
RESEARCH ARTICLE

Bridging Mechanistic and Phenomenological
Models of Complex Biological Systems
Mark K. Transtrum1*, Peng Qiu2

1Department of Physics and Astronomy, Brigham Young University, Provo, Utah, United States of America,
2Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia, United
States of America

*mktranstrum@byu.edu

Abstract
The inherent complexity of biological systems gives rise to complicated mechanistic models

with a large number of parameters. On the other hand, the collective behavior of these sys-

tems can often be characterized by a relatively small number of phenomenological parame-

ters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving

simple phenomenological models from complicated mechanistic models. The resulting

models are not black boxes, but remain expressed in terms of the microscopic parameters.

In this way, we explicitly connect the macroscopic and microscopic descriptions, character-

ize the equivalence class of distinct systems exhibiting the same range of collective behav-

ior, and identify the combinations of components that function as tunable control knobs for

the behavior. We demonstrate the procedure for adaptation behavior exhibited by the

EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively

described by a single adaptation parameter τ characterizing the ratio of time scales for the

initial response and recovery time of the system which can in turn be expressed as a combi-

nation of microscopic reaction rates, Michaelis-Menten constants, and biochemical concen-

trations. The situation is not unlike modeling in physics in which microscopically complex

processes can often be renormalized into simple phenomenological models with only a few

effective parameters. The proposed method additionally provides a mechanistic explana-

tion for non-universal features of the behavior.

Author Summary

Dynamic systems biology models typically involve many kinetic parameters that reflect
the complexity of the constituent components. This mechanistic complexity is usually in
contrast to relatively simple collective behavior exhibited by the system. We use a semi-
global parameter reduction method known as the Manifold Boundary Approximation
Method to construct simple phenomenological models of the behavior directly from com-
plex models of the underlying mechanisms. We show that the well-knownMichaelis-Men-
ten approximation is a special case of this approach. We apply the method to several
complex models exhibiting adaptation and show that they can all be characterized by a
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single parameter that we denote by τ. The scenario is similar to modeling complex systems
in physics in which a large number of microscopically distinct systems are mapped onto
relatively simple universality classes characterized by a small number of parameters. By
generalizing this approach to dynamical systems biology models, we hope to identify the
high-level governing principles that control system behavior and identify their mechanistic
control knobs.

Introduction
Complexity is a ubiquitous feature of biological systems. It is both the origin of the richness of
biological phenomena and a major hurdle to advancing a mechanistic understanding of that
behavior. Mathematical models, formulated as differential equations of biochemical kinetics
for example, supply many tools for improving our understanding of complex biological sys-
tems. Systems biology is largely concerned with identifying mechanistic explanations for how
complex biological behaviors arise [1–3]. However, mathematical models are never a complete
representation of a biological (or physical or chemical) system. Indeed, one of the advantages
to mathematical modeling is the ability to apply simplifying approximations and abstractions
that provide insights into which components (or collection of components) of the system are
ultimately responsible for a particular behavior [4]. A mathematical model, therefore, reflects
the judicious distillation of the essence of the complex biological system into a more manage-
able representation. A good mathematical representation, while not complete, will be both
complex enough to convey the essence of the real system and sufficiently simple to reveal useful
mechanistic insights that enable the prediction of the system behavior under new experimental
conditions, i.e., “as simple as possible, but not simpler.”

Biological research has collected a wealth of knowledge about gene regulatory networks, epige-
netic controls, and biochemical reactions from which systems-level behavior derives. While this
enterprise is not complete, it is sufficient in many cases to motivate models that are reasonably
accurate surrogates of the real system. Exhaustive pathway maps are nearly overwhelming in
their complexity [5]. Such models are often very complex, reflecting both the wealth of informa-
tion available and the intricacies of the underlying mechanisms. This complexity is manifested,
for example, in the high-order dynamics of the model, the number of interacting heterogeneous
components, or the nontrivial topology of the network structure. These models typically have a
large number of parameters that are unknown and which are left to be inferred from data.

