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Tumor growth and metastatic dissemination rely on cellular plasticity. Among the different phenotypes acquired by cancer cells,
epithelial to mesenchymal transition (EMT) has been extensively illustrated. Indeed, this transition allows an epithelial polarized
cell to acquire a more mesenchymal phenotype with increased mobility and invasiveness. The role of EMT is quite clear during
developmental stage. In the neoplastic context in many tumors EMT has been associated with a more aggressive tumor phenotype
including local invasion and distant metastasis. EMT allows the cell to invade surrounding tissues and survive in the general
circulation and through a stem cell phenotype grown in the host organ. The molecular pathways underlying EMT have also been
clearly defined and their description is beyond the scope of this review. Here we will summarize and analyze the attempts made
to block EMT in the therapeutic context. Indeed, till today, most of the studies are made in animal models. Few clinical trials are
ongoing with no obvious benefits of EMT inhibitors yet. We point out the limitations of EMT targeting such tumor heterogeneity

or the dynamics of EMT during disease progression.

1. Introduction

Despite the improvement of treatment regimens, cancer
remains a leading cause of death worldwide. Metastatic
disease is responsible for the majority of cancer-induced
mortality [1]. The development of new therapeutic strategies
targeting key factors driving metastasis remains a challenging
goal for both clinicians and scientists. Metastasis is artificially
divided into a series of sequential highly organized and organ
specific steps [2]. Among these steps is the acquisition of
migratory and invasive proprieties by cancer cells, which
can be achieved through epithelial-mesenchymal transition
(EMT) [3-6].

First described in embryogenesis, EMT is a cellular
reprogramming process in which epithelial cells acquire a
mesenchymal phenotype [7]. During this transformation,
epithelial cells lose their polygonal shape and ability to grow
in colonies, but they acquire spindle-shaped morphology
and exhibit a more motile and invasive behavior [8]. These
phenotypic changes are associated with proteins and gene

modifications in different interconnected families such as
transcription factors, cadherins, catenins, matrix metallopro-
teases (MMPs), or growth receptors [9, 10].

While EMT has been well accepted and demonstrated in
vivo during embryogenesis, its implication in the metastatic
process is still debated [11-16]. Identifying the EMT process
in neoplastic disease is difficult since cells undergoing EMT
share many molecular and morphological characteristics
with the surrounding stromal fibroblasts. Moreover, although
primary carcinoma or circulating tumor cells (CTCs) display
EMT features, cells present in the distant metastases site
are generally epithelial [17]. In 2002, Their proposed an
explanation to such observation by describing the reversible
EMT metastasis model in which primary epithelial tumor
cells activate EMT to invade distant sites, and, upon arriving,
they undergo a MET (mesenchymal-epithelial transition) to
form an epithelial metastatic lesion [18].

Numerous reviews have comprehensively described EMT
in cancer as well as the molecular pathways implicated in
EMT or MET [17, 19-21]. The description of such findings
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is beyond the scope of this review. Here, we focus on the
latest research on EMT in the clinical context for prognostic
or therapeutic or strategies.

2. Can We Use EMT to Predict
Patient’s Outcome?

Recently, the detection of circulating tumor cells above a
defined cut-off has been associated with poor prognosis in
different cancers such as breast or prostate tumors [22, 23].
Circulating tumor cells, as well as metastatic lesions, of
many different cancers present EMT characteristic [24-30].
Many studies investigated whether the expression of EMT
markers would be associated with poor patient prognosis. The
aberrant expression of Snail is related to poor patient survival
in breast [31-34], ovarian [33, 35, 36], hepatocellular [37-
40], and colorectal carcinomas [41, 42]. Twist overexpression
is associated with a poor clinical outcome in many cancers
such as bladder cancer [43], breast cancer [34], oral squamous
cell carcinoma [44], ovarian cancer [45, 46], or cervical
cancer [47]. Vimentin overexpression in cancers and its
correlation with growth and metastasis suggest that it might
be an indicator of poor prognostic for many cancers [48].
In bladder cancer, a study of eleven different cell lines
revealed that the loss of E-cadherin expression is a marker
of poor response to the monoclonal antibody cetuximab,
which blocks EGFR binding [49]. More recently, Twist-1
promoter hypermethylation, studied on 65 surgically resected
specimens, was shown to be a useful molecular marker for
predicting prognosis and contralateral cervical lymph node
metastases in patients with tonsillar squamous cell carcinoma
[50].

