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Abstract: Mosquito-borne diseases can pose serious risks to human health. Therefore, mosquito
surveillance and control programs are essential for the wellbeing of the community. Further,
human-assisted mosquito surveillance and population mapping methods are time-consuming, labor-
intensive, and require skilled manpower. This work presents an AI-enabled mosquito surveillance
and population mapping framework using our in-house-developed robot, named ‘Dragonfly’, which
uses the You Only Look Once (YOLO) V4 Deep Neural Network (DNN) algorithm and a two-
dimensional (2D) environment map generated by the robot. The Dragonfly robot was designed
with a differential drive mechanism and a mosquito trapping module to attract mosquitoes in the
environment. The YOLO V4 was trained with three mosquito classes, namely Aedes aegypti, Aedes
albopictus, and Culex, to detect and classify the mosquito breeds from the mosquito glue trap. The
efficiency of the mosquito surveillance framework was determined in terms of mosquito classification
accuracy and detection confidence level on offline and real-time field tests in a garden, drain perimeter
area, and covered car parking area. The experimental results show that the trained YOLO V4 DNN
model detects and classifies the mosquito classes with an 88% confidence level on offline mosquito
test image datasets and scores an average of an 82% confidence level on the real-time field trial.
Further, to generate the mosquito population map, the detection results are fused in the robot’s 2D
map, which will help to understand mosquito population dynamics and species distribution.

Keywords: robot; mosquito surveillance; deep learning; computer vision; mapping

1. Introduction

Mosquito-borne diseases remain a significant cause of morbidity and mortality across
tropical regions. Thus, mosquitoes are considered a significant problem for human health.
The mosquito transmits infectious pathogens to humans through bites, serving as vectors
of diverse life-threatening diseases such as dengue, chikungunya virus, dirofilariasis,
malaria, and Zika. In Singapore, the National Environmental Agency (NEA) has stated
open perimeter drains, covered perimeter drains, covered car parks, and roadside faulty
drainage sites as the most common breeding habitats for mosquitoes in public areas [1].
Hence, routine mosquito surveillance is essential for effective control of the mosquito
population. According to the Integrated Mosquito Management (IMM) program, mosquito
surveillance includes inspecting breeding sites, identifying mosquito types, and measuring
the critical environment through mosquito population mapping. However, conventional
surveillance methods such as manual inspection are used to detect and classify mosquitoes,
which are time-consuming, difficult to monitor, and labor-intensive. Thus, automation of
mosquito surveillance and breed classification needs to be a high priority.

Various human-assisted methods have been used for mosquito surveillance in the past
decade. For example, thermal fogging trucks, pesticides, and electrical traps have been
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regularly and effectively used for mosquito surveillance. Further, traps can be divided
into active traps (visual, olfactory, or thermal cues) and passive traps (suction fans). In
the literature, various mosquito trapping devices, such as the Biogents sentinel trap [2],
heavy-duty Encephalitis Vector Survey trap (EVS trap) [3], Centres for Disease Control
miniature light trap (CDC trap) [4], Mosquito Magnet Patriot Mosquito trap (MM trap) [5],
MosquiTrap [6], and Gravitrap [7], have been reported. These devices use various tech-
niques, such as a fan, contrast light, scent dispenser, carbon dioxide, and magnets, to
target mosquitoes and breeding sites. These methods are labor-intensive and consume a
lot of time. However, the efficiency of these tracking devices is greatly influenced by the
device’s location, time of deployment, number of devices, and the extent and duration of
the transmission. The contribution and efficiency of such devices are quite uncertain due
to the complex interplay of multiple factors. Lastly, mosquito surveillance and mosquito
population mapping require a highly skilled workforce.

