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Abstract

Honeydew production by Hemiptera is an ecologically important process that facilitates

mutualisms and increases nutrient cycling. Accurate estimates of the amount of honeydew

available in a system are essential for quantifying food web dynamics, energy flow, and the

potential growth of sooty mould that inhibits plant growth. Despite the importance of honey-

dew, there is no standardized method to estimate its production when intensive laboratory

testing is not feasible. We developed two new models to predict honeydew production, one

based on insect body mass and taxonomic family, and one based on body mass and life

stage. We tested the accuracy of both models’ predictions for a diverse range of honeydew-

producing hemipteran families (Aphididae, Pseudococcidae, Coccidae, Psyllidae, Aleyrodi-

dae, Delphacidae, Cicadellidae). The method based on body mass and family provided

more accurate estimates of honeydew production, due to large variation in honeydew pro-

duction among families. We apply our methodology to a case study, the recalculation of hon-

eydew available to invasive red imported fire ant (Solenopsis invicta) in the United States.

We find that the amount of honeydew may be an order of magnitude lower than that previ-

ously estimated (2.16 versus 21.6 grams of honeydew per day) and discuss possible rea-

sons for the difference. We anticipate that being able to estimate honeydew production

based on minimal biological information will have applications to agriculture, invasion biol-

ogy, forestry, and carbon farming.

Introduction

Honeydew production by Hemiptera is an important ecological function in numerous sys-

tems globally. Many animals rely on honeydew as a food source, including birds [1], geckos

[2], ants [3,4], bees [5], wasps [1,6], fruit flies [6], snails, cockroaches, moths [7], and hover-

flies [8]. As an example of its importance as a food source, honeydew accounts for the major-

ity of carbon brought into nests by wood ants, the nutrient cycling keystone species in boreal
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forests of Europe and Asia [9,10] and ant-hemipteran-honeydew associations are deemed

‘keystone interactions’ because of their importance to ecosystems [11]. Honeydew not con-

sumed by animals promotes soil micro-organisms and fungal growth, and consequently,

nutrient cycling [12,13,14,15]. The growth of sooty mould on honeydew has serious eco-

nomic implications for some agricultural crops. For example, loss of viable kiwifruit in New

Zealand can be as high as 85% from sooty mould caused by passionvine hopper (Scolypopa
australis (Walker)) honeydew [16], losses of dates from the dubas bug (Ommatissus lybicus
Bergevin) partly due to honeydew excretion can be up to 50% in the Middle East [17,18], and

the invasive mealybug Pseudococcus comstocki (Kuwana) severely depreciates apples, pears,

and peaches through honeydew-fuelled sooty mould outbreaks in Italy [19]. Hence, under-

standing the spatial and temporal distribution of honeydew production can provide impor-

tant insight into food webs, ecosystem structure and function, and economic viability in

agricultural systems.

Honeydew has been linked to the success of some invasive social insects. On Christmas

Island, the invasive yellow crazy ant, Anoplolepis gracilipes Smith, and introduced honeydew-

producing scale insects attain populations so high that they cause outbreaks of sooty mould,

killing canopy trees [20]. In New Zealand, honeydew from native scale insects has facilitated

a wasp invasion, resulting in the decline of the endangered kākā parrot (Nestor meridionalis
(Gmelin)) through competition for honeydew [21]. Invasions of the red imported fire ant Sole-
nopsis invicta Buren and Argentine ant Linepithema humile (Mayr) are facilitated by honey-

dew-producing Hemiptera [22,23,24,25]. Associations between honeydew-producers and

mutualist partners can be so intertwined that when one is removed, the other disappears

[26,27].

Despite the potential utility of accurately estimating honeydew production for both prac-

tical and theoretical purposes in a range of disciplines, a simple standardized method has not

yet been developed. Accurate honeydew quantification is very difficult because honeydew

production rates differ among life stages within a honeydew-producing species [25,28,29],

across different host plants [25,30], with time of day [31], and the amount of nutrients that

the host plant is receiving [32]. Quantification of honeydew production is predominantly

achieved through time-intensive laboratory studies, and has been limited to a few economi-

cally important pest species [25,28,33,34,35,36,37]. But such intensive research is often

unfeasible, particularly when dealing with diverse native faunas. Even when dealing with

single species, their ecological requirements (e.g., host plant species, humidity, temperature,

essential mutualists) and niche limits must be known before laboratory experiments can

begin [38] (e.g., Perdikis & Lykouressis 2004). Alternatively, honeydew has been estimated

by using traps or collection pans under plants infested with Hemiptera [15,39]. There are a

number of problems with this collection method, however, including the influence of trap

placement on the amount of honeydew collected, and the inability to determine how much

honeydew has already been harvested by other taxa. In addition, honeydew traps do not dis-

criminate among honeydew-producing species or account for differences produced by dif-

ferent life stages of Hemiptera. Thus, honeydew production has never been quantified for

most species.