The increasing amount of data on single EMT indicators
urged the investigation of the correlation between several
markers on patients’ prognosis. A 4-EMT genes signature
(E-cadherin (CDHI), inhibitor of DNA binding 2 (ID2),
matrix metalloproteinase 9 (MMP9), and transcription factor
3 (TCF3)) was used to predict clinical outcome in a cohort
of 128 hepatocellular carcinoma patients and then validated
in an independent cohort of 231 patients with hepatocel-
lular carcinoma from three different institutions [51]. The
authors claimed that this 4-gene signature could improve
patients’ survival prediction on the risk score and tumor
stage. Recently, in a study including surgical specimens from
78 cases of esophageal squamous cell carcinoma resected
without preoperative treatment between 2001 and 2013, Niwa
et al. demonstrated that the vimentin/E-cadherin ratio was
correlated with tumor invasion and can serve as an indepen-
dent prognostic factor among chemonaive patients [52]. In
an analysis of 100 surgically resected hepatic tumors, EMT
markers Twist-1and Zeb-2 were shown to be involved in early
disease recurrence in hepatocellular carcinoma and served as
good prognosis markers [53]. In a different study on paraffin-
embedded hepatocellular carcinoma tissues (n = 113) and
their corresponding peritumoral normal tissues (n = 106),
although the expression of 3-EMT-related proteins, SI00A4,
vimentin, and E-cadherin was studied, the authors reported
that E-cadherin alone can be used as a direct prognosticator
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of negative outcome [54]. The prognostic significance of E-
cadherin, twist, and vimentin was assayed in 121 patients with
bladder cancer and, in this study, only vimentin appears as
an independent predictor for cancer progression and survival
[55].

Cancer stem cells have emerged as a particular entity
within tumor cell plasticity. They have the ability to reinitiate
the tumor in serial engraftment assays; they are more resistant
to treatment than the bulk of the tumor and their role in
the occurrence of metastasis has been suggested in several
studies [1, 56-58]. Their identification relies on functional
proprieties (spheroid formation in 3D media, asymmetric
division, and serial passages in NOD/SCID mice) and specific
markers. Several authors have described an increase of tumor
stemness when cancer cells undergo EMT, leading to the
study of stem cell associated markers combined with EMT-
related markers as prognosis indicators. Luo et al. studied the
correlation of SOX2, OCT4, and Nanog with E-cadherin, N-
cadherin, and Snail in a nasopharyngeal carcinoma cohort of
122 patients [59]. They demonstrated that OCT4 and Nanog
could be used as poor prognosis factor and are linked with
the progression of the invasive front. In two different clinical
studies, one on 119 human cholangiocarcinoma patients [60]
and one on 276 consecutive primary gastric cancers and 54
matched lymph node metastases [61], the same team revealed
that EMT markers (Snail-1, Zeb-1, E-cadherin, vimentin,
and beta-catenin) and the CSC marker, CD44, are strongly
correlated. Moreover, they revealed that the simultaneous
expression of Snail-1, vimentin, E-cadherin, and CD44 was
associated with advanced stage, metastasis, and invasion and
was an independent indicator for disease-free survival.

Accumulating evidences in the literature are reflecting
the regulatory roles of microRNAs (miRNAs) on EMT
phenotype [62]. miRNAs can be optimal markers of specific
disease or a patient’ prognosis. Indeed, they can be found
and quantified in many different biological fluids, including
blood, urine, and cerebrospinal fluid; they also display great
stability (even after boiling, freeze-thaw cycles, or low or high
pH conditions). For instance, tumors with low expression of
miR-335 and miR-126, 2 miRNA known to inhibit the first
step of EMT, have been reported to present more probability
to develop metastasis than tumors with higher expression
of these miRNA [63]. In the blood, qPCR analysis of miR-
10b, miR-34, and miR-155 allows the discrimination between
patients with breast cancer metastasis and healthy controls.
These miRNA play an important role in regulating EMT in
response to TGFf3. A meta-analysis of 17 studies with various
carcinomas uncovered the role of miR-21 (an oncomiR
known to promote EMT through TGEf pathway) as a poor
prognosis biomarker in breast, squamous cell carcinoma,
astrocytoma, and gastric cancer [64].

