controls for 
neighborhood wealth effects, which may also predict air pollu-
tion; percent with annual checkup, with annual LDL measure-
ment, with annual eye exam, with annual mammogram, with 
annual hemoglobin A1c measurement, and distance to nearest 
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hospital are used to capture confounding due to access to 
medical care; percent of smokers and lung cancer rate (which 
should be proportional to population pack-years) to capture 
any confounding by current smoking or by pack-years of 
smoking; we used body mass index to capture any confound-
ing by obesity. This is indicated in a Directed Acyclic Graph 
(eFigure 1; http://links.lww.com/EDE/B800).

Using these weights, we fit the logistic regression for 
death at age t with only exposure as the predictor. We used a 
sandwich estimate of the standard errors, which can account 
for spatial correlation in the residuals or the weights. We per-
formed separate analyses for Whites and Blacks, using sepa-
rate propensity score models for each race.

The above approach estimates the population marginal 
probability of dying in age t and exposure E in the population 
surviving to that age. Hence, the probability of dying at age 65 
at exposure E would be P65.E. The probability of dying at age 
66 given one had survived to 66 would be P66,E, and hence the 
unconditional probability of dying at age 66 and exposure E 
would be (1-P65.E) P66,E, the product of the probability of sur-
viving to age 66 by the probability of dying at that age having 
survived until it. In general, the marginal probability of dying 

at age t is ( )1
1

1 −
=

−∏ p pi ti

t
 (1). We used this to estimate the 

percent of the population expected to die at each year of age, 
at three counterfactual exposure levels for each pollutant (i.e., 
what would have occurred had everyone been exposed to each 
level), as well as the mean loss of life expectancy between the 
lowest and highest exposure for each pollutant, and the per-
cent of the population that died at age ≤75, or at age >85. The 
levels were chosen for each pollutant to approximate the range 
from the 25th percentile to the 75th percentile of observed 
exposures.

Clearly the percent of the population expected to die 
at each age depends on multiple coefficients. To estimate the 
uncertainty in that number, we sampled the coefficients predict-
ing each pi in equation (1) from a normal distribution using the 
estimated coefficients for each age i, and the sandwich estimate 
of variance. This produces an estimate of pt, the percent of the 
population that would die at age t at exposure E. We repeated 
this process 10,000 times and used the empirical 95% confi-
dence interval of those estimates as our uncertainty bounds.

RESULTS
Table  1 shows descriptive statistics for the data. This 

was an open cohort with persons entering each year, and the 
statistics shown include all years. The mean age was 75 years, 
and Medicaid covered 12.9% of participant-years. There were 
637,207,589 person-years of follow-up. The mean concentra-
tion of PM2.5 was 10 μg/m3, O3 38.7 ppb, and NO2 17.8 ppb 
during the period 2000–2016. The IPW model was able to 
capture the nonlinear time trends in PM2.5 (eFigure 2; http://
links.lww.com/EDE/B800). The increase in mean life expec-
tancy had the population been exposed to 7 versus 12 µg/m3 of 

PM2.5 was 0.29 years (95% CI = 0.28, 0.30). Table 2 shows the 
estimated effects of the pollutants. The increase in mean life 
expectancy had the population been exposed to 35 versus 45 
ppb of O3 was 0.15 years (95% CI = 0.14, 0.16). The change in 
life expectancy had the population been exposed to 10 versus 
20 ppb of NO2 was −0.01 years (95% CI = −0.015, −0.006). 
Each of these effects was independent.

The estimated effects of air pollution were modified by 
race (eFigure 3; http://links.lww.com/EDE/B800). Among 
Black participants, the increase in life expectancy comparing 
7 to 12 µg/m3 was 0.54 years (95% CI = 0.50, 0.58) versus 
0.33 years (95% CI = 0.32, 0.34) in Whites. In contrast, for 
O3, the increase in life expectancy had Blacks been exposed 
to 35 ppb versus 45 ppb was 0.07 years (95% CI = 0.04, 0.11) 
versus 0.18 years (95% CI = 0.17, 0.19) in Whites. In Blacks, 
the difference in life expectancy contrasting 10 to 20 ppb of 
NO2 was −0.02 years (95% CI = −0.03, −0.00) versus 0.01 
years (95% CI = 0.00, 0.02) in Whites.

