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Abstract: During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs
mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the
co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg
control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in
the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood,
and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated.
Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is
transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the
frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7
post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly
demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated
Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that
T-bet+ but not T-bet− Tregs are epigenetically stabilized during IAV-induced infection in the lung.

Keywords: influenza A virus; Tregs; lung; inflammation; methylation; Tbx21; Foxp3

1. Introduction

Regulatory T cells (Tregs) constitute a CD4+ T cell population that controls other
immune cells to limit immune reactions and guarantee tolerance towards the body’s own
cells, food or symbiotic microorganisms. A loss of Tregs leads to severe autoimmune
phenotypes such as scurfy in mice or IPEX in humans [1–4]. Foxp3 was identified as a
lineage-specification factor being essential for the functional properties of Tregs [5]. As a
part of the T cell compartment, the majority of the Foxp3+ Treg population originates from
the thymus [6]. In addition, a substantial proportion of Tregs develops in the periphery
via conversion of naïve CD4+ T cells into Foxp3+ Tregs under tolerogenic conditions to
prevent immune reactions against harmless antigens such as commensal and food-borne
antigens [7].
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The stable and continuous gene expression of Foxp3, which is critical for the main-
tenance of the functional properties of Tregs, is enabled by DNA demethylation of an
evolutionarily conserved region named Treg-specific demethylated region (TSDR), located
in the first intron of the Foxp3 gene locus [8]. Subsequent studies revealed that an active,
incremental demethylation process during thymic Treg development is involved, starting
upon Foxp3 induction, continued during further differentiation and completed after egress
into peripheral tissues [9,10]. It is important to note that regulation of gene expression
by epigenetic mechanisms is a common feature of T cell development, demonstrated
by changes of the methylation status in key gene loci such as Tbx21, Ifng, Il4 or Il17a
contributing to the functional phenotype of differentiated CD4+ T helper (Th) 1, 2 or 17
subsets [11].

A new era in Treg research began when it was discovered that Foxp3+ Tregs can
express Th cell-specific transcription factors such as T-box transcription factor 21 (T-bet),
GATA binding protein 3 (GATA3) or retinoic acid-related orphan receptor (ROR)γt [12–15],
demonstrating a high degree of heterogeneity and functional specialization within the
Treg population and providing strong evidence that Th cell-like transcriptional programs
in Tregs constitute a general mechanism for the specific control of CD4+ T cell-mediated
immune reactions [16]. T-bet+Foxp3+ Tregs were reported to be induced upon various
infections and to efficiently control Th1-mediated (auto) immune responses [13,17,18].
However, some aspects of the functionality of T-bet+ Tregs still remain unclear, as one report
described the suppression of CD8+ T cells in a Listeria monocytogenes-driven model [17],
whereas another recent study observed an increase in CD8+ tissue-resident memory T cells
(TRM) mediated by T-bet+ Tregs, thereby eliciting the clearance of pathogens during Eimeria
vermiformis and Yersinia pseudotuberculosis infections [19].

The CD4+ T cell response towards influenza A virus (IAV) infections not only involves
T follicular helper (Tfh) cells, which promote germinal center formation and antibody
production by B cells [20,21], but also is Th1-driven and includes the promotion of cytotoxic
responses [22]. Furthermore, the accumulation of Tregs in the lung, airways and lung-
draining lymph nodes (dLN) upon IAV infection was reported, with its peak preceding
that of effector T cell accumulation [23]. In addition, adoptively transferred TCR transgenic
Tregs were shown to upregulate T-bet upon IAV infection [24]. However, the precise
kinetics of the accumulation of Treg subsets, particularly T-bet-expressing cells, in IAV-
infected lungs has not been elucidated, and it is unknown whether the expression of the
lineage-specifying transcription factors is stabilized by epigenetic DNA mechanisms.

In the present study, we used an IAV infection model to describe the accumulation
dynamics of major T cell subsets within the lung and dLN during the course of the
infection. Particular emphasis was laid on the identification and epigenetic characterization
of Treg subsets within the infected lungs. While we observed a more durable alteration
of the ratio of CD4+ to CD8+ T cells within the lungs post-IAV infection resulting from
an increased and long-lasting accumulation of CD8+ T cells, the accumulation of T-bet+

Tregs was only transient. Notably, T-bet+ Tregs isolated from the lungs of IAV-infected mice
revealed a strongly demethylated Tbx21 locus and a more pronounced TSDR demethylation
when compared to their T-bet− counterparts, indicating that the T-bet+ Tregs transiently
accumulating in IAV-infected lungs are epigenetically stabilized in their lineage-specific
transcription factor gene loci.

2. Results
2.1. Durable Change in the Ratio of CD4+ to CD8+ T Cells in Lungs of IAV-Infected Mice

IAV infections pass through different phases of virus spreading in the host, accompa-
nied by different stages of immune responses [22]. To avoid any loss of information on the
T cell population dynamics during the course of the IAV infection, we performed in-depth
monitoring. Female mice of the same age were infected intranasally with a mouse-adapted
strain of IAV (PR8M), and the dynamics of major T cell populations within lungs and
dLNs were analyzed on Day 2, daily between four and fourteen days as well as 21 days
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post-infection (dpi) by flow cytometry. In accordance with previously published data [25],
we observed a significant increase in CD3+ T cells in IAV-infected lungs starting at 7 dpi
and exhibiting a peak around 8 and 9 dpi, both in terms of frequencies as well as absolute
numbers (Supplementary Figure S1A and Figure 1A). Within the CD3+ T cell compartment,
both CD4+ and CD8+ T cells accumulated at the site of infection in absolute numbers
(Figure 1B). However, CD8+ T cells accumulated to a greater extent than CD4+ T cells in
the lungs of IAV-infected mice, reflected by a drop of CD4+ T cell frequencies among total
CD3+ T cells. Importantly, this change in the ratio of CD4+ to CD8+ T cells in the lungs of
IAV-infected mice was more durable, as we did not see a recovery to baseline levels until
21 dpi (Figure 1B).

