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Abstract: Organic room temperature persistent luminescence is a fascinating but still largely unexplored
phenomenon. Cyclic-triimidazole and its halogenated (Br, I) derivatives have recently revealed as
intriguing phosphors characterized by multifaceted emissive behavior including room temperature
ultralong phosphorescence (RTUP) associated with the presence of H-aggregates in their crystal structure.
Here, we move towards a multicomponent system by incorporating a fluoropyridinic fragment on the
cyclic-triimidazole scaffold. Such chromophore enhances the molecular properties resulting in a high
photoluminescence quantum yield (PL QY) in solution but preserves the solid-state RTUP. By means of
X-ray diffraction (XRD) analysis, theoretical calculations, steady-state and time-resolved spectroscopy
on solutions, polymethylmethacrylate (PMMA) blends and crystals, the nature of the different radiative
deactivation channels of the compound has been disclosed. In particular, the molecular fluorescence
and phosphorescence, this latter observed in frozen solution and in PMMA blends, are associated
to deactivation from S; and T; respectively, while the low energy RTUP, observed only for crystals,
is interpreted as originated from H aggregates.

Keywords: room temperature ultralong phosphorescence; organic phosphorescence; time resolved
spectroscopy; H aggregation

1. Introduction

Luminophores, characterized in the solid-state by prolonged emission after excitation removal
with lifetime longer than 0.1 s, are receiving great attention in the recent years [1,2], due to their
applications in emerging technologies spanning from anti-counterfeiting [3,4], bio-imaging [5,6],
lighting and display [7].

Compared to well-developed inorganic counterparts, organic materials showing room temperature
ultralong phosphorescence (RTUP) offer many advantages such as lower toxicity and higher
structural versatility.

Enhancing the efficiency of RTUP while maintaining long lifetimes is a great challenge, due to the
presence of multiple competitive decay channels. In this regard, the most evident role of crystal packing
is that of suppressing molecular motions and protecting from oxygen quenching. However, more
specific intermolecular interactions (H-aggregation, halogen and hydrogen bonding) can be decisive in
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activating RTUP [8-15]. In particular, the mechanism of RTUP in H-aggregated compounds relies on
the population of triplet excitons via intersystem crossing (ISC) from photoexcited singlet excitons
(usually S;), followed by H-aggregates exciton trapping and radiative relaxation of the trapped triplet
excitons to the ground state (Sp). Fast singlet-triplet ISC occurs when both the energy gap law and
El-Sayed rule are satisfied.

We have recently reported on the intriguing photophysical behavior of triimidazo [1,2-a:1",2"-c:1”,2"-e]
[1,3,5]triazine (TT) [9], and its Br- and I-derivatives [16-18], where exciton trapping by H aggregates
provides an effective means of stabilizing and protecting the triplet excitons formed through intersystem
crossing [9]. In particular, TT is characterized by crystallization-induced and mechanochromic emissive
behavior, as well as RTUP (1 s) at ambient conditions. The presence of one or multiple heavy (Br and I)
atoms on the TT scaffold greatly modifies both its molecular and solid-state photophysical behavior
resulting in a complex photoluminescence (PL) with emissions going from dual fluorescence (2F),
molecular phosphorescence (MP) to supramolecular room temperature phosphorescence (RTP) and
RTUP [16-18].

Here, a step forward in the chemistry and photophysics of TT-derivatives is accomplished
by insertion of a chromophoric fragment (2-fluoropyridine) on the trimidazolic scaffold. Organic
substituents are expected to modify the emissive properties at both molecular and, through different
packing arrangement, solid-state levels. Unfortunately, these effects are not predictable at this stage,
so that any new member of the TT-family represents a building block worth studying to get information
on this new and very intriguing class of emitters.

2. Results

3-(2-fluoropyridin-4-yl)triimidazo[1,2-a:1’,2"-c:1”,2"-¢][1,3,5]triazine, 1, containing the 2-fluoropyridine
moiety, has been synthetized by Suzuki-Miyaura coupling between 3-bromo-triimidazo[1,2-a:1",2’-c:1”,2"-¢]
[1,3,5]triazine and 2-fluoropyridine-4-boronic acid pinacol ester (Scheme 1).
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Scheme 1. Synthesis of 1.