The problem of parameter estimation has consequently received considerable attention in
the systems biology community. Over-parameterized models are often “sloppy,” i.e., leading to
extremely ill-posed inference problems when fitting to data [6–12]. Identifiability analysis is
useful for determining which parameters’ values can be estimated from data [13–16], and opti-
mal experimental design methods judiciously choose experiments that can most efficiently pro-
duce accurate parameter estimates [15, 17–25]. This enterprise is in many respects the natural
continuation of the program of cataloging the complex web of gene regulatory networks and
protein signaling cascades. Unknown parameters represent a gap in our knowledge of a specific
biological system that ought to be filled.

The present work looks to answer an orthogonal question. A parameterized model can be
interpreted as class of potential biological systems. Different parameter values correspond to
distinct members of this class that have a related structure but differ in the microscopic specif-
ics, i.e., parameter values. For example, parameter values may vary depending on cell-type,
developmental stage, species, or many other factors. Rather than estimate all the parameters
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for specific biology systems, we seek a characterization of the biologically relevant behavior for
all systems in the model class. Because parameter inference problems are ill-posed there are
many members of the model class that exhibit identical systems-level behavior. We therefore
expect that a minimal model with many fewer parameters exists that reproduces the same
behaviors as the family of biological systems. In other words, we would like to characterize the
class of microscopic models with indistinguishable macroscopic behavior. In addition, we
would like to identify which combination of microscopic components controls the collective
behavior.

Our approach to this problem is a non-local parameter reduction method known as the
Manifold Boundary Approximation Method (MBAM) [12, 16, 26]. Model reduction is an
active area of research and there are many techniques available. Common methods involve
exploiting a separation of scales [27–29], clustering/lumping similar components into modules
[30–32], or other methods to computationally construct a simple model with similar behavior
[33, 34]. Many methods have been developed by the control and chemical kinetics communi-
ties focused on dynamical systems [27–29, 34, 35]. Systems biology has been a popular proving
ground for new methods [33, 36–39].

Most model reduction methods suffer from two problems that make them unsuitable for
the present work. First, many techniques, particularly automatic methods, produce “black box”
approximations that are not immediately connected to the complicated, mechanistic model. In
contrast, MBAM connects the microscopic to the macroscopic through a series of limiting
approximation that provide clear connections between the macroscopic control parameters
and the microscopic components from which they are derived. Second, most methods make
“local” approximations, in the sense that they find computationally efficient approximations to
a single behavior. However, we seek a (semi-) “global” approximation that can reproduce the
entire behavior space of a model class. This is a challenging problem; brute force exploration of
the parameter space is impossible because of its high-dimensionality. MBAM solves this prob-
lem by using manifold boundaries in behavior space as approximate models [26]. Manifold
boundaries are topological features and therefore characterize the global behavior space [16].

Finding a minimal, “distilled” version of a complicated model has many practical applica-
tions. It identifies the system’s control knobs that could effectuate a change in the system’s
behavior, reducing the search space for effective control methods. It highlights the “design
principles” underlying the system and inspires approaches for engineering synthetic systems.
Finally, it leads to conceptual insights into the system behavior that deepen the understanding
of “why it works.”

In this paper we show that the well-known Michaelis-Menten approximation is a simple
case of the MBAM. We then use this method to derive minimal models of adaptation discov-
ered by Ma et al. [40] and a more complex mechanical model of EGFR signaling due to Brown
et al [7]. Our primary result is that adaptation can be characterized by a single dimensionless
parameter, τ, the ratio of the activation and recovery time scales of the system. We express
these time scales as nonlinear expressions of the microscopic, mechanical parameters. Any
adaptive system can be easily characterized by its value of τ from simple measurements. We
discuss the advantages and limitations of this approach. We also consider more profound
implications for modeling and understanding complexity in biology and how it relates to simi-
lar questions in the physical sciences.