Recently, machine learning (ML) approaches have been widely used for mosquito
detection and classification tasks. Here, Artificial Neural Network (ANN), Decision Trees
(DT), Support Vector Machines (SVM), and Convolutional Neural Networks (CNNs) are
the most commonly used methods. Among these techniques, CNN-based frameworks
are the more popular mosquito detection and classification tool. In [8], Kittichai et al.
presented a deep learning-based algorithm to simultaneously classify and localize the
images to identify the species and the gender of mosquitoes. The authors reported that the
concatenated two YOLO V3 models were optimal in identifying the mosquitoes, with a
mean average precision and sensitivity of 99% and 92.4%, respectively. In another study,
Rustam et al. proposed a system to detect the presence of two critical disease-spreading
classes of mosquitoes [9]. The authors introduced a hybrid feature selection method named
RIFS, which integrates two feature selection techniques—the Region of Interest (ROI)-based
image filtering and the wrapper-based Forward Feature Selection (FFS) technique. The
proposed approach outperformed all other models by providing 99.2% accuracy. Further,
a lightweight deep learning approach was proposed by Yin et al. for mosquito species
and gender classification from wingbeat audio signals [10]. A one-dimensional CNN was
applied directly on a low-sample-rate raw audio signal. The model achieved a classification
accuracy of over 93%. In [11], the authors proposed a deep learning-based framework for
mosquito species identification. The Convolutional Neural Network comprised a multi-
tiered ensemble model. The results demonstrate the model as an accurate, scalable, and
practical computer vision solution with 97.04 ± 0.87% classification accuracy. Motta et al.
employed a Convolutional Neural Network to accomplish the automated morphological
classification of mosquitoes [12]. In their research, the authors compared LeNet, GoogleNet,
and AlexNet’s performance and concluded that GoogleNet outperformed all other mod-
els, with a detection accuracy of 76.2%. Lastly, Li-Pang, in [13], proposed an automatic
framework for the classification of mosquitoes using edge computing and deep learning.
The proposed system was implemented with the help of IoT-based devices. The highest
detection accuracy that the authors reported was 90.5% on test data.

Robot-assisted surveillance has become an attractive solution for performing various
automated tasks. It has widely been used for bringing a certain degree of quality and
precision that human labor would be unable to maintain consistently for long periods. In
the literature, various robot-assisted applications, such as crawl space inspection, tunnel
inspection, drain inspection, and power transmission line fault detection, have been re-
ported. In [14], the authors designed an insect monitoring robot to detect and identify
Pyralidae insects. The contours of Asian Pyralidae insect characteristics are selected using
the Hu moment feature. The authors reported a recognition rate of 94.3%. In [15], Kim et al.
proposed a deep learning-based automatic mosquito sensing and control system for urban
mosquito habitats. The Fully Convolutional Network (FCN) and neural network-based
regression demonstrated a classification accuracy of 84%.

In [16], the authors proposed Unmanned Aerial Vehicles (UAVs) for identifying
malaria vector larval habitats (Nyssorhynchus darlingi) and breeding sites with high-
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resolution imagery. The results demonstrated that high-resolution multispectral imagery
where Nyssorhynchus darlingi is most likely to breed can be obtained with an overall
accuracy of 86.73–96.98%. Another study by Dias et al. proposed the autonomous detection
of mosquito breeding habitats using a UAV [17]. Here, the authors used a random forest
classifier algorithm and reported detection accuracy of 99% on the test dataset.

This work presents an AI-enabled mosquito surveillance and population mapping
framework using our in-house-developed robot, Dragonfly. Our research studies ento-
mological characterizations of mosquitoes and obtains the required information to detect,
classify, and map various breeds of mosquitoes in various environments. The main ob-
jective of the Dragonfly robot developed is to identify the mosquito hotspots and trap
and kill mosquitoes by attracting the insects towards it. Moreover, from a pest control
management perspective, it is crucial to identify mosquito distribution in a given region to
take countermeasures to restrict the infestation effectively. Public health experts can also
study the mosquito population and deploy necessary mosquito management programs.
These programs help to effectively control the mosquito population and protect humans
from life-threatening mosquito-borne diseases. Currently, a real-time deployable robot
system for mosquito surveillance infestation control is lacking, which makes our research
valuable to the community.

This paper is organized as follows. Section 1 presents an introduction and literature
review. Section 2 provides the methodology and an overview of the proposed system. The
experimental setup, findings, and discussion are covered in Section 3. Finally, Section 4
concludes this research work.

2. Overview of the Proposed System

Figure 1 shows the overview of our deep learning-based robot-assisted mosquito
surveillance and population mapping framework. The framework uses our in-house-
developed differential drive robot named ‘Dragonfly’, constructed with a UV-powered
mosquito trap and a deep learning (DL) computing source to detect and classify the trapped
mosquitoes. The details of each module and its description are as follows.