The compound’s photophysical behavior is markedly different from that of parent TT being,
already as a molecule, quite fluorescent at room temperature and showing additional molecular
phosphorescence at 77 K. In fact, solutions of 1in CH3CN (107> M) display at 298 K absorption maxima
at 227 and 291 nm, and an emission band at 358 nm (® = 50 %), corresponding to radiative S;-Sy
deactivation (T = 4.26 ns, see Table 1 and Figure 1). Absorption and emission spectra in solvents of
different polarity (see Figure S7) reveal a weak positive solvatochromism for the low energy band and
a negative one for the high energy band (AA = 3 and 17 nm, respectively, from CHCl3 to CH3CN).

At 77 K, a slight blue shift (344 nm, T,y = 4.05 ns) of the fluorescent emission was observed by
exciting at 300 nm. Interestingly, at this low temperature, a weak phosphorescent low energy tail
appeared in the PL spectrum and could be isolated (454 nm, T,y = 1.63 s) from the fluorescent component
by selectively populating the Ty level (Aexc = 350 nm) (see Table 1 and Figure 2). On this regard,
the importance of direct Sy-T; excitation of organic phosphorescent compounds has been highlighted
by Huang and coworkers [19].
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Figure 1. 1in CH3CN (107° M) at 298 K: normalized absorption (black line), emission (Aexc = 300 nm,
red line) and excitation spectra (Aem = 358 nm, blue line).

Table 1. Photoluminescence data of 1 at 298 and 77 K.

298 K 77K
Sample 1 1
o )\abs Aem T ) )‘abs Aem T Py
@ (%) (nm) (nm) (Aexc 300nm) Origin (nm) (nm) (Aexc 300nm) Origin
0.44 ns (0.52),
1 290 358 4.26ns 2 $1-Sp 295 344 1.74 ns (0.40) $1-Sp
3
(CH5CN) 50 7.9 ns (0.08)
127 ms (0.07),
350 454 1640 ms (0.93) 4 T1-S0
1.78 ns (0.19), . 7.56 1s (0.10), }
301 373 5.02 ns (0.81) ° $1-50 306 385 16.87 ns (0.90) ° 515
1 403,424,  1.26 ms (0.40), i 401,425, 152 ms (0.45), i
(rystals) 2D 30832 e asmsen) v 3930 Ty 1307 ms 0556 TS0
175.95 ms (0.03),
500, 533 ggg 42%33 o 8227 s, 513 549 1190.09ms (049)  TH-S,
) ’ 2320.45 ms (0.48)”
0.84 s (0.28),
298 348 A -5
1(film) 2.06 ns (0.72)
0.57 ms (0.50),
415,436 550 (050)9 T1-So
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Figure 2. 1 in CH3CN (10_5 M) at 77 K: normalized emission (Aexc = 300 nm, black line; Aexc = 350 nm,
red line) and excitation (Aem = 343 nm, black dashed line; Aemy = 450 nm, red dashed line) spectra.
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Spin coated thin film of 1 dispersed in polymethylmethacrylate (PMMA) (6 wt.%) displayed at
298 K an intense fluorescent emission at 348 nm (Tay = 1.89 ns) together with a weak phosphorescent
component which can be isolated (415, 436 nm, T,y = 3.09 ms) from the fast emission by exciting at low
energy (Aexc = 360 nm) (see Table 1 and Figure 3).

Emission Intensity

T
360 480 600
wavelength (nm)

Figure 3. 6 wt.% loading 1:PMMA film at 298 K: normalized emission (Aexc = 300 nm, black line;
Aexc = 360 nm, blue line) and excitation (Aem = 348nm, black dashed line; Aeyn = 436 nm, blue dashed
line) spectra.