Results
Technical details of the Manifold Boundary Approximation Method (MBAM) are outlined in
the materials and methods section. Briefly, the method assumes a parameterized model that
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makes predictions for a specific set of experimental conditions, known as Quantities of Interest
(QoIs). Generally, the QoIs will be a subset of all the possible predictions that a model could
make. Using information theory and computational differential geometry, the MBAMmakes a
series of approximations that remove the parameters from the model that would have been
least identifiable if the experiments corresponding to the QoIs were actually performed. The
refinements to the model take the form of limiting approximations. For example, the equilib-
rium and quasi-steady state approximations familiar to Michaelis-Menten reactions are a spe-
cial case as we now show.

Michaelis-Menten Approximation Is a Special Case of the Manifold
Boundary Approximation
Many biological reactions take the form of an enzyme catalyzed reaction in which an enzyme
and a substrate combine reversibly to form an intermediate complex which can then disassoci-
ate as the enzyme and a product: E + SÐ C! E + P. These reactions can be modeled using
the law of mass action as:

d
dt

½E� ¼ �kf ½E�½S� þ kr½C� þ kc½C� ð1Þ

d
dt

½S� ¼ �kf ½E�½S� þ kr½C� ð2Þ

d
dt

½C� ¼ kf ½E�½S� � kr½C� � kc½C� ð3Þ

d
dt

½P� ¼ kc½C�: ð4Þ

These equations have two conservation laws

E0 ¼ ½E� þ ½C� ð5Þ

S0 ¼ ½S� þ ½C� þ ½P�; ð6Þ

so that the system in Eqs (1)–(4) has only two independent differential equations. We take the
initial conditions of the enzyme and substrate to be E0 and S0 respectively and those of the
intermediate complex and final product to be zero.

Consider the scenario in which E0 and S0 are fixed to 0.25 and 1 respectively and the three
rate constants kf, kr, and kc are allowed to vary. In Fig 1 (top) we see many of the possible time
series for the fractional concentration of the final product. If we take as QoIs, the fractional
concentration of product at times t = 5, 10, 15, then Fig 1 (bottom) shows the corresponding
model manifold. Because the model has three parameters, the model manifold is a three dimen-
sional volume. The two colors (red and green) are two faces that enclose this volume and corre-
spond to two possible reduced models that we consider shortly.

Notice that the model manifold, in this case a three-dimensional volume, is highly aniso-
tropic. There is clearly a dominant, long axis, a second thinner axis, and a third axis that is
much thinner still. MBAM exploits this low effective dimensionality in order to construct a
model with an equivalent range of behavior with fewer parameters.

Equilibrium approximation. Suppose that the true parameter values of the system are
θ0 = (log kf, log kr, log kc) = (1, 1/2, 3/2). By computing the Fisher Information Matrix (FIM)
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Fig 1. The Model Manifold. Top: Concentration of product versus time for several values of the kinetic parameters for the model in
Eqs (1)–(4). Bottom: Considering the predictions of the model at three time points defines a data space. The model manifold is the set
of all possible predictions embedded in data space. In this case, the model manifold is a three dimensional volume because there are
three parameters. This manifold is bounded by two faces, colored red and green.

doi:10.1371/journal.pcbi.1004915.g001
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and its eigenvalues (see the Materials and Methods section), we find that the model is insensi-
tive to coordinated changes in the parameters. The components of the eigenvector with small-
est eigenvalue v� (0.84, −0.23, 0.49) are given by the bottom left panel of Fig 2. Changing the
parameters according to θ(τ) = θ0 + τv gives a family of parameter values with statistically
indistinguishable behavior. This parameter combination is not necessary to explain the QoIs.