As described above, many EMT markers or their deriva-
tives have been associated with patients’ prognosis in different
studies. However, while an EMT phenotype seems clearly
associated with an increased metastatic phenotype, the use of
such markers has not yet been translated into clinical practice.
The requirements for an assay to be usable in clinical practice
are quite stringent. Indeed, any prognosis marker has to first
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display great robustness. It should be reproducible among dif-
ferent laboratories and between pathologists. As prognostic
markers will be used to give adjuvant therapy, their specificity
should be quite high allowing the identification of patients
who would not benefit from adjuvant treatment. While EMT
markers have been independently associated with patients’
prognosis, they have not yet been used in clinical practice for
several reasons.

Tumor heterogeneity is one of the main reasons; the
expression of EMT markers can vary at different locations of
a tumor (usually increased mesenchymal phenotype at the
periphery). Clear cut-offs are critical; most of the markers
used in classical pathology have clear cut-offs (mitosis per
field, Her2 overexpression, etc.). For EMT markers, defining
the cut-offs might be difficult as different tumors display
different levels of epithelial or mesenchymal phenotype and
it is hard to clearly attribute a value for a particular marker.
These are few difficulties among others including technical
issues to do multiplex assays and the lack of large multicentric
prospective trials.

One solution might be the advent of oncogenomic prog-
nosis assays based on gene expression [65]. Currently, more
than 100 clinical trials in cancer disease are ongoing using
EMT as a keyword. Most of them study the prevalence of
EMT markers in different cancers and their potential use as
prognosis factor. The data from these studies will help us

determine the clinical context where EMT could be used to
tailor patients treatment.

3. Can We Use EMT Effectors to
Treat Patients?

EMT is an extremely well-organized process, activated in
response to a combination of extracellular cues from the
tumor microenvironment. EMT-inducing signals seem to be
cell or tissue specific and require the cooperation between
multiple signaling pathways and regulators. We considered
the potential targets in three different groups classified
based on their role during EMT: the molecular effectors
executing EMT, the transcription factors acting as regulators
to orchestrate EMT, and extracellular inducers that engage
the cells in EMT.

3.1 Effectors. EMT effectors are mostly proteins that define
the epithelial or mesenchymal phenotype of a cell. A key
feature of EMT is the switch from E-cadherin (marker of
epithelial cells) to N-cadherin (makers of mesenchymal cells)
[9]. Targeting these cadherins in order to avoid a loss of E-
cadherin or an upregulation of N-cadherin could therefore
be a promising strategy.

Several groups studied the transfection of E-cadherin
in highly mesenchymal and invasive cells and showed a
reversion of the poorly differentiated carcinoma into a well-
differentiated one with a minimally invasive epithelial pheno-
type [66-70]. In breast cancer, it has been demonstrated that
salinomycin can selectively kill E-cadherin-negative breast
epithelial cells as compared with E-cadherin-positive cells
in NOD/SCID and Balb/c mice model [71]. Global gene
expression analyses of breast tissues isolated directly from

patients display that salinomycin treatment results in the loss
of cancer stem cell (CSC) expression. The tumor suppressor
role of E-cadherin has been established in many cancers
including hepatocellular carcinoma [72], esophagus [73],
melanoma [74], breast cancer [75, 76], or squamous cell
carcinoma of the skin, head, and neck [77, 78]. However, in
ovarian tumors, E-cadherin is consistently upregulated and
maintained in ovarian carcinoma cells that metastasize to
the peritoneum and omentum [79]. E-cadherin expression
has been found in patients with a family history of ovarian
cancer, proposing a potential role of E-cadherin in tumor
initiation and/or progression in this particular cancer [80].
Concordantly, several recent studies point to a promoting role
of E-cadherin during tumor progression in different epithelial
cancers such as ovarian, breast, or brain cancer (reviewed
in [81]). An epithelial phenotype has been also correlated
with an increase in cancer stemness and engraftment in
host organs in prostate cancer [82]. Overall, targeting E-
cadherin seems to be difficult due to its ambiguous role in
carcinogenesis.