Figure 1. Overview diagram of proposed framework.

2.1. Dragonfly Robot Architecture

This section briefly explains the architecture of the Dragonfly robot. Figure 2 shows a
detailed diagram of the robot and Figure 3 shows the system architecture of the Dragonfly
robot. The Dragonfly robot is a differential-drive mobile robot base with three points of
contact to the ground. Two BLDC motors with integrated velocity control and a passive
caster wheel provide mobility and non-holonomic locomotion capability for the robot.
Three ultrasonic sensors, downward-pointing infrared cliff sensors, and a hard bumper
implemented on the robot offer an additional layer of safety. The robot is equipped with a
2D laser scanner, depth camera, and Inertial Measurement Unit (IMU) sensors that form
the primary sensors for perception and navigation. The laser scanner used in the robot is
SICK Tim 581 outdoor LiDAR, which provides range information and a 2D obstacle profile
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for 200 degrees surrounding the robot. An Intel real sense camera (D415i) provides the
necessary 3D depth profile of the obstacles and extends the robot’s perception capability
beyond the 2D information provided by the LiDAR. The required information for dead
reckoning is obtained by fusing wheel odometry computed from the wheel encoders, visual
odometry obtained from the real sense camera, and a 9-axis Vectornav IMU. The above-
mentioned multi-sensor fusion is achieved by running an extended Kalman filter-based
state estimation. The robot performs autonomous navigation on a pre-built map. The
global localization is achieved using Adaptive Monte Carlo Localization (AMCL). The
robot exploits the A-Star path planning algorithm to perform point-to-point navigation,
and a Dynamic Window Approach (DWA)-based local controller for collision avoidance
and trajectory tracking.

Figure 2. Dragonfly robot.

Figure 3. System architecture.
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Mosquito Trap Unit

Figure 4 shows the mosquito control unit. The key payload on the Dragonfly robot is a
mosquito trap that helps to capture the mosquitoes by attracting them towards an isolated
chamber. This unit uses multistage mosquito attractants. These attractants include visual
cues, olfactory cues, motion, and a fan. An Ultra Violet (UV) Light-Emitting Diode (LED)
at 368 nm is used as a visual cue to lure mosquitoes. Further, chemicals such as octanol
and lactic acid are used for a better luring effect. The motion of the robot mimics living
things to draw mosquitoes’ attention. In addition, the mosquito robot’s trap is equipped
with a fan with a speed of 4.1 m/s that produces a natural airflow. The natural airflow
pulls in mosquitoes and confines them inside a special chamber. A yellow observation
pad was designed to induce mosquito landing and block the background for easier image
processing. The mosquitoes enter the chamber via the downward airflow generated by the
fan and stick to the glue card. A pluggable 250× digital USB microscope camera pointing
to the glue card is used for mosquito image acquisition. Further, these recorded stream
images are used for the mosquito surveillance framework. Here, the Ultra Violet (UV)
Light-Emitting Diode (LED) and fan are operated at 24 V. A Teensy microcontroller is used
to control the LED and fan. Energy consumption for the entire operation is 3 A.

Figure 4. Mosquito trap unit.

2.2. Mosquito Surveillance Algorithm

YOLO V4 is used for mosquito detection and classification tasks in the surveillance
framework. It uses the CSPDarknet53 [18] as a backbone, the neck used is Spatial Pyramid
Pooling (SPP) [19] and the Path Aggregation Network (PANet) [20], and the head used
is YOLO V3 [21], as seen in Figure 5. Bochkovskiy et al. [22] classified bag of freebies as
a method that only changes the training strategy or only increases the training cost; this
typically includes data augmentation, regularization, data imbalance, normalization of
network activations, the degree of associations between categories, and objective functions
of bounding box regressions. Bochkovskiy et al. also a classified bag of specials as a
plugin module and post-processing method that only increases the inference cost by a small
amount but can significantly improve accuracy; this includes enlarging the receptive field,
an attention module, feature integration, and post-processing. Within the bag of freebies
and bag of specials that were evaluated, Bochkovskiy et al. introduced 4 modifications:
SPP [19], a Spatial Attention Module (SAM) [23], PAN [20], and cross-iteration batch
normalization (CBN) [24].
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Figure 5. YOLO V4 block diagram.