In dLNs, the frequencies of CD3+ T cells constantly, but only mildly, decreased during
the course of the IAV infection, while the absolute numbers were only transiently reduced
between 7 and 9 dpi (Figure 1C), coinciding with T cell accumulation in infected lungs
(Figure 1A) and possibly reflecting T cell recruitment to the site of infection. Only mild
changes in the proportion of CD3+ T cells were seen during the course of the IAV infection
in spleens, which were analyzed as controls (Supplementary Figure S2A). Within the CD3+

T cell compartment of dLNs, the ratio of CD4+ to CD8+ T cells was rather stable and only
showed a mild, transient drop in the frequency of CD4+ T cells accompanied by a mild,
transient increase in the frequency of CD8+ T cells at 4 and 5 dpi, both returning to baseline
levels already by 6 dpi (Figure 1D). During the entire course of the IAV infection, the
absolute numbers of CD4+ and CD8+ T cells within dLNs showed only mild fluctuations
(Figure 1D), and hardly any changes in the ratio of CD4+ to CD8+ T cells were observed in
spleens (Supplementary Figure S2B).

In summary, our data show that the accumulation of CD3+ T cells in IAV-infected
lungs is accompanied by a durable change in the ratio of CD4+ to CD8+ T cells, while only
mild, transient changes were observed in dLNs.

2.2. Two-Step Treg Accumulation Kinetics within IAV-Infected Lungs

Tregs were reported to coordinate the early protective immunity to viral infection
in a mouse model of Herpes Simplex Virus-2 (HSV-2) infection [26]. Accordingly, they
were found to accumulate slightly earlier than conventional T cells (Tconv) in IAV-infected
lungs [23]. We revisited this finding by closely following the kinetics of Tregs and Tconv
in IAV-infected lungs and dLNs. Within the lungs, the frequencies of Tregs increased
continuously and reached a plateau between 5 and 7 dpi (Figure 2A,B). This transient
increase was followed by a steady decline until 14 dpi, yet not reaching baseline levels.
Interestingly, the accumulation kinetics of absolute Treg numbers showed a two-step
pattern. A first small peak was observed at 4 dpi, followed by a short plateau until Day 6
and a subsequent strong increase (>5 fold) at 7 dpi (Figure 2B). Afterwards, the absolute
Treg numbers steadily declined until 14 dpi, finally reaching baseline levels at 21 dpi. It is
important to note that the absolute numbers of Tconv followed a similar course, showing a
highly comparable two-step accumulation kinetic as Tregs (Figure 2A,B).

In dLNs, the frequency of Tregs within the CD4+ T cell compartment was rather stable
upon infection, and only a mild drop was observed at 7 dpi, which rapidly returned to
baseline levels already between 8 and 9 dpi (Figure 2C,D). Similarly, the absolute numbers
of Tregs and Tconv within dLNs showed only mild fluctuations during the entire course
of the infection not reaching statistical significance (Figure 2D). With the exception of
a mild drop in the frequencies of Tregs at 2 dpi, no changes were observed in spleens
(Supplementary Figure S2C).

Together, our data suggest a two-step accumulation of Tregs and Tconv within IAV-
infected lungs with comparable kinetics. Under the conditions applied in the present study,
we did not observe that the accumulation of Tregs within IAV-infected lungs was preceding
the accumulation of Tconv.
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of PBS-treated and IAV-infected mice (7 dpi), gated on living lung lymphocytes. The graphs summarize frequencies (top) 
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depict frequency of CD3+ T cells in dLNs of PBS-treated and IAV-infected mice (7 dpi), gated on living dLN lymphocytes. 
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depict frequency of CD4+ and CD8+ T cells in dLNs of PBS-treated and IAV-infected mice (7 dpi), gated on CD3+ T cells. 