Inhibition of N-cadherin has been assessed in several
studies [83, 84]. Shintani et al. reported that, in a mouse
model of pancreatic cancer, the peptide ADH-1 is able to
block N-cadherin and prevent tumor progression [85]. In
head and neck cancer cell line, quercetin has been shown to
significantly reduce the migration ability of sphere cells by
decreasing N-cadherin production [86]. Recently, Sadler etal.
demonstrated that targeting N-cadherin using a neutralizing
antibody may be a good therapeutic strategy to treat multiple
myeloma [87].

Vimentin is also a canonical marker of mesenchymal
phenotype and therefore an important effector of EMT [48].
Few reports have shown a direct inhibition of vimentin. Lahat
and collaborator suggested that the withaferin-A induces
vimentin degradation in a panel of soft tissue sarcoma
xenograft experiments, leading to the inhibition of growth,
local recurrence, and metastasis [88]. In prostate tumors,
both silibinin and flavonolignan inhibited invasion, motility,
and migration of the cancer cells via downregulation of
vimentin in cancer cell lines and mice models [89, 90].
Finally, salinomycin, an antibiotic, reduced significantly
vimentin level and induced increase in E-cadherin expression
in CD133" colorectal cancer cell lines HT29 and SW480
resulting in decreased malignant traits [91].

None of these strategies are currently tested in a clinical
context. Indeed, EMT effectors have a complex role and their
function might be time and context dependent during the
metastatic process such as illustrated by the dual role of E-
cadherin. Some additional key EMT effector molecules are
proteins that promote cell migration and invasion during the
process such as fibronectin, PDGF/PDGF receptor autocrine
loop, Cd44, or integrin 36 [17]. Hence, these proteins might
also be considered as potential targets to counter the EMT
process.

3.2. Regulators. EMT regulators are a core of transcription
factor such as Snail-1/Snail-1, basic helix-loop-helix fam-
ily (E47, E2-2, and Twist-1/Twist-2), and Zeb-1/Zeb-1 [21,
92]. The role of these transcription factors in proliferation,



invasion, and migration of epithelial tumors has been well
described and their use as a target to block EMT process
seems appealing [41, 93-95].

da Silva et al. reported that the inhibition of Twist-1 in
metastatic oral squamous cell carcinoma (OSCC) induced
a potent inhibition of cell invasiveness in vitro as well as
in vivo using an orthotropic mouse model of metastatic
OSCC [44]. The secreted frizzled-related protein (sFRP1 and
sFRP2) two Wnt antagonists enhance the expression of E-
cadherin through the inhibition of Twist-1 and suppress the
invasiveness of cervical cancer in vivo in a xenograft animal
model [96]. The bone morphogenetic protein 7 (BMP7) is
a potential metastasis inhibitor that disrupts EMT through
Twist-1 inhibition in melanoma WM-266-4 and HEK293T
cell lines [97]. Arumugam et al. have shown using many
different pancreatic cell lines that silencing Zeb-1 not only
restored the expression of epithelial marker genes, but also
increased cellular sensitivity to therapeutic reagents [98]. In a
lung carcinoma cell line, the knockdown of Snail or Twist-1is
able to restore the cell chemosensitivity to cisplatin [99, 100].

The sulforaphane, an organosulfur compound, is able to
downregulate Twist-1 as well as other EMT proteins like
vimentin leading to a decrease of stemness properties in
PANC-1, MIA PaCa-2, AsPC-1, and Bx PC-3 pancreatic cells
lines [101]. Recently, moscatilin was shown to target the
Akt-Twist-1 dependent pathway and decrease the migration
and metastasis of MDA-MB-231 breast cancer cell line [102].
Fucoidan was also described to inhibit EMT in breast can-
cer cell lines such as 4T1 and MDA-MB-231 through the
decreased Twist-1, Snail, and Slug expression [103]. In 2014,
Myung and collaborators demonstrated that the knockdown
of Snail with siRNA technique in three glioblastoma cell
lines (KNS42, U87, and U373) suppresses the proliferation,
viability, migration, and invasion of cells by disrupting the
EMT process [104].