Evaluating the FIM at other nearby parameter values leads to slightly different numerical
values for v. The path θ(τ) = θ0 + τv locally characterizes the family of equivalent systems. In
order to find the non-local (and typically nonlinear) path, we numerically solve Eq (55). Solv-
ing this equation leads to three parameterized curves, one for each parameter, as shown in Fig
2 (top). Notice that the initial values for these curves are given by the true parameter values
given above. The initial slopes of these curves are given by the components of v as can be seen
in the inset to Fig 2 (top). (Note that the norm of the geodesic velocity grows along the geodesic
path so that the initial slopes, by comparison are relatively small.)

From the geodesic curves we deduce that the differential equation has a singularity shortly
after τ = 0.35. Indeed, evaluating the FIM near this singularity gives eigenvalues labeled “final”
in Fig 2 (bottom right). The corresponding eigendirection (Fig 2 bottom, center) indicates that
this singularity occurs in the limit that two of the parameters become infinite as corroborated
by the curves in Fig 2 top. From this information, we can analytically construct a form for the
reduced model by evaluating this limit in Eqs (1)–(4).

The limit we wish to evaluate is that in which kf, kr !1. Notice that these parameters
always appear in the combination kf [E] [S] − kr [C] which participates in three of the four
equations. We can isolate this motif by adding and subtracting d [S]/dt to d [C]/dt and d [E]/dt
respective, giving:

d
dt

½E� � d
dt

½S� ¼ kc½C� ð7Þ

d
dt

½S� ¼ �kf ½E�½S� þ kr½C� ð8Þ

d
dt

½C� þ d
dt

½S� ¼ �kc½C� ð9Þ

d
dt

½P� ¼ kc½C�: ð10Þ

Dividing the equation for d [S]/dt by kr, we have

1

kr

d
dt

½S� ¼ � kf
kr
½E�½S� þ ½C� ð11Þ

which becomes

½C� ¼ kf
kr
½E�½S� ¼ ½E�½S�=Kd ð12Þ

in the limit that kf, kr !1. The system can be further simplified by noting that [E] = E0− [C],
which when combined with Eq (12), gives [C] = E0 [S]/(Kd+ [S]), so that

d
dt

½P� ¼ kcE0½S�
Kd þ ½S� ; ð13Þ
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Fig 2. Geodesic reveals the boundary. Top: The parameter values for geodesics on the model manifold in Fig 1. The geodesic path is
parameterized by τ which is proportional to the information distance on the model manifold. The boundary is reached shortly after τ�
0.35 at which point two of the parameters become infinite. Bottom left: the initial and final components of the parameter normalized
velocities for the geodesic (v1 * log kf, v2 * log kr v3 * log kc.) The limiting approximation is deduced by considering the final geodesic
velocity. Bottom right: Near the boundary, the FIM is nearly singular. The smallest FIM eigenvalue becomes zero as the boundary is
approached.

doi:10.1371/journal.pcbi.1004915.g002
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which we recognize as the celebrated Michaelis-Menten approximation [41]. The entire system
is then described by the differential equations

d
dt

½S� ¼ � kcE0½S�
Kd þ ½S�

1

1þ ½E�=ðKd þ ½S�Þ
� �

ð14Þ

d
dt

½E� ¼ kcE0½S�
Kd þ ½S�

½E�
Kd þ ½S� þ ½E�
� �

ð15Þ

d
dt

½P� ¼ kcE0½S�
Kd þ ½S� : ð16Þ

Michaelis and Menten originally derived their equation making the assumption that the
substrate was in instantaneous chemical equilibrium, i.e., d [S]/dt = 0. This assumption leads to
the relation kf [E] [S] = kr [C]. Notice that if this assumption is true, then the parameters kf and
kr will be structurally unidentifiable in the model. Only the identifiable combination Kd = kr/kf
can affect the dynamics of the system. The equilibrium approximation is formally justified
when kf, kr� kc which is precisely the condition that the system is near the boundary identified
in Fig 2. Mathematically, the MBAM is equivalent to the Michaelis-Menten approximation.