Figure 1. Kinetics of T cell accumulation during IAV infection. Foxp3hCD2 × Rag1GFP reporter mice were infected with IAV
and analyzed at indicated dpi. Lungs and dLNs were collected and prepared, and single-cell suspensions were restimulated
and subsequently analyzed by flow cytometry. (A) Representative dot plots depict frequency of CD3+ T cells in lungs of
PBS-treated and IAV-infected mice (7 dpi), gated on living lung lymphocytes. The graphs summarize frequencies (top) and
absolute numbers (bottom) of CD3+ T cells; (B) Representative dot plots depict frequency of CD4+ and CD8+ T cells in
lungs of PBS-treated and IAV-infected mice (7 dpi), gated on CD3+ T cells. The graphs summarize frequencies (top) and
absolute numbers (bottom) of CD4+ (black filled circles) and CD8+ T cells (gray filled circles); (C) Representative dot plots
depict frequency of CD3+ T cells in dLNs of PBS-treated and IAV-infected mice (7 dpi), gated on living dLN lymphocytes.
The graphs summarize frequencies (top) and absolute numbers (bottom) of CD3+ T cells; (D) Representative dot plots
depict frequency of CD4+ and CD8+ T cells in dLNs of PBS-treated and IAV-infected mice (7 dpi), gated on CD3+ T cells.
The graphs summarize frequencies (top) and absolute numbers (bottom) of CD4+ (black filled circles) and CD8+ T cells
(gray filled circles). Data were pooled from two to three independent experiments, which included 4–10 mice per group,
and presented as mean + SD. Mann–Whitney test was used to calculate statistical significance by comparing values from
untreated animals (for lung samples) or PBS-treated animals (for dLN samples) (0 dpi) with values from IAV-infected mice
(2 to 21 dpi). Significant changes are indicated by an asterisk.
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Figure 2. Peak of Treg accumulation coincides with that of Tconv in IAV-infected lungs.
Foxp3hCD2 × Rag1GFP reporter mice were infected with IAV and analyzed at indicated dpi. Lungs and
dLNs were collected and prepared, and single-cell suspensions were restimulated and subsequently
analyzed by flow cytometry; (A) Representative dot plots depict frequency of Foxp3hCD2+ Tregs
and Foxp3hCD2- Tconv among CD4+ T cells in lungs of PBS-treated and IAV-infected mice (7 dpi);
(B) Graphs summarize frequencies (top) and absolute numbers (bottom) of Tregs (black filled circles)
and Tconv (gray filled circles); (C) Representative dot plots depict frequency of Foxp3hCD2+ Tregs
and Foxp3hCD2- Tconv among CD4+ T cells in dLNs of PBS-treated and IAV-infected mice (7 dpi);
(D) Graphs summarize frequencies (top) and absolute numbers (bottom) of Tregs (black filled circles)
and Tconv (gray filled circles). Data were pooled from two to three independent experiments, which
included 4–10 mice per group, and presented as mean + SD. Mann–Whitney test was used to calculate
statistical significance by comparing values from untreated animals (for lung samples) or PBS-treated
animals (for dLN samples) (0 dpi) with values from IAV-infected mice (2 to 21 dpi). Significant
changes are indicated by an asterisk.
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2.3. Synchronized Accumulation of T-Bet Expressing Tregs and Tconv in IAV-Infected Lungs

Next, we analyzed the expression of T-bet and RORγt in T cell subsets isolated
from IAV-infected lungs to assess the functional specialization of the Tregs transiently
accumulating within IAV-infected lungs. The measurement of RORγt expression was
included since a recent report demonstrated the importance of early IL-17A production
by tracheal γδ T cells during clearance of IAV infection [27]. The flow cytometric analysis
revealed that the frequency of T-bet+ Tregs was only slowly increasing during the early
stages of the infection (4–6 dpi), followed by a rapid and strong increase at 7 dpi and
a subsequent stepwise return to baseline levels until 21 dpi (Figure 3A). In addition,
the expression levels of T-bet among T-bet+ Tregs, as assessed by the geometric mean
fluorescence intensity (gMFI), were also significantly increased in cells recruited at the
peak of the response (7 dpi) when compared to earlier stages of the infection (4 dpi)
(Supplementary Figure S3A), suggesting a gradual increase in T-bet expression levels in
T-bet+ cells during the course of the infection. At the same time, only a very small fraction
of Tregs within the IAV-infected lungs expressed RORγt at any time point. Remarkably,
a similar picture was observed for Tconv, which also showed a strong, but only transient
increase in the frequency of T-bet+ cells at 7 dpi followed by a stepwise decline, while
RORγt+ Tconv were essentially absent from IAV-infected lungs (Figure 3B). In line with
the findings for T-bet+ Tregs, the expression levels of T-bet among T-bet+ Tconv were also
significantly higher at 7 dpi when compared to 4 dpi (Supplementary Figure S3B). Together,
our data indicate that both T-bet+ Tregs and T-bet+ Tconv accumulate in IAV-infected
lungs in a highly synchronized manner, while RORγt was hardly expressed in both CD4+

T cell subsets.
To further determine the functional properties of the T cell subsets within the infected

lungs, we next analyzed the expression of IL-17A and IFN-γ in Tregs and Tconv by flow
cytometry. As expected from the RORγt measurements, the expression of IL-17A was nearly
absent in both CD4+ T cell populations (Supplementary Figure S4A). However, a significant
increase in IFN-γ expression was observed in Tconv at 7 dpi with a marked drop at 14 dpi,
whereas the frequencies of IFN-γ+ Tregs were rather low with marginal, yet significant
alterations at 11 and 14 dpi (Supplementary Figure S4B). In addition, we quantified several
cytokines and chemokines within the infected lungs at 7, 9 and 12 dpi. We observed a
significant increase in IL-12 (p40), IL-10 and IL-6 at selected time points when compared
to PBS-treated controls, while IL-12 (p70) levels remained unchanged (Supplementary
Figure S5A). Furthermore, we observed a strong upregulation of the inflammation-driving
chemokines CXCL1, CCL2, CCL3, CCL4 and CCL5 at 7 dpi followed by a decline over time
(Supplementary Figure S5A). Interestingly, in parallel to our observation of the two-step
accumulation of Tregs and Tconv in IAV-infected lungs, we observed high levels of the
IFN-γ-induced chemokine IP-10 (CXCL10) in the BALF already at 4 dpi with a further
significant increase at 7 dpi (Supplementary Figure S5B). In summary, our data suggest
that T-bet expression in Tregs is not triggering a strong IFN-γ expression during IAV
infection despite the marked increase in Th1-driving inflammatory mediators within the
infected lungs.