eFigure 4A (http://links.lww.com/EDE/B800) shows 
the distribution of age at death at the three different coun-
terfactual PM2.5 concentrations and eFigure 4B (http://links.
lww.com/EDE/B800) shows the difference in the probability 
of death at each age contrasting exposure at 10 versus 7 µg/
m3. The main effect of exposure is not to shift the mode of the 
distribution; rather, the increased deaths at higher exposures 
occur predominantly between ages 65 and 75. These figures 
present not the rate of death at each age, but the fraction of the 
population that survived to, and died at, that age. Since people 
only die once, a higher probability of dying between ages 65 
and 75 necessarily means a lower probability of dying at older 
ages. Hence, the reduced mortality probability at higher ages 
is simply a reflection of fewer people living long enough to 
die at, for example, 90. In contrast (eFigure 5A,B; http://links.
lww.com/EDE/B800), the increased death rates from higher 
O3 are predominantly between ages 75 and 85. Hence the early 
deaths at higher O3 concentrations occur at later ages, and the 
reduction in mean life expectancy is less. eFigure 6 (http://
links.lww.com/EDE/B800) shows a similar plot for NO2, with 
little change in death rates at any age between NO2z counter-
factual levels.

We also computed the probability of dying by age 75 
across the counterfactuals for each exposure by summing the 
area under the distribution curve between age 65 and age 75. 
For PM2.5, 23.6% of the population would have died by age 
75 had they all been exposed at the current standard, versus 
22.5% at 7 µg/m3. For O3, 23.1% would have died by age 75 at 
45 ppb versus 22.7% at 35 ppb, although for NO2 it was 22.8% 
at both 10 and 20 ppb.

DISCUSSION
We believe this article adds to the existing literature on 

air pollution and mortality in multiple ways. Methodologically, 
it adds to the modest literature using causal modeling, and 
is, to our knowledge, the first to do so coadjusting for three 
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pollutants. It estimates the probability of dying at each year of 
age, a more intuitive concept than a hazard rate. It allows the 
effects of exposure and covariates to vary with each year of 
age, eliminating the assumption of proportional hazards, and 
estimates how exposure affects the distribution of life expec-
tancy without assuming a particular form for that distribution, 
or that the effect of pollution is the same at all ages. It more 
flexibly controls for potential confounding by using machine 
learning to incorporate potential nonlinearities and interac-
tions in the dependence of air pollutants on the potential con-
founders, and it allows the effects of those covariates to vary 
by year of age and calendar year.

Substantively, it reports associations of O3 and PM2.5 
with early death, and importantly that those pollutants change 
the shape of the distribution of life expectancy rather than 
simply shifting its mean. In particular, we find that PM2.5 is 
particularly associated with more people dying between 65 
and 75, although for O3 the early deaths occur between 75 and 
85. For both pollutants, fewer people survive to die in their 

late 80s or 90s because they died earlier. In contrast, we found 
a minimal change in life expectancy with higher exposure to 
NO2. eFigure 6 (http://links.lww.com/EDE/B800) illustrates 
the essentially null effect.

This study confirms previous reports that the effect 
of PM2.5 on Black Americans is greater than on White 
Americans.26,48 In contrast, we estimated that O3’s effects are 
larger for Whites. Black Americans, who live disproportion-
ately in urban areas, are exposed to more traffic related PM2.5 
and less O3, on average, than Whites are. If traffic particles are 
more toxic, that could account for a higher effect of PM2.5 in 
Blacks. Alternatively, the other stressors that Blacks are subject 
to may impair compensatory responses to particles. Similarly, a 
reason Blacks have lower O3 exposure than Whites is that they 
are more likely to live in high traffic neighborhoods and, hence, 
more NOx quenching of O3. Hence, there can be negative con-
founding of O3 by traffic pollution not captured by the NO2 and 
PM2.5 terms in the model. Since PM2.5 measures all particle 
mass, of which traffic particles are a modest fraction, control 

TABLE 1.  Descriptive Statistics of Person-year Data in the Medicare Cohort, 2000–2016

Variable 25% 50% 75% Mean

 Individual covariates  

  Black (person yrs)    53,518,588 (8.4%)

  White (person yrs)    544,082,779 (85.4%)

  Other (person yrs)    39,606,222 (6.2%)