Despite the promising results in preclinical studies,
overall, EMT core transcription factors remain technically
challenging to target in a clinical setting. However, a clinical
trial is currently investigating the molecular mechanism and
clinical significance of the interplay between Twist-1 and
other EMT regulators through microRNA-29 family in head
and neck squamous cell carcinoma (NCT01927354).

3.3. Inducers. The principal inducers of EMT are pro-
teins from the TGFp (TGFpl1, TGFB2, TGFf3, inhibins,
activin, anti-Millerian hormone, bone morphogenetic pro-
tein, decapentaplegic, and Vg-1) and the growth factor
(fgf, hgf, egf, and igfl) families [21]. High-throughput drug
screening has been performed to identify potential inhibitors
of EMT in response to various inducers. The majority of
molecules selected inhibit specific EMT-inducing signals
used in the screen. For instance, rapamycin and 17-AGG
have been shown to inhibit TGFf-induced EMT through
the modification of TGFf pathway itself as assessed by a
global gene expression profile from a cell culture model of
TGEB-induced EMT [105]. Inhibitors of ALK5, MEK, and
SRC are able to block EMT in response to EGE, HGF, and IGF-
1 [105, 106]. In 2011, two different groups proposed c-MET
as a potential therapeutic target in hepatocellular carcinoma
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cell lines Huh7, Hep3B, MHCC97-L, and MHCC97-H [107]
and BNL CL.2 (BNL) and BNL IME A. 7R.1 (IMEA) [108].
In prostate cancer, inhibition of c-Met expression and Met-
mediated signaling by Frzb leads to the upregulation of
epithelial markers and a decrease of the mesenchymal traits
in a xenograft mouse model [109].

The most studied inducer of EMT remains TGFf [110-
112]. Targeting TGFf pathway to alter EMT induced tumor
cell invasion may be appropriate as metastasis prevention
strategies in early stage carcinomas. SD-093 and LY-580276,
two competitive inhibitors for the ATP-binding site of
TGFpRI kinase, disrupt EMT and tumor cell migration in
many cancers [113, 114]. EW-7203, EW-7195, and EW-7197,
specific TGFB/ALKS5 inhibitors available as orally adminis-
tered drugs [115, 116], have been shown to inhibit EMT in
both TGEFp treated breast cancer cells and 4T1 orthotropic
xenograft mice [117]. Bone morphogenetic protein 7 (BMP7)
was revealed as a potential inhibitor of EMT induced by
TGEFp in thirty liver tissue samples of patients with cholan-
giocarcinoma [118].

Currently, the only compounds interfering with EMT
in clinical trial are the ones able to block EMT inducers.
In 2008, already, the LY2157299, a clinical selective TGFf31
receptor inhibitor, was undergoing a still unpublished phase
I trial for colon, prostate, and adrenocortical or breast cancer
and malignant melanoma patients [119]. That same year,
another preclinical trial using human xenografts Calu6 (non-
small-cell lung cancer) and MXI1 (breast cancer) implanted
subcutaneously in nude mice demonstrated that LY2157299
is able to reduce the tumor growth [120]. LY2157299 is
now known to display antitumor effects in patients with
glioblastoma and hepatocellular carcinoma [121]. LY2157299
is currently tested in four clinical trials, in patients recruit-
ing state: Phase Ib/II in stages II-IV pancreatic cancer of
LY2157299 combined with gemcitabine versus gemcitabine
plus placebo (NCT01373164); Phase II in HCC patients with
disease progression on sorafenib or who are not eligible
to receive sorafenib (NCT01246986); Phase Ib/Ila study
combining LY2157299 with standard temozolomide based
radiochemotherapy in patients with newly diagnosed malig-
nant glioma (NCT01220271); and Phase II Study of LY2157299
monotherapy or LY2157299 plus Lomustine therapy com-
pared to Lomustine monotherapy in patients with recurrent
glioblastoma (NCT01582269).