2.4. Increased Demethylation in Tbx21 and TSDR in T-Bet+ Tregs in IAV-Infected Lungs

The lineage-specific transcription factors Foxp3 and T-bet were shown to be regulated
by epigenetic mechanisms in Tregs and Th1 cells, respectively, including DNA methylation
changes in regulatory elements of their gene loci, which contribute to the stable expression
of the transcription factors [11,28–30]. To investigate whether T-bet+ Tregs accumulating in
IAV-infected lungs are epigenetically stabilized, we analyzed the DNA methylation status
of two differentially methylated regions (DMRs) within Tbx21 (Figure 4A) and of the TSDR
within Foxp3 in ex vivo isolated T cell subsets. At 10 dpi, T-bet+ and T-bet− Tregs as well as
corresponding Tconv subsets were isolated from lungs of IAV-infected mice by flow cytom-
etry. Genomic DNA from the sorted cells was utilized for the DNA methylation analysis
by pyrosequencing. The second DMR in Tbx21 (Tbx21_DMR2) was largely demethylated
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in both T-bet+ and T-bet− Tregs, with the latter showing a slightly higher variability
(Figure 4B). While T-bet+ Tconv also displayed a largely demethylated Tbx21_DMR2, in
T-bet− Tconv, the DNA methylation status at Tbx21_DMR2 was significantly increased,
showing, however, a high variability among the analyzed samples. The situation was
clearer for the first DMR in Tbx21 (Tbx21_DMR1). Here, we observed an almost complete
demethylation in T-bet+ Tregs and Tconv, while the corresponding T-bet− subsets were
more strongly methylated by a significant margin (Figure 4B). To address the question
of whether the epigenetic remodeling of the Tbx21 locus is already initiated in Tregs and
Tconv at earlier time points, namely, during the first and the main peak, we analyzed the
methylation status of Tbx21_DMR1 at 4 and 7 dpi, respectively. At both time points, the
Tbx21_DMR1 was already almost fully demethylated in T-bet+ Tregs and Tconv, while
the corresponding T-bet− subsets were strongly methylated (Supplementary Figure S6).
Together, these data suggest that this DMR plays a critical role for the epigenetic control of
Tbx21 expression and that the Tbx21 locus is already epigenetically remodeled in T-bet+

subsets at early time points of the infection.
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Figure 3. Lung Tregs show a dominant T-bet+ phenotype during IAV infection. Foxp3hCD2 × Rag1GFP reporter mice
were infected with IAV and analyzed at indicated dpi. Lungs were collected and prepared, and single-cell suspensions
were restimulated and subsequently analyzed by flow cytometry. (A) Representative dot plots depict T-bet and RORγt
frequencies among gated Foxp3hCD2+ Tregs from lungs of PBS-treated and IAV-infected mice (7 dpi). The graph summarizes
frequencies of T-bet+RORγt− Tregs (black filled circles) and T-bet−RORγt+ Tregs (gray filled circles) in lungs collected from
IAV-infected mice at the indicated dpi; (B) Representative dot plots depict T-bet and RORγt frequencies among gated Tconv
from lungs of PBS-treated and IAV-infected mice (7 dpi). The graph summarizes frequencies of T-bet+RORγt− Tconv (black
filled circles) and T-bet−RORγt+ Tconv (gray filled circles) in lungs collected from IAV-infected mice at the indicated dpi.
Data were pooled from two independent experiments, which included 5–9 mice per group, and presented as mean + SD.
Mann–Whitney test was used to calculate statistical significance by comparing values from untreated animals (0 dpi) with
values from IAV-infected mice (2 to 21 dpi). Significant changes are indicated by an asterisk.



Int. J. Mol. Sci. 2021, 22, 7522 8 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

both T-bet+ and T-bet− Tconv were strongly methylated at the TSDR, with T-bet− Tconv 
even showing a significantly stronger methylation (Figure 4C). 

Together, our data demonstrated a stronger demethylation of both Tbx21 (DMR2) 
and Foxp3 in T-bet+ when compared to T-bet− Tregs, indicating a more stable expression 
of T-bet and Foxp3 under the inflammatory conditions in IAV-infected lungs. 

 
Figure 4. Methylation analysis of Tbx21 DMRs and the TSDR in T-bet+ and T-bet− Tregs and Tconv from IAV-infected 
lungs. (A) Schematic overview of the chromosomal localization, gene structure, position of CpG motifs and analyzed 
DMR1 and DMR2 of the murine Tbx21 gene; (B,C) Lungs from IAV-infected animals were collected and prepared at 10 
dpi. T-bet+ and T-bet− Treg as well as Tconv subsets were immediately sorted by flow cytometry (see Supplementary 
Figure S1), and genomic DNA was prepared. The methylation status of Tbx21_DMR1, Tbx21_DMR2 and the TSDR was 
determined by pyrosequencing. The graph shows the mean methylation of the indicated regions for individual T-bet+ 
Tregs (black filled circle), T-bet− Tregs (open circle), T-bet+ Tconv (black filled square), or T-bet− Tconv (open square) 