To help resolve problems with quantifying the amounts of honeydew produced by different

hemipterans, we tested whether we could achieve accurate estimates of honeydew production

based on biological traits and taxonomy. We developed two new methods of honeydew quanti-

fication, one based on taxonomic family identity and size of the hemipteran, and the second

on life stage and size, and tested the ability of these methods to predict honeydew production

for independent data through cross-validation.

Standardized honeydew estimation
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Materials and methods

Research on invertebrates does not require animal ethics approval in Western Australia.

Experimental field work was covered by Department of Parks & Wildlife fauna licence

SF009850.

Published data

In June 2015 we searched the databases Google Scholar and Web of Science using the key-

words: ‘honeydew’ and ‘production’, in combination with each of the following, ‘Coccidae’,

‘Coelostomidiidae’, ‘Pseudococcidae’, ‘Aphididae’, ‘Hemiptera’, ‘Aleyrodidae’, ‘Delphacidae’,

‘Membracidae’, ‘Kerriidae’, ‘Eurymelidae’, and ‘Psyllidae’. Of the 244 papers found, we identi-

fied 29 papers that quantified rate of honeydew production per individual, and specified spe-

cies identity, lifecycle stage, and wet body mass (Table 1; S1 Appendix). When papers were

data deficient, we contacted the authors for the necessary information.

Our calculations required wet honeydew weight in μg as a function of body mass. In papers

where honeydew volume was recorded, we multiplied the volume by the specific gravity of

honeydew, 1.04 [41] to obtain the weight and then converted to μg. For six hemipteran species

for which we had honeydew production data (Toxoptera aurantii (Fonscolombe), Coccus
hesperidum Linnaeus, Dysmicoccus neobrevipes Beardsley, Planococcus ficus (Signoret), Pseudo-
coccus viburni (Signoret) and Pseudococcus longispinus (Targioni)) we were unable to obtain

the body mass either through published accounts, contacting other researchers, or sourcing

live specimens ourselves. Instead, we calculated body mass from dry weight. To do this for all

hemipteran species, we used as a model the body mass and lengths of Phenacoccus solanopsis
Tinsley instars and adults [25,60] because this was the only hemipteran species with published

records. We then used the power model of Gruner [61] to obtain dry weights of P. solanopsis.
The power model y = axb uses standard coefficients for (a) and (b), length in millimeters (x),

and dry mass in grams (y) ([61] and S2 Appendix for a and b coefficients). The known body

mass of each P. solanopsis instar was then divided by its dry weight to obtain the multiplication

factors needed for each instar; 1 for 1st instars, 1.61 for 2nd instars, 2.13 for 3rd instars, and 6.11

for 4th instars and adults. To our knowledge, no published information exists on the specific

coefficients for the families Membracidae, Pseudococcidae, Coccidae, Margarodidae and

Aleyrodidae. We therefore used the closest phylogenetic family as a proxy for these families;

Cicadellidae for Membracidae, and Aphididae for Pseudococcidae, Coccidae, Margarodidae

and Aleyrodidae (S2 Appendix).

We obtained honeydew production rates for 24 species representing 6 families from the

literature (see S1 Appendix). The different feeding mechanisms of Hemiptera (e.g., phloem,

xylem, parenchyma) often dictate the magnitude of honeydew produced, thus we ensured that

we incorporated representatives from as many feeding strategies as possible.

Experimental trials

To supplement data available in the literature, we conducted trials on seven locally available

hemipteran species from two families (S1 Appendix) using a mixture of laboratory and field

conditions in Perth, Western Australia (31˚56’ S, 115˚51’ E). We used potted plants in the lab-

oratory trials, and naturally growing plants in the field, and in both cases the Hemiptera were

feeding on stems or leaves. Sampling followed the protocols used by prior research [62,63].