Although formally equivalent to the derivation of Michaelis and Menten, the MBAM turns
the order of the analysis around. Rather than selecting a physical approximation such as equi-
librium, which in many cases requires a deep insight about the inner-workings of the system,
the current approach uses statistics to calculate the unidentifiable parameters and differential
geometry to connect that unidentifiable combination with a physical approximation. In this
way we identify the simplifying approximations in a more-or-less automatic way that in turn
connect the system’s phenomenology with its underlying mechanisms. In the current case, the
well-known interpretation is that the effective synthesis rate of product saturates for large con-
centrations of substrate. Later examples, we find similar but previously unknown interpreta-
tions of simplified models of adaptation.

Irreversibility approximation. The equilibrium approximation corresponds to the red
face in Fig 1 (bottom). The approximation corresponding to the green face can be found in a
similar manner by starting a geodesic from another point on the model manifold. The result is
summarized in Fig 3. In this case, a singularity is encountered by the geodesic around τ = 0.45
that is associated with the limiting approximation kr ! 0. This limit is trivial to evaluate in the
model; simply set kr to zero throughout. This limit is equivalent to the approximation that the
initial binding reaction is non-reversible. Interestingly, this approximation was identified by
Van Slyke and Cullen shortly after the work of Michaelis and Menten [42].

It is not hard to see why, given our QoIs that non-reversibility is a reasonable approxima-
tion. The synthesis of the final product occurs in only the forward direction. Eventually, all of
the substrate will be catalyzed into the product. From this information about the product’s con-
centration, it would be very hard to infer both the forward and reverse binding rates of reac-
tions upstream. It is therefore reasonable to replace the reversible reaction with a one-way
reaction characterized by an effective forward rate.

Quasi-Steady State Approximation. Some time after Michaelis and Menten presented
their derivation of Eq (13), Briggs and Haldane gave an alternative derivation based on a quasi-
steady state approximation [43]. This derivation is considered to be generally more valid than
the equilibrium approximation of Michaelis and Menten. It corresponds to the approximation
that d [C]/dt = 0. This approximation can similarly be derived automatically from the MBAM.
To do this, it is necessary to promote the conserved quantities E0 and S0 to parameters. In this
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Fig 3. An alternative boundary. Similar to Fig 2, geodesics on the model manifold can be used to identify another boundary of the model
manifold. In this case the boundary is reached just before τ� 0.45 (top), and is characterized by a parameter becoming zero. The final
geodesic velocity (bottom left) shows that the parameter space velocities (v1 * log kf, v2 * log kr v3* log kc) have rotated to reveal the
limiting approximation and that the smallest FIM eigenvalue has become very small (bottom right).

doi:10.1371/journal.pcbi.1004915.g003
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case, the geodesic equation now operates on the five-dimensional parameter space. The first
boundary approximation identified corresponds to kr ! 0 similar to that in Fig 3.

A second iteration of the MBAM procedure identifies a second limiting approximation cor-
responding to kf, kc !1 and E0 ! 0 as shown in Fig 4. This is one limit that involves three
parameters. Evaluating this limit is a little more subtle, so we give several details and demon-
strate how the geodesic and the mathematical form of the model give a few hints as to how the
limit is to be evaluated.

First, observe that if kf, kc each approach infinity (ignoring E0 for the moment), then the
entire substrate would be catalyzed to product instantly. On the other hand, if E0! 0 (ignoring
(kf and kc), then no product would be synthesized. The model therefore reflects a balancing act
between these two complementary mechanisms. If we were to consider any of these parameter
limits in isolation, the resulting model would be unrealistic. Only by considering this particular
combination does the correct simplified form emerge. Notice that this requirement is deduced
automatically from the structure of the model by inspecting the nature of the singularity in the
geodesic equation. If E0 ! 0, then the right hand side of d [P]/dt is characterized by something
becoming infinite and something becoming zero in such a way that the product remains finite.
With this insight, we can now construct the simplified model from the limiting approximation.