Figure 4. Methylation analysis of Tbx21 DMRs and the TSDR in T-bet+ and T-bet− Tregs and Tconv from IAV-infected lungs.
(A) Schematic overview of the chromosomal localization, gene structure, position of CpG motifs and analyzed DMR1 and
DMR2 of the murine Tbx21 gene; (B,C) Lungs from IAV-infected animals were collected and prepared at 10 dpi. T-bet+

and T-bet− Treg as well as Tconv subsets were immediately sorted by flow cytometry (see Supplementary Figure S1), and
genomic DNA was prepared. The methylation status of Tbx21_DMR1, Tbx21_DMR2 and the TSDR was determined by
pyrosequencing. The graph shows the mean methylation of the indicated regions for individual T-bet+ Tregs (black filled
circle), T-bet− Tregs (open circle), T-bet+ Tconv (black filled square), or T-bet− Tconv (open square) populations. (D) Foxp3
expression levels are shown as geometric mean fluorescence intensity (gMFI) of the hCD2 reporter at indicated time points.
Each symbol represents data from cells isolated from an individual IAV-infected mouse, and data were pooled from two
independent experiments. Mann–Whitney test was used to calculate statistical significance by comparing values from T-bet+

Tregs or T-bet+ Tconv with T-bet− Tregs or T-bet− Tconv, respectively. Significant changes are indicated by an asterisk.
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We next analyzed the methylation status of the TSDR to assess the stability of Foxp3
expression [28], as it had been reported that the expression of T-bet in Tregs can affect the
size of the Treg population [31]. Interestingly, the TSDR methylation status was different
between T-bet+ and T-bet− Tregs. While T-bet+ Tregs exhibited an almost completely
demethylated TSDR, T-bet− Tregs showed a trend for an increased TSDR methylation
(p = 0.057) (Figure 4C, Supplementary Table S1), indicating a higher stability of Foxp3
expression in T-bet+ Tregs. Yet, the observed epigenetic differences in T-bet+ and T-bet−

Tregs did not result in differential Foxp3 expression levels 4, 7 or 9 dpi (Figure 4D). As
expected, both T-bet+ and T-bet− Tconv were strongly methylated at the TSDR, with T-bet−

Tconv even showing a significantly stronger methylation (Figure 4C).
Together, our data demonstrated a stronger demethylation of both Tbx21 (DMR2) and

Foxp3 in T-bet+ when compared to T-bet− Tregs, indicating a more stable expression of
T-bet and Foxp3 under the inflammatory conditions in IAV-infected lungs.

3. Discussion

In this study, we characterized the kinetics, phenotype, and epigenetic characteristics
of Tregs in the lungs of IAV-infected mice. We observed that the accumulation of CD3+

T cells in IAV-infected lungs is accompanied by a durable change in the ratio of CD4+ to
CD8+ T cells, resulting from a strong and long-lasting CD8+ T cell response. Furthermore,
we demonstrated that the IAV infection induces a robust, but transient Treg response
in the infected tissue, which coincides with the peak of Tconv. Interestingly, T-bet but
not RORγt is expressed in a substantial proportion of the Tregs within the infected lung.
Those T-bet+ Tregs displayed a strongly demethylated Tbx21 locus, and a slightly more
pronounced demethylation of the TSDR within the Foxp3 locus when compared to T-bet−

Tregs, suggesting that T-bet+ but not T-bet− Tregs are epigenetically stabilized during IAV
infection in the lung.

The dynamics of the accumulation of CD4+ and CD8+ T cells in IAV-infected lungs
with a peak at around 8 and 9 dpi observed in the present study are in accordance with
previously published reports [25,32]. Interestingly, the ratio of CD4+ to CD8+ T cells was
changed at an early stage of the infection. From 4 dpi onwards, it was dominated by
CD8+ T cells and did not convert back to baseline levels, highlighting the importance
of CD8+ T cells for the elimination of IAV-infected cells [33]). A first wave of CD4+ and
CD8+ T cells at 4 dpi was also observed in another study using the IAV strain X31 [34],
indicating the pioneer function of T cells for the initiation of further immune cell infiltration,
as recently demonstrated in an acute skin inflammation model [35]. Interestingly, in this
skin inflammation model, antigen-specific T cells only preferentially accumulated to the
inflamed site at early time points, suggesting that the bystander accumulation of non-
specific effector/memory T cells at later time points is a general feature in inflammation.
Importantly, in the present study, the kinetics of T cells in lung dLNs was different, showing
no increase in the frequency of CD3+ T cells and a rather stable ratio of CD4+ to CD8+ T
cells, indicating differential accumulation kinetics between the site of infection and the
dLNs and emphasizing the relevance of T cells within the infected tissue for the immune
defense [36].

Several studies have reported that IAV infection induces a robust, but transient, Treg
response within the infected tissue [23,24,37]. The finding that the Treg peak was preceding
that of effector T cells [23] led to the conclusion that Tregs might facilitate the entry of
effector cells into the site of infection to coordinate the early protective immunity against
pathogens as previously demonstrated for HSV-2 infection [26]. However, in the present
study, we did not observe an earlier accumulation of Tregs in IAV-infected lungs, but
rather noticed a highly synchronized, two-step accumulation of Tregs and Tconv. This
apparently contradictory finding does not exclude that the first Tregs entering the IAV-
infected lungs are facilitating the entry of effector cells into the infected site to coordinate
the early protective immunity against IAV. Yet, it is also possible that those Tregs, which are
migrating into the IAV-infected lungs at an early stage of the infection, mainly contribute
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to the prevention of over-shooting immune responses and excessive immunopathology as
reported before [37]. The precise functional role of the first Tregs entering the IAV-infected
lungs needs to be unraveled in future studies, and the impact the IAV-induced thymus
atrophy and the concomitantly altered thymic Treg generation [38] have in this process
also has to be determined.