Crystals of 1 are characterized by multiple emissions. In particular, at 298 K, a fluorescent (373 nm,
Tay = 4.77 ns) and two phosphorescent (403, 424 and 446 nm, T,y = 11.64 ms; 547 nm, T,y = 417.78 ms)
bands, with overall quantum efficiency equal to 25%, were observed in the PL spectrum by exciting at
300, 360 and 480 nm respectively (see Figure 4 and Table 1). The two phosphorescences were separated
from the prompt emission in the delayed spectra (see Figure 4 bottom) where the longest-lived
component displays peaks at 546 and 592nm.

Emission Intensity

300 400 500 600 700
Wavelength (nm)
Figure 4. Crystals of 1 at 298 K. Upper panel: normalized emission (Aexc = 300 nm, black solid line;
Aexc = 360 nm, blue solid line; Aexc = 480 nm, red solid line) and excitation (Aem = 373 nm, black dashed
line; Aem = 425 nm, blue dashed line; Aemy = 570 nm, red dashed line) spectra. Bottom panel: normalized

phosphorescence spectra (Aexc = 300 nm; delay 200 pus, window 1 ms, blue dashed line; delay 5 ms,
window 20 ms, red solid line).

At 77 K the three emissions are still visible in almost the same position (see Figure 5 and Table 1),
but, for the lower energy phosphorescent band, much longer lifetimes are measured (up to 2s).



Molecules 2019, 24, 2552 50f11

Emisssion Intensity

300 400 500 600 700 800
Wavelength (nm)

Figure 5. Crystals of 1 at 77 K: normalized emission (Aexc = 300 nm, black line; Aexe = 360 nm, red line;
Aexc = 480 nm, blue line) and excitation (Aem = 375 nm, black dashed line; Aer, = 570 nm, blue dashed
line line) spectra.

Both phosphorescent emissions display vibronic replicas with energy separation (about 180 meV)
that can be associated to a vibronic progression involving the imidazole ring modes [20].

3. Discussion

In order to interpret the photophysical behavior of 1, theoretical calculations and single-crystal
X-ray diffraction analysis have been performed. DFT geometry optimization of 1, starting from its X-ray
molecular structure (see below), was first performed to investigate the behavior of the luminophor in
solution. Owing to the possible rotation around the single bond connecting the two chromophores,
the occurrence of other local minima, which can be present in solution besides that observed in
the crystal, has been then tested (see Figure S22). Due to the asymmetry generated by the fluorine
substitution, two independent and almost isoenergetic minima are present in the potential energy
surface, besides the symmetric ones with respect to the TT least squares (L.s.) plane. Except for the
different positions of the fluorine atom, the two conformations are quite similar, as denoted by the
dihedral angle between the Ls. planes through TT and 2-fluoropyridine, measuring 47° in the X-ray
derived geometry and 43° in the additional minimum. The rather twisted conformations suggest a
reduced conjugation between the aromatic moieties within the molecule. Moreover, the presence of
the fluorine atom grants some degree of polarity to the molecule (ng = 4.03 and 3.75 D in the two
conformations, respectively). TDDFT calculations on 1 in the two optimized conformations provide
very similar results, i.e., for the more stable one (see SI for the second minimum), a strong m—m*
transition (59—5; at 245 nm, f = 0.353, see Figure 6), dominated by the HOMO—LUMO contribution
with charge transfer (CT) character (from TT to 2-fluoropyridine), in the same direction as the ground
state dipole moment), followed by a weak one (Sp—S; at 234 nm, £=0.043) of mixed o/t—7* character.
One of the occupied MOs involved in the latter (HOMO-5, see Figure 6 and Figure S23) is, in fact,a
orbital except for a o contribution localized on a TT nitrogen atom.