Dividing the equation for d [C]/dt by kf and taking the limit leads to the relation

½E�½S� ¼ kc
kf
½C� ¼ KM½C�: ð17Þ

Using the conservation law [E] = E0− [C], we find the relation [C] = E0 [S]/(KM+ [S]). The syn-
thesis rate of the product is therefore

d
dt

½P� ¼ kc½C� ¼
Vmax½S�
KM þ ½S� ð18Þ

where Vmax = kc E0 is the maximum velocity rate. Thus, Vmax and KM emerge as the two finite
parameter combinations after taking the appropriate limit.

The mathematical steps of the derivations above are identical to those originally presented
by Michaelis, Menten, Briggs, and Haldane. As mentioned above, the contribution of the cur-
rent method is that MBAM relieves the modeler of having to produce the key insight that the
substrate is in equilibrium or that the complex is in steady state. MBAM automatically identi-
fies these approximations and provides a rigorous, context-specific justification for their appli-
cation. The use of the Michaelis-Menten approximation as a model of networks of enzyme-
kinetics is often criticized because it is difficult to justify these approximation in a network con-
text [44]. In contrast, MBAM can identify which limiting approximations are justified for the
network and iteratively construct a simplified model that reflects the macroscopic system
behavior as we now do for adaptation.

Modeling Adaptation
We now consider the phenomenon of adaptation. More specifically, we consider the problem
of “adaptation to the mean of the signal” which is the ability of a system to reset itself after an
initial response to a stimulus as illustrated in Fig 5 [45]. Throughout this work, we follow the
problem statement in reference [40]: A system is given a step-function stimulus at time t = 0
and the response is observed.

In this section we consider two minimal topologies exhibiting adaptation due to Ma et al.
[40]. We then consider a more complete mechanistic description of EGFR signaling [7], a real
system known to exhibit adaptation. We will identify the EGFR pathway as being equivalent to
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Fig 4. Geodesic boundary leads to the Quasi-Steady-State Approximation. By promoting the initial conditions E0 and S0 to parameters,
the geodesics reveal yet another limiting approximation. Similar to Figs 2 and 3, the boundary is reached just before τ� 2 (top). Bottom left:
the final parameter space velocities (v1* log kf, v2* log kr v3 * log E0, and v4 * log S0) indicate that the limit corresponds to two
parameters becoming infinite and a third becoming zero. Bottom right: the smallest FIM eigenvalue becomes zero at the manifold boundary.

doi:10.1371/journal.pcbi.1004915.g004
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one of the two minimal adaptive topologies. Finally, we will show that each of these adaptive
systems can be represented by a single parameter model.

We note that it is possible to choose inputs other than a single step function. In fact, differ-
ent adaptive systems are known to respond differently to different types of inputs [46, 47]. We
here restrict ourselves to single step inputs as those the conditions described in references [7,
40] and because it is the most natural context for defining adaptation. If responses to other
inputs are biologically relevant and controlled by different microscopic parameters, other
choices for QoIs could be considered.

Minimal adaptation topologies. Before considering a mechanistic explanation of adapta-
tion, it is instructive to consider the phenomenological curve in Fig 5. How many parameters
characterize a typical adaptation curve? Visual inspection and intuitive reasoning suggests that
observing an adaptation curve in response to a single step input could reasonably infer four
parameter combinations in a model, identified as ϕ1, . . ., ϕ4 in the figure. These correspond to
(1) the characteristic response time, i.e., time from initial stimulus to the output’s maximum
response, (2) the adaptation delay time, i.e., the width of the response peak, (3) the sensitivity
of the response, i.e., the maximum height of the output, and (4), the precision of the adaptation,
i.e., the difference between the original and the new equilibrium.