Numerous studies have highlighted that Tregs residing in non-lymphoid tissues not
only exert immunosuppressive but also various non-canonical functions, including the
promotion of tissue repair mediated by amphiregulin [39]. During IAV infection, the
selective Treg deficiency of amphiregulin resulted in severe acute lung damage without
any detectable alterations in Treg suppressor function, antiviral immune response, and
viral load, demonstrating the direct and non-redundant role of Tregs in tissue repair dur-
ing infectious lung injury [40]. Tissue-resident Tregs are known to acquire their unique
phenotypic and functional properties in a stepwise process by transitioning through a pre-
cursor stage in secondary lymphoid organs and terminal differentiation in their respective
tissues [41,42]. While our data indicate that T-bet can swiftly be co-expressed by Tregs
accumulating in lungs during IAV infection, they do not allow for dissecting if T-bet is
induced on tissue-resident and/or newly recruited Tregs.

Under steady-state conditions, T-bet expression in Tregs seems to be dispensable [13],
in contrast to other transcription factors such as IRF4 or STAT3, whose deficiencies in
Tregs result in spontaneous immune-mediated inflammation [43,44]. However, under
Th1-favoring conditions, when T-bet is rapidly induced in Tregs, the impaired capacity of
T-bet-deficient Tregs to co-localize with Th1 cells and specifically suppress their responses is
readily uncovered [13,17,18]. Thus, it is highly likely that during IAV-induced infection, and
also during other Th1-dominated infections such as lymphocytic choriomeningitis virus
(LCMV), vaccinia virus (VV), and Legionella pneumophila, which all show a similar transient
accumulation of T-bet+ Tregs within the infected tissue [18], T-bet+ Tregs control the Th1-
driven immune response. However, whether T-bet+ Tregs in IAV-infected lungs also
promote the generation of CD8+ TRM cells by providing TGF-β as recently reported [19] or
contribute to tissue repair following the inflammatory response remains to be determined.

The molecular factors mediating the induction of T-bet in Tregs during Th1 responses
are incompletely understood. Previously, it was reported that T-bet expression in Tregs is
induced by an IFN-γ- and Stat1-dependent, but IL 12-independent, signaling pathway [13].
In addition, IL-27 was shown to promote the expression of T-bet in Tregs, particularly
at mucosal sites; however, transcriptional profiling studies revealed that T-bet+ Tregs
generated upon exposure to either IFN-γ or IL-27 are different, suggesting that these
two cytokines have different roles in Treg biology [45]. It is tempting to speculate that
T-bet− Tregs and Tconv would readily upregulate T-bet expression within the lung if
stimulated appropriately as findings of the present study have demonstrated a partially
demethylated Tbx21 locus for both lung-derived T cell subsets, suggesting a ‘poised’ state
that is different from that of naïve CD4+ T cells which display an almost completely
methylated Tbx21 locus [30]. In addition to cytokine-driven signals, signals via the TCR are
also critically required for the epigenetic imprinting of T cells, as recently demonstrated for
the development of Foxp3+ Tregs [46]. Moreover, an involvement of TCR signaling strength
was underpinned by the finding that the expression level of T-bet in in vitro stimulated
Tregs was directly dependent on the TCR trigger, and that the TCR repertoire between
CXCR3+ and CXCR3− Tregs differs [47]. Therefore, it is likely that combined signaling
events regulate the epigenetic modification of the Tbx21 locus in Tregs in an inflammatory
environment, and it is also plausible that specific TCR signals received by T-bet+ Tregs
contribute to the slightly more pronounced demethylation of the TSDR. Yet, we did not
observe higher Foxp3 expression levels among T-bet+ Tregs. Further research is needed to
unravel the exact molecular mechanisms and the role of the cytokines IFN-γ and IL-27 in
combination with TCR signaling to mediate the specific demethylation of the Tbx21 locus
in Tregs.
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The inflammatory environment induced by the IAV infection in mice is probably
counteracting to the peripheral de novo induction of Tregs [48] and arguing against a
parallel induction of regulatory- and Th1-driven transcription to generate T-bet+ Tregs.
Another origin of the T-bet+ Tregs could be Th1 cells, although they were described as a
rather stable Th lineage with limited plasticity [49]. Yet, a recent publication described the
induction of Foxp3 expression in resting IFN-γ+ Th1 cells in vitro [50]. However, a link
to the observation in IAV-infected animals seem to be improper, as in the in vitro culture
system, converted Th1 cells originate from a cytokine-free resting phase, show no signs of
epigenetic regulation in the Foxp3 gene locus and continuously express IFN-γ. Therefore,
it is most likely that in the present study T-bet+ Tregs originate from T-bet− Tregs and
partially adopt Th1-driven molecules such as CXCR3 but not IFN-γ.