A pre-weighed parafilm bag was placed over a hemipteran feeding on the plant, and the

excreted honeydew accumulated within the bag. We assessed five replicates of each life stage,

per hemipteran species. An additional five bags that did not contain any Hemiptera served as

controls for plant evapotranspiration. In field conditions, we covered the parafilm bags with a

Standardized honeydew estimation
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light cloth during the day to prevent excessive evapotranspiration. We repeated trials when

insects did not reattach to the host plant after being disturbed during bagging, Hemiptera

escaped the bags, or evapotranspiration rates were high.

After 24 hrs we removed the bags, within which we gently dislodged the hemipterans with

a fine paintbrush. In the lab, hemipterans were removed from bags, and the bag weighed on

a Sartorius ISO 9001 precision scale. The Hemiptera were weighed separately on a Mettler

Toledo XP6 scale to obtain their body mass. To obtain the honeydew produced in 24 hours,

Table 1. Collation of honeydew production in adults of different hemipteran species (except when adult data was not available). Additional details including honey-

dew produced by different nymphal stages, attending ants, host plants, variation (standard error) in honeydew production and source of data within each reference is

given in S1 Appendix when available.

Family Species Life stage Mean Honeydew produced (μg/hr) Body mass (μg) Honeydew References

Aleyrodidae Bemisia tabaci Adult ♀ 2.66 51 [40]

Aphididae Aphis fabae Adult 40–151.5 930–2140 [30,41,42]

Aphis gossypii Adult 3.71 1112.45 [35, 43]

Aphis craccivora Adult 9.55 104.5 Moir et al.

Acyrthosiphon kondoi Adult 22.14 351.75 Moir et al.

Acyrthosiphon pisum Adult 61.25–87.48 3810–4086 [28] Moir et al.

Brachycaudus cardui Adult 190 2280 [42]

Lipaphis pseudobrassicae Adult 43.75 988.6 Moir et al.

Macrosiphoniella tanacetaria Adult 40 3574 [42]

Macrosiphum pisi Adult 44.28 2169 [36]

Metopeurum fuscoviride� Adult 435 1487 [44]

Metopolophium dirhodum Adult 18–23.85 2440.80 [45,46]

Neotoxoptera formosana Adult 13.69 902.85 Moir et al.

Rhopalosiphum padi Adult 10.35–27.96 148.5–398 [46] Moir et al.

Sitobion avenae Adult 20.20 1400 [45]

Therioaphis maculata Adult 44.71 464 [36]

Toxoptera aurantii Adult 53.27 2440.8 [33]

Tuberolachnus salignus� Adult 750–2048.4 12000–13860 [47,48,49]

Uroleucon sonchi Adult 149.33 3505.4 Moir et al.

Cicadellidae Cicadulina mbila Adult 41.25–254.58 500–1040 [50]

Nephotettix cincticeps Adult 1041.67–3744 2330^ [51,52]

Nephotettix virescens 1st and 5th 40.25–306.81 87.09–2100 [53]

Dalbulus quinquenotatus Adult 16203.7 2954.18 [54]

Dalbulus maidis Adult 4629.63 2423.83 [54]

Dalbulus gelbus Adult 2314.81 1975.97 [54]

Coccidae Coccus hesperidum Adult 284 2927.20 [55]

Delphacidae Nilaparvata lugens Adult 208.33–875 1390–2330 [37,53,56,57]

Sogatella furcifera Adult 354.70 1600 [29]

Membracidae Guayaquila xiphias Adult 7833–13500 51200 [58]

Pseudococcidae Phenacoccus solenopsis Adult 113.51–169.08 3574.9–4343.5 [25]

Dysmicoccus neobrevipes Adult 0.83 2224.04 [59]

Planococcus ficus 2nd instar 1.18 119.34^ [34]

Pseudococcus viburni 2nd instar 1.16 119.34^ [34]

Pseudococcus longispinus 2nd instar 0.72 119.34^ [34]

Psyllidae Plant louse (Acizzia sp. nov.) Adult 12.18 322.37 Moir et al.