2.2.1. Backbone Architecture

The backbone used is CSPDarknet53; it utilizes cross-stage partial networks, which
is an optimization of DenseNet [25]. Partitioning a feature map of the base layers into
two parts and then merging them again through a proposed cross-stage hierarchy allows
the gradient flow to propagate through different network paths through splitting. As a
result, the propagated gradient information can have a more significant correlation differ-
ence by switching the concatenation and transition steps, further reducing computational
bottlenecks and improving its performance compared to DenseNet. Table 1 shows the
CSPDarknet53 backbone with its layer details and input dimensions.

Table 1. CSPDarknet53 backbone.

Layer Details Input Dimensions

Conv 416 × 416 × 3
Conv 32 × 3 × 3
Conv 64 × 3 × 3/2

Conv 32 × 1 × 1
×1Conv 64 × 3 × 3

Residual -

Conv 128 × 3 × 3/2

Conv 64 × 1 × 1
×2Conv 128 × 3 × 3

Residual -

Conv 256 × 3 × 3/2

Conv 128 × 1 × 1
×8Conv 256 × 3 × 3

Residual -

Conv 512 × 3 × 3/2

Conv 256 × 1 × 1
×8Conv 512 × 3 × 3

Residual -

Conv 1024 × 3 × 3/2

Conv 512 × 1 × 1
×4Conv 1024 × 3 × 3

Residual -

Avgpool -
Softmax 1 × 1 × 1000
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2.2.2. Neck Architecture

For the neck of the mosquito surveillance framework, SPP [19] and PAN [20] are used.
Previously, the fully connected layer only allowed for a single input size, resulting in a
bottleneck. By utilizing a max pool layer, SPP allows multiple-scale input image training.
This results in a larger receptive field size that improves performance at a minimal cost. PAN
allows connection between low-level and high-level layers through a shortcut connection
via element-wise additions. Instead of using element-wise additions, concatenation is used.

2.2.3. Head Architecture

For the head architecture, YOLO V3 [21] was used. YOLO V3 allows the prediction of
boxes at 3 different scales 13 × 13 for large objects, 26 × 26 for medium objects, and 52 × 52
for small objects. For each scale, three different anchors are used. The anchor boxes are
determined through the use of k-means clustering. Through this improvement, the total
number of predicted boxes for YOLO V3 is 10,647, compared to YOLO V2 with 845 boxes,
for an input image of 416 × 416.

3. Experimental Setup and Results

This section describes the experimental results of the mosquito surveillance and
population mapping framework. The experiments were carried out in four phases: dataset
preparation and training, evaluating the trained mosquito surveillance algorithm model on
an offline test, a real-time field trial for mosquito population mapping, and comparing the
trained mosquito framework with other models.

3.1. Dataset Preparation and Training

The mosquito surveillance framework’s training dataset consists of 500 images of
Aedes aegypti mosquitoes [26], 500 images of Aedes albopictus mosquitoes [26], and
500 images of Culex mosquitoes [27]. The dataset consists of a combination of real-time
and online collected datasets. Here, the real-time mosquito images were collected using
the Dragonfly robot with a mosquito glue trap in gardening regions, a marine dumping
yard, and water body areas for real-time mosquito data. Both online collected and real-time
collected trap images were resized to 416 × 416 pixel resolution.

Generally, the mosquito can be trapped or glued on a glue trap in any orientation
in the real-time scenario. Thus, data augmentation is applied to the training dataset to
overcome the orientation issue. The data augmentation also helps to control the over-fitting
and class imbalance issues in the model training stage. Therefore, a total of 15,000 images
were used for training. Data augmentation processes such as scaling, rotation, translation,
horizontal flip, color enhancement, blurring, brightness, shearing, and cutout were applied
to collected images. Figure 6 shows an example of the data augmentation of one image.
Table 2 elaborates the settings of the various types of augmentation applied.

Table 2. Augmentation types and settings.