Erlotinib, an EGF receptor tyrosine kinase inhibitor,
is approved for the treatment of second- and third-line
advanced non-small-cell lung cancers [122,123]. Interestingly,
its efficacy is correlated with the EMT status of the cells;
higher E-cadherin levels indicate sensitivity, whereas higher
vimentin and Zeb-1 levels indicate resistance. Thus, in 2012,
a randomized phase II trial on 132 patients with non-small-
cell lung cancer evaluated the effect of erlotinib combined
with the isoform selective histone deacetylase inhibitors,
entinostat, known to prevent the resistance by reverting the
cancer cell mesenchymal phenotype to an epithelial one
[124]. Even if entinostat failed at improving the outcome
of patients, the study revealed that E-cadherin expression
levels at time of diagnosis could portray the sensitivity to
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FIGURE 1: Epithelial to mesenchymal transition with effectors and inducers studied in the prognostic or therapeutic context. Green asterisk:

implicated in prognosis. Red asterisk: targeted therapeutically.

HDACIi/EGFR-TKI inhibition providing the basis for a bio-
marker-driven validation.

In 2014, the GC1008 (fresolimumab), a human anti-TGEf
monoclonal antibody, has undergone a phase I clinical trial
in patients with advanced malignant melanoma or renal cell
carcinoma [125]. 29 patients, 28 with malignant melanoma
and 1 with renal cell carcinoma, were included and received
intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days
0, 28, 42, and 56. It demonstrated that GC1008 was pre-
senting an acceptable safety and toxicity, and the maximum
dose, 15 mg/kg, was determined. Multiple doses of GC1008
demonstrated only preliminary evidence of antitumor activ-
ity, allowing further studies of single agent and combination
treatments in clinical trials. In fact, GC-1008 is currently
tested in two clinical studies: fresolimumab and radiotherapy
in metastatic breast cancer (NCT01401062) and safety and
imaging study of GC1008 in glioma (NCT01472731).

4. A Moving Target

Despite the massive amount of preclinical data in most cancer
types, there is still no clear cancer treatment specifically
targeting EMT. Many aspects of tumor biology can explain
the gap between the preclinical and clinical data.

In most preclinical studies an induced model of EMT is
used to demonstrate the implication of EMT in tumor spread
and then to demonstrate the efficacy of targeting EMT in
achieving tumor response. These models are usually quite far
from clinical reality. They do not perfectly reproduce tumor
heterogeneity which is increased at the metastatic stage as

demonstrated by several studies of tumor phylogeny [126].
Such heterogeneity can be the result of cell intrinsic genomic
differences or interaction with the microenvironment [127-
133]. Tumor progression acquired through EMT can be
transient and represent only a small timeframe in a patient’s
disease. Hence, targeting EMT will not have similar effect as
in preclinical studies where EMT is constitutively activated.
Many of the factors have dual or ambivalent roles. The recent
demonstration of the role of MET in the establishment of
metastasis in the host organ and its relationship to stemness
in specific tumors adds a new degree of complexity to anti-
EMT strategies. One could somehow potentially increase
cancer stemness and improve host organ homing by inhibit-
ing EMT.

5. Conclusion

Opverall, despite the tremendous amount of preclinical data
on the implication of EMT in cancer progression, there is
still no routine clinical translation at both prognosis and
therapeutic levels (Figure 1). Here, while we point out the
different elements of the EMT cascades that could be targeted,
we also underline the difficulties to translate the preclinical
findings in routine clinic. However, we can hypothesize that
as we enter the era of precision and personalized medicine,
new technologies (next gene sequencing, circulating tumor
cells, circulating tumor DNA, etc.) will help us better define
patients’ specific disease at precise time points during disease
evolution. Such studies might then really illustrate whether
EMT has a role in neoplastic evolution and point out



the appropriate therapeutic window where EMT inhibition
could lead to improved survival in patients.
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