  Male    42.8%

  Age 69 74 80 75

  Medicaid eligible    12.9%

 Sociodemographic variables  

  Median income ($) 38,000 48,000 63,000 53,000

  Percent living in poverty 5.3 7.9 11.8 9.5

  Percent owner-occupied housing 60 70 79 68

  Median house value ($) 98,600 150,400 240,300 200,139

  Percent < high school 14.2 22.6 33.7 25.3

  Percent Black 1.1 3.7 12.0 11.0

  Percent Hispanic 2.1 5.3 14.6 12.6

  Population density (people-km−2) 167 967 3,353 3,396

 Behavioral risk factors  

  Ever smoker (%) 41.8 46.2 50.4 46.2

  BMI (kgm−2) 26.8 27.3 28.0 27.5

  Medicare lung cancer hospitalization rate (×10−5) 19 33 49 39

 Access to care  

  Percent annual checkup 74.4 79.0 82.1 77.8

  HbA1c (% screened) 80.5 83.7 86.3 83.1

  LDL-C (% screened 76.1 80.1 83.5 79.5

  Mammogram (%) 59.2 63.9 68.2 63.7

  Eye exam (%) 63.9 67.1 70.0 67.4

  Distance to nearest hospital (km) 2 3.9 8.1 6.5

 Air pollution  

  PM2.5 (µg/m3) 7.9 9.8 12.0 10.0

  O3 (ppb) 36.4 38.7 40.9 38.7

  NO2 (ppb) 11.8 17.8 26.1 19.8

BMI indicates body mass index; LDL-C, low-density lipoprotein cholesterol.

http://links.lww.com/EDE/B800
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for PM2.5 may not completely capture their effect. Of course, 
chance cannot be ruled out as an explanation for these racial dif-
ferences in response, which seems particularly likely for NO2.

How important are these effects? Between 2008 and 
2017, life expectancy at age 65 increased from 17.4 to 18.1 
years. Compared with a 0.7 years increase in life expectancy 
over a decade, a 0.29 years increase in life expectancy from 
lowering PM2.5 concentrations from 12 to 7 µg/m3 is substan-
tial. The estimated O3 effects on life expectancy, at 20% of the 
decadal increase, are also substantial, and independent of the 
PM2.5 effects. For PM2.5, if everyone in Medicare were exposed 
at the currently permissible concentration, an additional 1.1% 
of them would die before the age of 75 compared with if they 
were all exposed at 7 µg/m3. There are 48 million Americans 
over the age of 65, so this is a substantial number of avoidable 
early deaths. For O3, the effects are smaller but still substan-
tial. And clearly complying with standards on maximum daily 
O3 concentrations do not ensure long-term average concentra-
tions are low enough to avoid excess deaths.

Moreover, we know how to accomplish the exposure 
reductions to reduce these early deaths. Indeed, during the 
study period 16% of the population was already exposed to 7 
µg/m3 or less PM2.5. Installing scrubbers on coal-fired electric 
generating units or replacing them with gas or renewable gen-
erators will reduce sulfate particles. Requiring NOx controls 
to be well maintained and run all year will reduce secondary 
organic aerosols and ozone, updating the heavy-duty truck 
particle and NOx standards, which have not been changed 
in 19 years, will reduce primary and secondary particles and 
ozone. Retrofitting particle filters on Diesel engines is an off 
the shelf technology, already implemented for some buses and 
trucks. Tighter controls on wood burning furnaces and stoves 
are also possible with existing technology.

Studies using Cox proportionate hazard models have 
reported positive associations of mortality with PM2.5, NO2, 
and O3, and particularly with PM2.5 and O3. For particles, a 
recent meta-analysis of 52 cohort studies reported an associa-
tion with mortality.11 The ESCAPE study examined PM2.5 and 
NO2 and reported an association with PM2.5 but not NO2.

49 
In contrast, the CANCHEC study reported associations with 
all three pollutants,3 although a longer term follow-up only 
reported associations with PM2.5 and O3.

50 Hence, this study’s 
general findings do not diverge from those.

Observational studies, including ones using propen-
sity scores, are subject to the risk of omitted confounders. 
We used a rich list of covariates but this does not exclude the 
possibility of confounding by an unmeasured one. One key 
advantage to using area level exposure, rather than personal 
exposure, is that personal exposure is subject to confound-
ing by personal covariates, whereas neighborhood exposure 
is confounded by neighborhood covariates. For example, 
persons who spend more time in traffic have greater personal 
pollution exposure than their neighbors, but also more stress, 
a potential confounder. That is why Weisskopf and Webster 
refer to neighborhood exposures as instrumental variables for 
the more confounded personal exposure.51 In contrast, sup-
pose neighborhoods with higher obesity rates had more air 

TABLE 2.  Life Expectancy at Three Counterfactual 
Exposures for Each Pollutant (i.e., Had the Entire Population 
Been Exposed at That Concentration) Controlling for the 
Other Pollutants and Covariatesa Using Inverse Probability 
Weighting Separately for Each Year of Age

Counterfactual  
Exposure Level

Mean Life  
Expectancy (Years)

% Dying Age 75  
or Younger (%)