�Renowned high producers of honeydew;

^estimate based on other comparable species; Moir et al. indicates this study

https://doi.org/10.1371/journal.pone.0201845.t001
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we subtracted the pre-weighed bag weight plus any moisture in control bags, from the total

bag plus honeydew weight. We divided the honeydew weights by the number of Hemiptera

within that life stage and species to obtain honeydew rates per individual hemipteran.

Standardized methods to predict honeydew production

We developed and tested two possible methods to predict honeydew production depending

upon the information available. The first method requires body mass and family of the hemip-

teran, and the second method requires identification of the life stage and body mass.

Honeydew prediction Method 1: Family identity and body mass. Method 1 predicts

honeydew production over 24 hours (y) as a function of body mass in μg (x) for a given family.

We considered two models for each family: the power model (y = axb) and exponential model

(y = aebx), and also considered whether either of these was better than a null model. To deter-

mine the values of the parameters a and b in the first two models we used linear regression in

R [64], with log-transformed y data for the exponential model and log-transformed x and y

data for the power model. Note that the power model is equivalent to a log-log linear model

log(y) = a+b.log(x). Model comparison was based on AIC, where lower AIC indicates a better

model. Although a common pattern between log honeydew and body mass was evident within

most hemipteran families that we assessed, there were some exceptions. Two aphid species

were extraordinarily high honeydew producers; Tuberolachnus salignus Gmelin and Meto-
peurum fuscoviride Stroyan. The latter produces honeydew at an hourly rate of 630% of its

body mass as a 1st instar and 30–55% as an adult [42,44]. We excluded these species from our

models because their exceptional honeydew production rates are already well-documented,

contributing towards their status as economically important pests. Nonetheless we included

these high producers in plots (Fig 1) to illustrate their potential for honeydew production

relative to other Hemiptera. Other pest species, including the aphids Aphis fabae Scopoli and

Acyrthosiphon pisum (Harris) did conform to their respective family’s standard model.

Honeydew prediction Method 2: Life stage and body mass. Using this method, honey-

dew production (y) as a percentage of hemipteran body mass (μg) is estimated as a function of

the life stage (x) represented as 1 for 1st instar, 2 for 2nd instar, 3 for 3rd instar, 4 for 4th instar,

and 5 for adult or 5th instar. We considered three alternative functions: a power function y =

axb; an exponential function y = aebx; and a by-factor model where x was converted to a factor

and thus log(y) was assumed to have a different mean but a constant variance for each value of

x. The 5th instar was grouped with the adult because most species assessed for Method 1 did

not have a 5th instar in their lifecycle, and for those species with a 5th instar (i.e. Delphacidae),

the percentage honeydew produced was similar to adult rates. Based on our compiled data, we

calculated the amount of honeydew produced per hemipteran per hour, as a percentage of the

body mass of each life stage. To determine the values of the parameters a and b in the first two

models we used linear regression in R [64], with log-transformed y data for the exponential

model and log-transformed x and y data for the power model. To determine the values of the

model parameters for the third model we fitted a linear model in R with log-transformed y

data and x treated as a factor, which is equivalent to a standard one-way analysis of variance

(ANOVA) testing whether there was a significant difference in honeydew production with

life-stage.

Validation and case study

We validated all models for both our methods using standard leave-one-out cross validation

[65]. For each model, this involved selecting one observation at a time, removing it from the

data set, fitting the model to the remaining observations, using this fitted model to generate a

Standardized honeydew estimation
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Fig 1. Empirical data for honeydew production per hour (on log scale), together with the model of best fit, for

Aphididae (power-law), Coccoidea (power-law), Delphacidae (power-law), and Cicadellidae (exponential),

showing actual values (symbols), model prediction (solid line) and 95% prediction interval (dashed lines).

Symbols of life stage are as follows: circle—1st instar nymphs, triangle—2nd instar, plus symbol—3rd instar, cross—4th

instar, diamond—5th instar, upside down triangle—adults. Also shown for each family is the results of model

Standardized honeydew estimation
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prediction for the one removed observation, and then repeating for each observation. This

resulted in a set of independent predicted values for each model. We then compared these to

the observed values and calculated the mean and median percentage error.