Then a series of m—7* transitions are computed, whose envelope well reproduces the absorption
band observed at high energy. Among these transitions, the stronger one (Sp—Sg at 205 nm, f = 0.421) is
dominated by the HOMO—LUMO+1 contribution having CT character from 2-fluoropyridine to TT, i.e.
in the opposite direction with respect to Sy—S;. Accordingly, the computed Apleg = pe — pg (being pe
the excited state dipole moment) is almost vanishing (0.24 D) for Sy—Sg, unlike that of Sy—S; (2.88 D).
Accordingly, additional IEFPCM (TD)DEFT calculations on 1 in chloroform and acetonitrile, providing
dipole moments equal to 4.75 and 5.03 D, respectively, result into even more evident discrepancies
between the values of Apeg for the two transitions (4.68 and 5.47 D for Sp—S;; —1.74 and —2.32 D for
So—Se, in chloroform and acetonitrile respectively). Such results support the positive and the negative
solvatochromisms as observed for the low and high energy absorption bands, respectively, in different
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solvents. It should be mentioned, however, that IEFPCM calculations are able to reproduce only the
positive solvatochromism (by about 3 nm) of the low energy band. The high energy band, resulting
from the convolution of several transitions besides Sp—Sg, does not undergo essentially any shift by
changing the solvent, probably owing to a too low weight of Sy—Sg, with respect to the other high
energy excitations. Such a result is a consequence of the well-known difficulty of TDDFT to correctly
describe CT excited states.
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Figure 6. Electronic levels computed for 1 (left) and selected MO involved in the transitions (right) at
molecular level. In blue are reported the singlet levels with the corresponding oscillator strengths f.



Molecules 2019, 24, 2552 7 of 11

As far as the molecular phosphorescent emission observed at ca. 450 nm in frozen solution, TDDFT
calculations suggest that it can be associated with the presence of a Ty, level (at 250 nm, T7 in Figure 6)
with (o,7*) symmetry (where the occupied orbital, HOMO-4, is localized on pyridine) that allows fast
ISC from the close S; (mt,7m%) level (computed at 245 nm) according to El-Sayed rule. Phosphorescence
from T; then occurs after internal conversion (IC) from Ty. Its molecular origin is confirmed by the
presence of a long-lasting component at similar energy (ca. 430 nm) in spin-coated PMMA blend at
room temperature.

In agreement to what observed in solution and PMMA blends, the fluorescent and the high
energy phosphorescent bands of the crystals can be assigned to radiative deactivation from S; and
T; molecular levels, respectively. The additional phosphorescent emission is not recognizable as a
molecular contribution and to disclose its origin, we have investigated the single-crystal structure of 1.

Compound 1 crystallizes in the P-1 space group, forming infinite columns of equidistant face-to-face
stacked molecules along the crystallographic axis (see Figure 7). Along the column axis, molecules
are iso-oriented and placed at interplanar distances equal to 3.366 A with a rather small slippage
(1.9 A), short distances between centroids of triazinic rings (3.831 A) and high angle 0 (61°) between
the centroid-centroid vector and the projection of this vector on the molecular plane. Such stacking
features are indicative of H-aggregation in the structure of 1, though some differences with respect
to the stacking pattern of the parent TT structure [21] should be evidenced. The latter, in fact, shows
infinite ABAB ... alternating stacks where each molecule is rotated by 180°, with respect to the adjacent
ones, about an axis normal to the molecular l.s. planes, with alternating distances between average
molecular planes of 3.204 and 3.290 A and centroid-centroid distances of 3.733 and 3.949 A. The 7-7t
stacking mode of 1 is instead quite similar to that of the monoiodo-triimidazole derivative [18], forming
infinite columns of iso-oriented and equidistant face-to-face stacked molecules, though with larger
slippage (2.3 A, 8 = 55°) and longer distance between centroids of triazinic rings (4.097 A). Molecules
of 1 are laterally connected through several C-H---N and C-H---F close contacts (the shorter one being
C8-H8--N1, H-+N = 2.52 A, C-H--N = 170.5°) forming slightly corrugated planes. The dihedral angle
between ls. planes through TT and pyridine moieties measures 49.80°. This value, close to that
computed for the isolated molecule (47.00°), suggests minor conformational rearrangement from
solution to the solid-state.