Augmentation Type Augmentation Setting

Scaling 0.5× to 1.5×

Rotation from −45 degree to +45 degree

Translation x-axis (−0.3× to 0.3×) y-axis (−0.3× to 0.3×)

Horizontal Flip .flip the image horizontally

Color Enhancing contrast (from 0.5× to 1.5×)

Blurring Gaussian Blur (from sigma 1.0× to 3.0×)

Brightness from 0.5× to 1.5×

Shear x–axis (−30 to 30) y–axis (−30 to 30)

Cutout 1 to 3 squares up to 35% of pixel size
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 6. Sample of augmented image. (a) Rotation. (b) Scale. (c) Translation. (d) Blur. (e) Enhance
color. (f) Flip. (g) Brightness. (h) Cutout. (i) Shear.

3.1.1. Training Hardware and Software Details

The mosquito surveillance algorithm YOLO V4 was built using the Darknet library,
and pre-trained CSPDarknet53 was used as a feature extractor [22]. The CSPDarknet53
model was trained on the MSCOCO dataset consisting of 80 classes. The Stochastic Gradient
Descent (SGD) optimizer was used to train the YOLO V4 model. The hyper-parameters
used were 0.949 for momentum, an initial learning rate of 0.001, and a batch size of 64 along
subdivisions of 16. The model was trained for total epochs of 3700 before early stopping
and validation of the model in real-time inference.

The model was trained and tested on the Lenovo ThinkStation P510. It consists of an
Intel Xeon E5-1630V4 CPU running at 3.7 GHz, 64 GB Random Access Memory (RAM),
and an Nvidia Quadro P4000 GPU (1792 Nvidia CUDA Cores and 8 GB GDDR5 memory
size running at 192.3 GBps bandwidth).

The K-fold (here K = 10) cross-validation technique was used for validating the dataset
and model training accuracy. In this evaluation, the dataset was divided into K subsets;
K−1 subsets were used for training, and the remaining subset was used to evaluate the
performance. This process was run K times to obtain the detection model’s mean accuracy
and other quality metrics. K-fold cross-validation was done to verify that the images
reported were accurate and not biased towards a specific dataset split. The images shown
were attained from the model with good precision. In this analysis, the model scored 91.5%
mean accuracy for K = 10. This indicates that the model was not biased towards a specific
dataset split.

3.2. Offline Test

The offline test was carried out with augmented and non-augmented images collected
using online sources and glue-trapped mosquito images collected via the Dragonfly robot.
The model’s performance was evaluated using 50 images composed of three mosquito
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classes. These images were not used to train the mosquito surveillance framework. Figure 7
shows the mosquito surveillance framework’s experimental results in the offline test, and
Table 3 indicates the confusion matrix-based performance analysis results of the offline
test experiment.

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 7. Mosquito surveillance framework’s offline test results. (a) Aedes Aegypti. (b) Aedes
Aegypti. (c) Aedes Albopictus. (d) Culex. (e) Aedes Albopictus and Aedes Aegypti. (f) Aedes
Aegypti. (g) Aedes Albopictus. (h) Culex.

Here, the algorithm detects mosquitoes with an average confidence level of 88%. Aedes
aegypti, Aedes albopictus, and Culex mosquitoes were classified with an accuracy of 78.33%,
77.73%, and 77.81%, respectively, before augmentation. However, Aedes aegypti, Aedes
albopictus, and Culex mosquitoes were classified with an accuracy of 93.61%, 90.70%, and
95.29%, respectively, after augmentation. Therefore, it can be concluded that the mosquito
surveillance framework demonstrates higher classification accuracy after applying data
augmentation. The framework was able to detect and classify most of the mosquitoes.
However, the missed detection, false classification, and detection with lower confidence
levels were due to partially occluded mosquitoes.

Table 3. Statistical measure results of mosquito surveillance framework (offline).