% Living Past  
Age 85 (%)

PM2.5 (µg/m3)   

  7 82.8 22.5 41.9

  10 82.6 23.1 41.2

  12 82.5 23.6 40.7

O3v (ppb)   

  35 82.75 22.7 41.7

  40 82.67 22.9 41.4

  45 82.59 23.1 41.0

NO2 (ppb)   

  10 82.7 22.8 41.5

  15 82.7 22.8 41.5

  20 82.7 22.8 41.5

 Blacks  

PM2.5 (µg/m3)   

  7 81.39 28.3 35.1

  10 81.07 29.7 33.7

  12 80.85 30.6 32.8

O3 (ppb)   

  35 81.05 29.7 33.7

  40 81.02 29.8 33.6

  45 80.98 30.0 33.4

NO2 (ppb)   

  10 81.00 29.9 33.4

  15 81.01 29.8 33.5

  20 81.02 29.8 33.5

 Whites  

PM2.5 (µg/m3)   

  7 82.88 22.10 42.40

  10 82.69 22.82 41.55

  12 82.56 23.32 40.98

O3 (ppb)   

  35 82.83 22.3 42.2

  40 82.74 22.6 41.8

  45 82.65 22.8 41.3

NO2 (ppb)   

  10 82.77 22.5 41.9

  15 82.77 22.5 41.9

  20 82.76 22.5 41.8

aAge specific models control for race, sex, Medicaid eligibility, calendar year, 
median household income, median home value, percent of owner-occupied housing, per-
cent persons age ≥65 living in poverty, population density, percent of persons with <high 
school education, lung cancer rate, body mass index, percent of smokers in population, 
percent of population who are Hispanic, percent of population who are Black, percent of 
persons age ≥65 who had an annual checkup, who had a mammogram, who had an eye 
exam, who had a hemoglobin A1c test, and who had a LDL cholesterol test, and distance 
to nearest hospital. For each pollutant, the model includes the other two pollutants.

LDL indicates low-density lipoprotein.
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pollution. If a person with low body weight moved to such a 
neighborhood, she would receive the higher exposure, because 
it is neighborhood-level obesity, not personal obesity, that 
is associated with pollution, and therefore the confounder. 
Hence our greater use of neighborhood-level confounders is 
an advantage for the exposure we used. More individual-level 
covariates could be useful to allow better assessment of effect 
modification, however, and this is a limitation of our study.

Because we fit the propensity score model separately 
for each age, control for neighborhood-level confounders is 
strengthened. By using gradient boosting, we incorporate 
interactions, and allow for the effects of confounders to vary 
by calendar year and year of age, and control for time trends in 
omitted predictors. Nevertheless, inference is still dependent 
on the assumption that we have captured all confounders. This 
is why causal inference still requires judgment, and examina-
tion of biologic plausibility based on mechanistic controlled 
exposure studies in humans and animals.

That evidence is strongest for PM2.5, where random 
assignment of people to receiving a true or sham home air-
filtering device demonstrated that sham filtration resulted in 
higher concentrations of CRP and 8-OHdG, and higher blood 
pressure.52 In animal studies PM2.5 increased atherosclerosis 
and decreased the stability of atherosclerotic plaque,20,53–55 
increased oxidative stress,56–58 produced proarrhythmic 
changes in ECGs,59 worsened the response to ischemia,60 and 
impaired lung clearance.61

For O3, a cohort study reported an association between 
long-term O3 exposure and factor VII coagulant activity,62 
a chamber study reported that O3 affected fibrinolytic activ-
ity,63 and a toxicology study reported that following O3 expo-
sure, isolated coronary vessels exhibited greater basal tone, 
enhanced susceptibility to serotonin stimulation, and impaired 
response to acetylcholine.23 A review of toxicologic studies 
found decreased heart rate, metabolism, blood pressure, and 
cardiac output when rats were exposed to typical concentra-
tions of O3.

13 A panel study found that O3 was associated with 
increased levels of C reactive protein, fibrinogen, 8-hydroxy-
2'-deoxyguanosine, plasminogen activator inhibitor 1, and 
decreased heart rate variability.64

Toxicologic evidence for NO2 effects at concentrations 
near those observed in this study is largely absent, which sup-
ports our finding of no noticeable estimated effect on life 
expectancy. However, some studies have found associations of 
NO2, and more needs to be done to understand its true effects. 
Regarding PM2.5 and O3, the robust propensity score modeling 
using machine learning and substantial mechanistic data provide 
complementary evidence that the association we have observed 
is likely causal, and the public health impacts are substantial.
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