Figure 7. Partial views along bc (left) and a directions (right) of 1 crystal structure showing columnar
H-aggregates (centroids of the triazinic rings shown as red circles) and hydrogen bonds (light blue
dashed lines).
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This crystal structure justifies both phosphorescent emissions (see Jablonski diagram reported
in Figure 8). The molecular (high energy) component, visible in solution only at 77 K, appears at
298 K in the solid due to the rigidifying effect and protection from oxygen quenching ascribable to
intermolecular interactions, and, on the other hand, the low energy phosphorescence can be associated
to the presence of H aggregates in the crystal structure, in agreement with previous findings on
compounds with the same triazinic scaffold [9,16-18]. This interpretation is in line to the results
obtained from the PMMA blend in which the molecular phosphorescence is visible at 298 K thanks
to the rigidifying effect of the PMMA matrix, while the low energy component is lacking due to the
absence of supramolecular organization of the phosphor into H aggregates.

So

Figure 8. Energy level diagrams showing transitions associated with fluorescence (blue) and
phosphorescence (black).

In summary, we have isolated and characterized a new member of the photophysically intriguing
TT family where the presence of a fluoropyridine fragment provides increased molecular performances,
comprising fluorescence and heavy atom free phosphorescence, still preserving solid-state RTUP.
This work adds a new building block to the knowledge of this family and to RTP organic phenomena
in general. From these results, the preparation of new multicomponent emitters can be envisaged.

4. Materials and Methods

4.1. General Information

All reagents and solvents were purchased from Merck (Darmstadt, Germany) and used without
further purification unless otherwise stated. 3-bromo-triimidazo[1,2-a:1,2"-c:1”,2”-¢][1,3,5]triazine was
prepared according to literature procedures [17]. 'H and 3C-NMR spectra were recorded on a Bruker
(Bruker Italia S.r.1. Milano, Italy) AVANCE-400 instrument (400 MHz), PE_-NMR spectra were recorded
on Bruker AVANCE DRX-300 instrument (300 MHz). Chemical shifts are reported in parts per million
(ppm) and are referenced to the residual solvent peak (DMSO, 'H 2.5 ppm, 3C 39.5 ppm) and to CFCl;
for 1%F resonances. Coupling constants (J) are given in hertz (Hz) and are quoted to the nearest 0.5 Hz.
Peak multiplicities are described in the following way: s, singlet; d, doublet, m, multiplet. Mass spectra
were recorded on a Thermo Fisher (Thermo Fisher Scientific, Waltham, MA USA) LCQ Fleet Ion Trap
Mass Spectrometer equipped with UltiMate™ 3000 HPLC system. UV-Visible spectra were collected
by a Shimadzu (Shimadzu Italia S.r.l., Milano, Italy) UV3600 spectrophotometer. Photoluminescence
quantum yields were measured using a C11347 Quantaurus—Absolute Photoluminescence Quantum
Yield Spectrometer (Hamamatsu Photonics K.K, Arese (MI), Italy), equipped with a 150 W Xenon
lamp, an integrating sphere and a multichannel detector. Steady-state emission and excitation
spectra and photoluminescence lifetimes were obtained using an FLS 980 (Edinburg Instrument
Ltd, Livingston, UK) and a Nanolog (Horiba Scientific, Piscataway, NJ, USA) spectrofluorimeter.
The steady-state measurements were recorded by a 450 W Xenon arc lamp. Photoluminescence lifetime
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measurements were performed using: Edinburgh Picosecond Pulsed Diode Laser EPL-375, EPLED-300,
(Edinburg Instrument Ltd, Livingston, UK) and microsecond flash Xe-lamp (60 W, 0.1 + 100 Hz) with
data acquisition devices time-correlated single-photon counting (TCSPC) and multi-channel scaling

(MCS) methods, respectively. Average lifetimes are obtained as T,y = %ATZTT% from bi-exponential or
three-exponential fits. Low temperature measurements are performed by immersion of the sample in
an LN, quartz dewar or with a variable temperature liquid nitrogen cryostat Oxford DN1704.