Class
Before Augmentation After Augmentation

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Aedes Aegypti 73.08 73.44 75.57 76.67 92.25 94.24 93.24 92.67

Aedes Albopictus 73.44 81.03 77.05 77.33 89.51 94.81 92.09 90.00

Culex 75.57 83.90 79.52 78.67 93.66 94.33 94.00 94.00
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3.3. Real-Time Mosquito Surveillance and Mosquito Population Mapping Test

This section evaluates the mosquito surveillance framework’s performance in the
real-time field trial. As per the literature survey and NEA Singapore guidelines, mosquitoes
are more active at dusk, evening, nighttime, after rainfall, and in environments such as
open perimeter drains, covered car parks, roadside drains, and garden landscapes [1,28,29].
Hence, the experiments were carried out during the night (6 p.m. to 10 p.m.) and early
morning (4 a.m. to 8 a.m.) in the potential breeding and cluttered environment of the SUTD
campus and Brightson ship maintenance facility. In this experiment, the mosquito glue
trap was fixed inside the trap unit and performed a mosquito trapping and surveillance
function. Figure 8 shows the robot ’Dragonfly’ performing experiments in a different
environment. The robot navigated to pre-defined waypoints in the region of operation
autonomously on multiple cycles. The robot paused for 10 min at every waypoint, keeping
its trap operational to gather more mosquitoes in the respective location. Once the robot
completed its navigation to the final waypoint, it moved to the first waypoint and continued
its inspection cycle. Figure 9 shows a sample of real-time collected mosquito glue trap
images from test environments.

In this real-time analysis, the mosquito glue trap images were captured by a trap
camera, and images were transferred to an onboard high-powered GPU-enabled Industrial
PC (IPC) for mosquito surveillance and population mapping tasks.

Figure 10 shows the detection results of real-time field trial images, and Table 4 shows
the statistical measure results of the mosquito surveillance framework.

(a) (b)
Figure 8. Testing environment. (a) ‘Dragonfly’ robot in garden (morning). (b) ‘Dragonfly’ robot in
SUTD campus (evening).

(a) (b)

Figure 9. Real-time mosquito glue trap (a) Glue Trap 1 (Morning) (b) Glue Trap 2 (Evening).
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(a) (b)

(c) (d)
Figure 10. Mosquito surveillance framework’s online test results. (a) Culex, Aedes Aegypti, Aedes
Albopictus. (b) Aedes Aegypti. (c) Aedes Aegypti. (d) Culex.

Table 4. Statistical measure results of mosquito surveillance framework (online).

Class Precision Recall F1 Accuracy Average Accuracy

Aedes Aegypti 86.30 88.59 87.43 87.67

87.99Aedes Albopictus 84.90 86.54 85.71 86.68

Culex 88.52 88.85 88.68 89.62

The experimental results indicate that the surveillance algorithm detected Aedes
aegypti, Aedes albopictus, and Culex mosquito classes on the Dragonfly robot’s captured
images with an 82% confidence level. Its bounding region is also accurate with respect
to ground truth. The statistical measure indicates that the framework has detected the
class of mosquito with a detection accuracy of 87.67% for Aedes aegypti, 86.68% for Aedes
albopictus, and 89.62% for Culex mosquitoes. Further, the model’s miss rate is 5.61% for
online tests. The missed detection is attributed to mosquito occlusion and blurring due to
robot navigation jerking when moving on uneven surfaces.

Figure 11 shows the mosquito population mapping results of the field trial for ten
days. The population map was generated by fusing the trapped mosquito classes on a robot
navigation map using different color codes. Here, Aedes Aegypti is marked as green, Aedes
Albopictus is marked as blue, and Culex is marked in purple. Table 5 shows the details
of the number of mosquitoes trapped on a field trial, calculated through the mosquito
population mapping function.
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Figure 11. Mosquito population mapping.

Table 5. Statistical results of mosquito glue trap.

Class Early Morning Night

Aedes Aegypti 54 37

Aedes Albopictus 61 47

Culex 39 64

From Table 5, it is reported that Aedes Aegypti and Aedes Albopictus are more
active during the morning, whereas Culex is primarily active at night. This variation in
the number of trapped mosquitoes is because Aegypti and Aedes Albopictus are more
attracted to heated objects and covered in body odor. However, in Singapore’s well-lit
urban environment, the Aedes mosquito may also be active at night, as it could adapt to
artificial lighting [1].

3.4. Comparison with Other Existing Model

To evaluate the YOLO V4 model performance, the comparison analysis was per-
formed with three different feature extractors on the YOLO V3 head and SSD MobileNetv2.
The training dataset and hardware used were as per Sections 3.1 and 3.1.1. The hyper-
parameters used for MobileNetv2 were 0.9 for momentum, an initial learning rate of 0.08,
and a batch size of 128, and images were resized to 640 × 640. Meanwhile, the hyper-
parameters used for ResNet101 were 0.9 for momentum, an initial learning rate of 0.04, and
a batch size of 64, and the images were resized to 640 × 640.