T-bet+ Tregs isolated from IAV-infected lungs showed an almost completely demethy-
lated TSDR, demonstrating a high stability of the Treg phenotype within this inflammatory
environment [8,51]. Furthermore, the Tbx21 locus was also strongly demethylated, al-
ready at early time points, indicating a stable T-bet expression among the first wave of
immigrating/appearing T-bet+ Tregs. Indeed, such an intrinsic stability of T-bet+ Tregs
was recently reported in a Th1-driven bacterial infection model [17]. However, it is still
controversially discussed whether functional Treg specialization is paralleled by mem-
ory generation and whether Tregs can long-lastingly acquire phenotypic or functional
changes upon inflammation or antigen-specific activation. One study had reported that
although inflammation-experienced Tregs can be maintained long term, they reversed
many activation-induced transcriptional and epigenomic changes and lost their enhanced
suppressive function over time [52]. The contrary was observed for Tregs induced upon
IAV infection [37]. Here, adoptive transfer of IAV-induced memory but not naïve Tregs
significantly attenuated body weight loss, lung pathology and immune cell infiltration into
IAV-infected lungs, suggesting that Tregs can differentiate into cells with enhanced sup-
pressive function upon infection [37]. Yet, this concept could not be generalized as adoptive
transfer of infection-experienced Tregs generated upon acute LCMV or VV infections did
not result in an enhanced suppressive capacity upon re-challenge when compared to the
adoptive transfer of naïve Tregs [53], suggesting that Tregs do not always form functional
memory upon viral infections. Future studies need to unravel if systemic immune re-
sponses differ from local ones in their capacity to generate functional memory among Tregs,
and if the known impact of tissues on the unique epigenetic signatures of tissue-resident
Tregs [42] is involved in the stabilization of functional properties in Tregs to prevent overt
immunopathology in recurrent infections.

4. Materials and Methods
4.1. Mice and Virus

Foxp3hCD2 × Rag1GFP reporter mice [51,54] on a C57BL/6 background or wild-type
C57BL/6 mice were bred and maintained at the animal facility of the Helmholtz Centre
for Infection Research (Braunschweig, Germany). Importantly, in the reporter mice, hCD2
expression accurately correlates with Foxp3 expression, even upon in vitro stimulation [51].
All mice were housed under specific pathogen-free conditions in isolated, ventilated cages,
and handled in accordance with good animal practice as defined by FELASA (Federation
of European Laboratory Animal Science Associations) and the national animal welfare
body GV-SOLAS (Society for Laboratory Animal Science). All animal experiments were
approved by the Lower Saxony Committee on the Ethics of Animal Experiments as well as
the responsible state office (Lower Saxony State Office of Consumer Protection and Food
Safety) under the permit number 33.19-42502-04-15/2058 (date of approval: 30 January
2016) or 33.19-42502-04-16/2319 (date of approval: 4 November 2016). In all experiments,
female mice at the age of six weeks were used, and for the infection experiments, the
mouse-adapted strain PR8M of IAV H1N1 was used. The virus was grown on the MDCK
cell line, harvested as a supernatant of the cultures, aliquoted and stored at −80 ◦C. A total
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of 666 focus-forming units (ffu)/20 µL phosphate-buffered saline (PBS) (Gibco/Fisher
Scientific, Schwerte, Germany) were given intranasally to anesthetized mice.

4.2. Isolation of Cells from dLNs, Spleens and Lungs

Single-cell suspensions were prepared from dLNs or spleens by using a 100 µm cell
strainer, and cleared from erythrocytes by incubation with ammonium chloride buffer at
room temperature for 3 min. Isolation of cells from the lungs of IAV-infected or uninfected
control mice was performed according to a protocol modified from Wilk and Schughart [55].
Briefly, mice were perfused with PBS until lungs became pale pink. Then, lungs were
collected and cut into small pieces, which were digested using 0.2 mg/mL collagenase D
(Roche, Basel, Switzerland) and 10 µg/mL DNaseI (Roche). To purify lymphocytes, lysates
were mixed with 40% Percoll (Fisher Scientific, Schwerte, Germany) and layered on top
of a 70% Percoll layer. The mixture was centrifuged at 780× g at 4 ◦C for 30 min without
brake. Finally, lymphocytes were collected from the interface between the two layers.

4.3. Antibodies and Flow Cytometry

Flow cytometric analysis was performed as described recently [56]. In brief, single-cell
suspensions were prepared from dLNs, spleens and lungs. If not stated otherwise, cells
were restimulated by incubation with phorbol 12-myristate 13-acetate (PMA; 10 ng/mL,
4 h; Sigma-Aldrich, St. Louis, MO, USA) and ionomycin (0.5 µg/mL, 4 h; Sigma-Aldrich)
with the addition of Brefeldin A (10 µg/mL; Sigma Aldrich) for the final two hours.
Subsequently, cells were labeled directly with the following fluorochrome-conjugated
anti-mouse antibodies purchased from either BioLegend (San Diego, CA, USA), BD Bio-
sciences (Franklin Lakes, NJ, USA) or eBioscience/Thermo Fisher Scientific (San Diego,
CA, USA): CD3-PE-Cy7 (17A2), CD4-BV605 (RM4-5), CD8α-V500 (53-6.7), human CD2-
APC (RPA-2.10), human CD2-PerCP-Cy5.5 (RPA-2.10), human CD2-BV421 (RPA-2.10),
RORγt-BV421 (Q31-378), T-bet-PE (eBio4B10 (4B10)), IL-17A-APC (TC11-18H10.1), and
IFN-γ-FITC (XMG1.2). Intracellular staining of cytokines and transcription factors was
performed by employing the eBioscience™ Intracellular Fixation and Permeabilization kit
(Thermo Fisher Scientific). Dead cells were excluded by using the LIVE/DEAD™ Fixable
Blue stain kit (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). For analysis of
transcription factor expression in lung Tregs, the cells were gated according to the expres-
sion level of T-bet and RORγt among the CD3+CD4−CD8− population, which showed
a clearly demarcated T-bet+ and RORγt+ population. Flow cytometric analysis was per-
formed on LSRFortessa™ flow cytometer (BD Biosciences), and data were analyzed with
FlowJo software (BD Biosciences).