Compound 1 was obtained by Suzuki-Miyaura coupling between 3-bromo-triimidazo
[1,2-a:1",2"-c:1”,2"-¢][1,3,5]triazine and 2-fluoropyridine-4-boronic acid pinacol ester. The reaction was
performed under nitrogen in a Schlenk flask. 3-bromo-triimidazol[1,2-a:1’,2"-c:1”,2”-¢][1,3,5]triazine
(300 mg, 1.08 mmol), 2-fluoropyridine-4-boronic acid pinacol ester (340 mg, 1.52 mmol), cesium
carbonate (1.76 g, 5.40 mmol), tetrakis(triphenylphosphine)palladium(0) Pd(PPhs)4 (120 mg, 0.10 mmol)
and anhydrous toluene (10 mL) were transferred inside the Schlenk flask. The mixture was heated
at 110 °C under static nitrogen for 12 h. The reaction was then cooled to room temperature, diluted
with CH,Cl, (80 mL), filtered on buchner and evaporated to dryness. The crude product was washed
with hexane to remove Ph3PO (identified by 'H, 3'P-NMR and mass spectroscopy) and then purified
by column chromatography with AcOEt on silica gel (R¢ = 0.23) to give pure 1 (190 mg, yield 60%).
Crystals suitable for X-ray diffraction studies were obtained by layering a CH,Cl, solution of 1 with
hexane. Anal. Found. (calcd.): C, 57.18 (57.34); H, 2.61 (2.75); N, 33.53 (33.43).

Films of 1 dispersed in polymethylmethacrylate (PMMA) were prepared by spin coating (2000 rpm,
60 s) a dichloromethane solution (1/PMMA = 6 wt%; PMMA = 10 wt% with respect to the solvent) on a
glass substrate.

4.2. Single Crystal X-Ray Studies

X-ray data of 1 were collected on a Bruker Apex II diffractometer (Bruker AXS Inc., Madison, WI,
USA) using MoK« radiation [22]. The structure was solved using direct methods and refined with
SHELXL-14 [23] using a full-matrix least squares procedure based on F? using all data. Hydrogen
atoms were placed at geometrically estimated positions. Details relating to the crystal and the
structural refinement are presented in Table S1. Rather thin colorless tablets of 1 were grown at room
temperature by adding hexane to a CH,Cl, solution of the compound. Full details of crystal data and
structure refinement, in CIF format, are available as Supplementary Information. CCDC reference
number: 1913040.

4.3. Computational Details

DFT and TDDFT calculations on monomeric 1 were performed with Gaussian 16 program
(Revision A.03) [24] using the 6-311++G(d,p) basis set. Its geometry has been optimized starting from
the experimental molecular structure as derived from X-ray studies, both in vacuo and in solvent
(chloroform and acetonitrile) through the IEFPCM approach [25]. Scan calculations have been then
performed by varying a torsion angle connecting fluoropyridine with the TT moiety. For comparison
purposes, we have adopted the same functional wB97X [26] as used for calculations on the previously
reported parent cyclic triimidazole and its halogenated derivatives.

Supplementary Materials: The following are available online, Figures S1-S5: 'H, 1°F and '3C-NMR Spectra;
Figure S6: HPLC-MS profile; Figure S7: Absorption Spectra; Figures S8-518: Emission decay plots; Figure S519:
Ortep view with labelling scheme. Ellipsoids at 50% level of probability; Figure 520: wB97X/6-311++G(d,p)
computed absorption spectrum of optimized 1 resulting from convolution of the excitation energies (blue sticks)
with 0.25 eV of half-bandwidth; Figure S21: Electronic levels computed for TT (left) and 1 (right) at molecular
level. In blue are reported the singlet levels with oscillator strength f > 0.001 and the corresponding values of f;
Figure S22: Scan of total energy as a function of the N2C2C10C14 torsion angle; Figure 523: Isodensity surface plot
of the frontier orbitals of 1 mainly involved in the computed transitions (isosurface values: 0.03, energies in a.u);
Figure S24: Cyclic voltammetry patterns for 1; Table S1: Crystallographic data and structure refinement details;
Table S2: First TD-wB97X/6-311++G(d,p) So—Sn and To—Th, transitions computed for 1; Table S3: Selected cyclic
voltammetry data for 1 on GC electrode.
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