For comparison, a combination of the real-time collected dataset as well as the online
collected dataset was used. Fifty images of each class were obtained in real time and online,
respectively, resulting in a total of 300 images. Likewise, with the online testing, images
from the real-time collection were pre-processed by cropping the images into grids of
416 × 416 before inference. Table 6 shows the comparison between our proposed model
and other object detection models.
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Table 6. Comparison with other models.

Model Class Precision Recall F1 Accuracy Average Accuracy Inference Speed (FPS)

YOLOv3 + CSPDarknet53 (ours)

Aedes Aegypti 88.29 96.41 92.17 93.61

93.20 57Aedes Albopictus 92.83 97.53 95.12 90.70

Culex 96.89 98.29 97.59 95.29

YOLOv3 + ResNet101

Aedes Aegypti 92.28 91.13 93.45 91.67

91.00 24Aedes Albopictus 88.77 94.40 91.50 89.33

Culex 91.52 93.84 92.67 92.00

YOLOv3 + MobileNetv2

Aedes Aegypti 81.48 88.00 84.62 83.33

84.22 112Aedes Albopictus 82.59 88.14 85.28 84.33

Culex 83.58 89.80 86.58 85.00

SSD + MobileNetv2

Aedes Aegypti 82.90 87.79 85.28 84.67

83.78 98Aedes Albopictus 81.18 88.35 84.62 83.00

Culex 81.78 87.65 84.61 83.67

The proposed model outperformed the other models in precision, recall, F1, and accuracy.
The outliers, being YOLO V3 and ResNet101, were able to outperform in the Aedes aegypti
class in terms of precision and F1 score. In terms of FPS, the proposed model managed a
decent 57 FPS, ranking third. Specifically for the application on the Dragonfly robot, the
trade-off between having higher accuracy is preferred while maintaining a decent FPS.

3.5. Comparison with Other Existing Works

This section elaborates the comparative analysis of the proposed algorithm with other
existing mosquito detection and classification studies reported in the literature. Table 7 states
the accuracy of various inspection models and algorithms based on some similar classes.

Table 7. Comparison analysis with existing object detection frameworks.

Case Studies Inspection Type Algorithm Classes Accuracy

Rustam et al. [9] Offline ETC 2 99.2

Kittichai et al. [8] Offline Two YOLO V3 5 99

Yin et al. [10] Offline 1D-CNN 5 93

Goodwin et al. [11] Offline CNN 67 97.04

Proposed framework Real-time with Dragonfly YOLO V3 + CSPDarknet53 3 87.99

The literature has reported various studies focusing on mosquito detection and classi-
fication. However, the implementations in these case studies cannot be directly compared
to our work. The case studies have employed different training datasets, CNN algorithms,
training parameters, and performed offline inspection. Further, the accuracy of our pro-
posed framework is comparatively low, and the proposed framework has a key feature of
performing real-time mosquito surveillance and population mapping.

4. Conclusions

AI-enabled mosquito surveillance and population mapping was proposed using a
Convolutional Neural Network-based framework and in-house-developed robot, ‘Dragon-
fly’. The Dragonfly robot was designed to capture mosquitoes using multistage mosquito
attractants with a differential-drive mechanism. Here, the YOLO V4 DNN algorithm model
was trained with three mosquito classes to detect and classify mosquito breeds from a
mosquito glue trap. The efficiency of the proposed framework was examined in two phases:
an offline test and a real-time mosquito surveillance and mosquito population mapping test.
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Standard performance metrics including accuracy, precision, recall, and F1 measures were
used to assess the drain inspection algorithm. In the comparison analysis, the experiments
indicated that the YOLO V4 model outperformed others and was able to detect and classify
with an average accuracy of 87.99% in a real-time field trial and process 57 frames per
second. Finally, for effective mosquito surveillance, mosquito population mapping was
generated by the detection results on the robot’s 2D map. In our future work, we plan on
adding more images of different mosquito species in the training dataset to improve the
detection and classification accuracy of the surveillance algorithm.
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