4.4. Cell Sorting

Single-cell suspensions from digested lungs taken from IAV-infected mice were imme-
diately stained with the following fluorochrome-conjugated antibodies (purchased from
either BioLegend, BD Biosciences or eBioscience/Thermo Fisher Scientific): CD3-PE-Cy7
(17A2), CD4-BV605 (RM4-5), CD8α-V500 (53-6.7), human CD2-PerCP-Cy5.5 (RPA-2.10).
Intracellular staining was performed as mentioned above, and Tregs and Tconv were
sorted as either CD3+CD4+CD8−Foxp3hCD2+T-bet+, CD3+CD4+CD8−Foxp3hCD2+T-bet−,
CD3+CD4+CD8−Foxp3hCD2−T-bet+, or CD3+CD4+CD8−Foxp3hCD2−T-bet− (Supplemen-
tary Figure S1). BD FACSAria™ Fusion (BD Biosciences) was employed for cell sorting.

4.5. DNA Methylation Analysis

Genomic DNA was isolated from sorted cells using the NucleoSpin Tissue kit (Macherey-
Nagel, Dueren, Germany) in accordance with the manufacturer’s protocol with minor
modifications. In an additional step, Chelex-100 beads (Biorad, Hercules, CA, USA)
were added after the lysis step and incubated at 95 ◦C for 15 min in a shaker to re-
lease the formaldehyde-induced crosslinks. Beads were spun down, the supernatant
was transferred to a new tube and complemented with an adjusted amount of 99.8%
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ethanol (Merck, Darmstadt, Germany). The column-based purification was completed
according to the manufacturer’s protocol. The DNA concentration was assessed with a
Nanodrop 1000 spectrophotometer (Peqlab, Erlangen, Germany). Methylation analysis
of two differentially methylated regions in Tbx21 (Tbx21_DMR1, Tbx21_DMR2) and the
Treg-specific demethylated region (TSDR) within the Foxp3 gene locus was performed by
pyrosequencing: Bisulfite conversion was achieved using the EZ DNA Methylation Kit
(Zymo Research, Irvine, CA, USA) according to the standard procedure. Tbx21_DMR1,
Tbx21_DMR2 or the TSDR were amplified by PCR using bisulfite-converted DNA, the
primers mTbx21-1-for (5′-TATTTAGAGAAGGATTGGGGGAGT-3′) and mTbx21-1-rev (5′-
bio-CCCAAAAAACACTACTAAAATATATTCC-3′) or mTbx21-2-for (5′-bio-AATAGGAA-
GAAGAGTTTGGAGTTTT-3′) and mTbx21-2-rev (5′-ACCAAAAAAATAAAAATTACCAA-
CAATTAA-3′) or mTSDR-for (5′-bio-TAAGGGGGTTTTAATATTTATGAGGTTT-3′) and
mTSDR-rev (5′-CTAAACTAACCAACCAACTTCCTA-3′) and the ZymoTaq PreMix (Zymo
Research) following the manufacturer’s protocol. The amplificates were sequenced by py-
rosequencing, using the sequencing primer mTbx21-1-seq1 (5′-GGATTGGGGGAGTAGA-
3′), mTbx21-2-seq1 (5′-CTCTTACCTACTAAAAAAACCTTT-3′), mTbx21-2-seq2 (5′-ACTA-
CACACTAACTAACTC-3′), mTSDR-seq1 (5′-ACCCAAATAAAATAATATAAATACT-3′)
mTSDR-seq2 (5′-ATCTACCCCACAAATTT-3′), or mTSDR-seq3 (5′-AACCAAATTTTTCTA-
CCATT-3′) on a Pyromark Q24 (Qiagen, Hilden, Germany) and analyzed following the man-
ufacturer’s instructions. Characterized CpG motifs are located on chromosome 11:97109288-
97109359, 97113285-97113341 (Tbx21) or chromosome X:7583986-7584149 (Foxp3) (GRCm38.p6).

4.6. Cytokine/Chemokine Measurement

Lungs from PBS-treated and IAV-infected mice were prepared, homogenized and
lysed using the Bio-Plex Cell Lysis Kit according to the manufacturer’s instructions (Bio-
Rad Laboratories). Cytokine/chemokine measurement with Bio-Plex Pro Mouse Cytokine
23-plex Assay Kit (Bio-Rad Laboratories) was performed as described recently [38].

For isolation of the bronchoalveolar lavage fluid (BALF), the trachea of IAV-infected
mice were punctured and a vein catheter was inserted. BALF was obtained by flushing
the lungs using 1 mL PBS and cleared by centrifugation (420× g, 10 min). Levels of IP-10
(CXCL10) were determined by using the Mouse CXCL10/IP-10/CRG-2 DuoSet ELISA
(R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions.

4.7. Statistical Analysis

The GraphPad Prism v7.0 (GraphPad Software, San Diego, CA, USA) was used to
perform all statistical analyses. Data are presented as mean + standard deviation (SD)
or mean ± SD. For the comparison of unmatched groups, the two-tailed Mann–Whitney
test was performed and the p-values were calculated with the long-rank test (Mantel–
Cox). For the statistical analysis of the CXCL10 concentrations obtained from BALF, a
two-tailed, unpaired t test with Welch’s correction was performed. A p-value below
0.05 was considered significant and is indicated in the figures by a single asterisk to
increase readability. The detailed classification of differences in cell frequencies, numbers,
methylation values into * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns (not
significant) can be found in Supplementary Table S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22147522/s1.
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