We demonstrate the utility of the best standard method using a case study. This case study

was a recalculation of the amount of honeydew produced by introduced mealybugs supporting

invasion of the red imported fire ant Solenopsis invicta in North America [22]. Although

Helms and Vinson [22] identified numerous species of bugs being tended by the ant, the pseu-

dococcid Antonina graminis (Maskell) contributed 71.5% of the overall biomass of tended spe-

cies and was the focus of honeydew estimation. They calculated that honeydew could supply

nearly 50% of the daily energetic requirements of an S. invicta colony, with approximately 32%

being produced by A. graminis alone.

Results

Honeydew prediction Method 1: Familial identity and body mass

The relationship between honeydew production and body mass varied greatly across hemip-

teran families (Table 2). Honeydew production of aphids, mealybugs (Pseudococcidae + Cocci-

dae), and planthoppers (Delphacidae) tended to increase rapidly in the first three instars and

then approached an asymptote for adults (Fig 1). For these three families, the power model

was the best, with the model parameters being highly significant in each case (p< 0.001). For

the aphids, extraordinary honeydew producers such as M. fuscoviride could be predicted using

the same functional form, but just using a different intercept (Fig 1). Cross validation indicated

good independent prediction accuracy for aphids (mean percentage error 26% and median

percentage error 22%), mealybugs (mean percentage error 28% and median percentage error

25%) and planthoppers (mean percentage error 30% and median percentage error 28%). For

leafhoppers (Cicadellidae), the best fit was achieved using an exponential model, which was

highly significant (p< 0.001) and satisfactorily accounted for both phloem- and xylem-feeding

leafhoppers, suggesting no significant difference between them (p = 0.40) (Fig 1). According to

cross validation, independent prediction accuracy was reasonable (mean percentage error 40%

and median percentage error 36%, Fig 1).

For both whiteflies (Aleyrodidae) and plantlice (Psyllidae) the null model was the best

model, possibly indicating that honeydew production did not change with body mass, but

more likely reflecting the paucity of data for these taxa (Table 2; S3 Appendix). Independent

prediction error with the null model was reasonable (Aleyrodidae: mean percentage error 26%

validation: observed against independently predicted values. The best model for Aphididae used a different intercept

term for the excessively high producing aphids Tuberolachnus salignus and Metopeurum fuscoviride (shown in red).

Similarly the best model for Coccoidea omitted the extremely low producer Dysmicoccus neobrevipes (not shown).

https://doi.org/10.1371/journal.pone.0201845.g001

Table 2. Equations for the model of best fit from Method 1 for different hemipteran families (see Fig 1 and S3

Appendix) where the amount of honeydew produced (y) is a function of body mass in μg (x) for a given family.

Hemipteran group Model of best fit Equation

Aphididae power-law y = 3.46x 0.3156

Coccoidea power-law y = 0.785x 0.672

Delphacidae power-law y = 1.229x 0.7692

Cicadellidae exponential y = 24.1e 0.001959x

Aleyrodidae null y = 1.55

Psyllidae null y = 7.99

https://doi.org/10.1371/journal.pone.0201845.t002
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and median percentage error 25%, Psyllidae: mean percentage error 35% and median percent-

age error 35%) but unreliable due to the paucity of data.

Honeydew prediction Method 2: Life stage and body mass

Hemipteran families displayed a consistent pattern of rapid honeydew production as early

instars, slowing with size and life stage (Fig 2). All three models (power, exponential and lin-

ear) predicting the honeydew produced as a percentage of body mass and as a function of

hemipteran life stage were highly significant. This indicates that honeydew production

varies with life stage and thus knowing life stage increases predictive power (p< 0.001 in

each case). The power model y = 30.6x-0.841 was the best model, indicated by a lower AIC than

the exponential and by-factor models (Fig 2, ΔAIC = 2.04 and 2.18, ΔAICc = 2.04 and 2.60,

Fig 2. Honeydew produced as a percentage of hemipteran wet body mass (μg) per hour against life stage of Hemiptera for 21 species (see S1

Appendix), showing actual values (circles), power model prediction (dark dashed line) and 95% prediction interval (lighter dash-dotted lines).

https://doi.org/10.1371/journal.pone.0201845.g002
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respectively). However, the amount of variation explained by each of the three models was low

(r2
power = 0.11, r2

exponential = 0.09 and r2
factor = 0.13). Cross validation of even the best power

model indicated low predictive accuracy of honeydew production for individual species (mean

percentage error = 219%, median error = 184%), indicating that a species’ honeydew produc-

tion must depend on many factors in addition to life stage. All hemipteran families assessed

tended to produce honeydew at a rate of 10% or less of body mass per hour once adulthood

was reached. Relative to their body mass, early instars had a significantly higher rate of honey-

dew production than later instars, despite the greater variability in production of early instars

(Fig 2).

Case study: Pseudococcids, honeydew and fire ant invasion in North

America

Helms and Vinson [22] estimated the amount of honeydew from tended hemipterans Anto-
nina graminis available to the invasive red imported fire ant S. invicta in North America, to

demonstrate the role played by honeydew in the invasion success of the ant. Because the family

of the honeydew producer is known (Pseudococcidae; Coccoidea), we re-estimated honeydew

production using our most accurate method, Method 1, and compared our result with that

estimated by Helms and Vinson [22] to demonstrate the utility of our method. Further details

of this case study can be found in S4 Appendix.

To obtain an estimate of honeydew produced using Method 1, we used the reported body

mass of A. graminis (1560 μg for adults; [22]) in our regression equation of our Coccoidea

model to yield an estimate of 109.8 μg honeydew per hour, per adult. We multiplied this hourly

rate by the average number of A. graminis individuals within tent shelters (10.48 ± 1.63 A. gra-
minis per shelter: [22]) that could be tended per S. invicta colony (822.2 A. graminis: [22]) to

obtain a total of 2.16 grams of honeydew per day, which is clearly much lower than the 21.6

grams per day estimated by Helms and Vinson [22]. We see two possible explanations for the

difference, firstly that Helms and Vinson [22] used the aphid Tuberolachnus salignus, an excep-

tionally high honeydew producer as we have shown (see Fig 1), as their model honeydew pro-

ducer. As A. graminis is a Pseudococcidae, we used our Coccoidea model, and the species in

this model were all much lower producersthan T. salignus. Secondly, Helms and Vinson [22]

do not state whether they included only adults or whether they counted the entire A. graminis
population within shelters, which could affect the amount of honeydew produced for the

entire colony (see S4 Appendix), although it is likely that it was primarily adults and 4th instars

(Helms pers. comm.). Thus, although we acknowledge the importance of honeydew as a criti-

cal resource, particularly in invasion mutualisms [24], our estimates suggest that A. graminis
honeydew production is much lower than estimates calculated on the basis of the production

rate of an unrelated hemipteran.

Discussion

We have developed a method whereby knowing the body mass and family of a honeydew pro-

ducer, a reasonably accurate estimate of honeydew production can be calculated. The best

model for Cicadellidae was an exponential model, and for Aphididae, Delphacidae and Coc-

coidea, it was a power model. There is great potential to develop models for new families using

this method as additional honeydew production data become available. Similarly, the existing

family-based models could continue to be improved in the future with more data, particularly

for data-deficient families from our study (i.e. Psyllidae, Aleyrodidae). If there is insufficient

evidence that honeydew production changes with increases in hemipteran body mass for fami-

lies, such as we found for Psyllidae and Aleyrodidae, Method 1 will provide a null (constant)
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model for predicting honeydew production. However, we expect that with sufficient data

Method 1 will provide a model where predicted honeydew production increases with body

mass.

Our second method based on body mass and life-stage was not as good at predicting honey-

dew production as Method 1 because the variation in honeydew production across the differ-

ent families was too large. For instance, parenchyma-feeders (e.g., Diapsididae, Typhlocybinae

—Cicadellidae) exude very little honeydew because of the composition of their food and their

anatomy [66]. In contrast, xylem-feeders (e.g., Cercopoidea, Cicadellidae: Cicadellinae) pro-

duce huge quantities of honeydew (Fig 2d) due to the lower nutritional quality of xylem

[67,68]. Without an alternative, however, Method 2 is currently the best method to use for

gross estimates of honeydew production when family is unknown, which may be the case

when trying to distinguish between difficult Coccoidea families, hemipteran colonies consist

of species from multiple families, only nymphs are present in the colony or a familial model is

lacking in method 1. We expect that future workers will be able to refine and develop method

2 to its full potential.

Honeydew production can be influenced by numerous factors, including life stage, hemip-

teran species, temperature, season, time of day, host plant species, density of hemipterans, lev-

els of carbon dioxide in the atmosphere, and host plant nutrition (e.g., [25,30,31,32,36,49,69]).

Tending by mutualist partners, as compared with no tending, can increase honeydew excre-

tion rates [70], but perhaps not significantly so [34,54,71]. The identity of the partner may also

be important; higher intensity of attendance by invasive ants can double honeydew production

compared to native ant tending [72]. Not all of these factors were considered in our models.

However, by basing our standardized method on insect body mass, the variation in production

from the different factors listed above should be partly accounted for. This is because increased

feeding activity under favourable conditions generally results in both a higher production of

honeydew and greater body weight gain. For example, intensive feeding studies on the brown

planthopper Nilaparvata lugens Stål have shown that when feeding on different strains of rice,

feeding activity and honeydew production were significantly higher (780% and 843%, respec-

tively) on the most susceptible variety of rice, and consequently planthoppers gained 406%

more weight on the variety susceptible to the planthoppers than on the resistant rice variety

[73]. Our model also does not incorporate honeydew sugar and amino acid composition,

which can change depending on host plant species [70], and influence the attractiveness of

honeydew for mutualists [42,74,75]. Conversely, tending by mutualists may itself change the

composition of honeydew [70,71]. Dungan et al. [76] provided a simple method to estimate

carbohydrate concentration within honeydew, although collection of honeydew was still

required.

Our method will be invaluable to researchers who cannot identify their target taxa lower

than familial level, or whose target taxa do not have published honeydew production rates and

the workers themselves do not have the means to measure it directly. Identification to hemip-

teran family and measuring wet body mass is relatively easy, and is likely to result in a more

accurate estimate of honeydew production than estimates based on an unrelated family or the

production of a single other species, the only options previously available (e.g., [22]; S4 Appen-

dix). Accurate estimates of honeydew production are immediately useful in a number of fields,

such as agriculture, forestry, biological invasions, and community ecology. For example, in

forestry and carbon farming our method could predict the loss of soluble carbons through

honeydew secretion, which may adversely affect the economic value of tree stands [77,78,79].

In agriculture our method can be used to predict the impact of honeydew producers on crop

or orchard yields by estimating the amount of honeydew produced and, consequently, the

growth of microfungi (sooty mould) which is detrimental to plant growth by inhibiting
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photosynthetic activity. Currently the density of honeydew-producers is used as an indirect

measure of the resulting sooty mould damage [80,81,82]. Our methods could also be used to

predict the amount of honeydew available for honey bees in the honeydew-honey industry in

South America and Europe [5,83]. Alternatively, quantifying the presence of honeydew may

indicate parasitoid effectiveness, as feeding on honeydew increases parasitoid longevity and

ultimately their success as biocontrol agents [84,85,86]. In invasion ecology, the colony growth

and rate of spread of invasive ants is often facilitated by honeydew producers [22,23,24,25],

and quantifying the amounts of honeydew available could provide more accurate information

for biosecurity risk analyses and biocontrol regimes. Quantifying honeydew can give us a bet-

ter understanding of food webs and nutrient fluxes in particular ecosystems [9,10,12,87]. For

example, ant manure is emerging as a major driver of nutrient exchange, with the availability

of honeydew both increasing ant manure rates [88] and altering the nutrients available [89].

The increased nutrient deposition may be advantageous for the plant, but then must be offset

against the amount that the hemipteran is consuming from the plant [90], which can be esti-

mated with our method. Hemiptera also contribute directly to soil nutrient loads through fall-

ing honeydew [12,13,14,15] which, again, can be estimated using our method.

Conclusion

We have provided a quick and relatively easy method to estimate honeydew production. By

providing rapid estimates of honeydew production rates without the need for laboratory trials

or detailed species-specific information, it will enable faster understanding of mechanisms

such as bottom-up processes (e.g., [91]) in critical systems, for example, the invasion of Christ-

mas Island by the yellow crazy ant [27]. We expect that this method will be further improved

with data from other species, particularly the Psyllidae and Aleyrodidae, for which the models

did not differ significantly from the null model most likely attributable to the lack of data (S3

Appendix), and from other honeydew-producing families, especially the larger-bodied insects.

However, the methods’ immediate availability for use in agriculture, invasion biology, forestry

and carbon farming should prove highly beneficial for these disciplines.
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