Fig 5. Quantities of Interest and Phenomenological Parameters that characterize adaptation. Top: An adaptive network is given a step-
wise input stimulus at time t = 0. Bottom: The system responds to the stimulus and then (partially) resets itself nearer its pre-input value. The
black line in the bottom plots corresponds to the quantity of interest we use for reducing adaptation topologies, and the red band corresponds to
the allowed tolerances. We anticipate that a four parameter model will minimally characterize the QoIs. These phenomenological parameters
should span the space illustrated by ϕ1, . . ., ϕ4 corresponding roughly to the time to achieve maximal response (ϕ1), the width of the adaptation
peak (ϕ2), the height of maximal response (ϕ3 also known as sensitivity), and the difference between the final and initial steady states (ϕ4 also
known as precision).

doi:10.1371/journal.pcbi.1004915.g005
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Ma et al. [40] show by an exhaustive search that among three node networks, those that can
achieve adaptation fall into two design classes: negative feedback loops and incoherent feed for-
ward loops. An example of each is given Fig 6. From these topologies, one can begin to con-
struct from a top-down perspective, a mechanistic explanation of how a real biological system
achieves adaptation, as opposed to a phenomenological description in terms of the four param-
eters. For example, assuming Michaelis-Menten kinetics leads to the following set of differen-
tial equations for the negative feedback loop:

dA
dt

¼ kIAI
1� A

1� Aþ KIA

� FAkFA
A

Aþ KFA

ð19Þ

dB
dt

¼ kCBC
1� B

1� Bþ KCB

� FBkFB
B

Bþ KFB

ð20Þ

dC
dt

¼ kACA
1� C

1� C þ KAC

� kBCB
C

C þ KBC

; ð21Þ

where I denotes the input signal, and we have denoted the external inhibitions to each node by
FA, FB and FC. In practice, real adaptive, biological networks consist of many more than three
nodes, so this model is a middle ground between phenomenology and mechanism.

Fig 6. Topologies that can achieve adaptation. Adaptive networks universally exhibit either a negative feedback motif (such as the one on the left) or an
incoherent feed-forward loop (such as the one on the right).

doi:10.1371/journal.pcbi.1004915.g006
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Because Eqs (19)–(21) have twelve parameters, they do not correspond to any of the
phenomenological parameters ϕ1, . . ., ϕ4 described above. We therefore seek a minimal
approximation to this model using the MBAM. We take as QoIs the output from node C after
a step-function stimulus into node 1 at several time points. As another example of the MBAM
procedure, we illustrate the first several steps of this process before discussing the final result.

Notice that all of the parameters in Eqs (19)–(21) correspond to rate constant and Michae-
lis-Menten constant pairs, denoted by k and K respectively. The first limit identified by the
MBAM corresponds to the situation in which a rate constant and its corresponding Michaelis-
Menten constant each become infinite together: kFA, KFA. These parameters only appear in a
single term in the equation for dA/dt, which leads to the expression

FAkFA
A

Aþ KFA

¼ FA

kFA
KFA

� �
A

A=KFA þ 1
ð22Þ

! kFA
KFA

� �
A FA: ð23Þ

Michaelis-Menten reactions are well-known to interpolate between a linear rate and a satu-
rated rate. This limit corresponds to the approximation in which this inhibition reaction is
always in the linear regime with rate constant kFA/KFA.

The second limit is similar to the first: kCB, KCB !1. Thus, the activation of node B by
node C can also be approximated by a linear reaction with rate constant kCB/KCB. After these
two limits, the model becomes

dA
dt

¼ kIAI
1� A

1� Aþ KIA

� kFA
KFA

� �
FA A ð24Þ

dB
dt

¼ kCB
KCB

� �
Cð1� BÞ � FBkFB

B
Bþ KFB

ð25Þ

dC
dt

¼ kACA
1� C

1� C þ KAC

� kBCB
C

C þ KBC

ð26Þ

The third limit is more subtle, but leads to an interesting approximation. It involves four
parameters: (kCB/KCB)!0, kFB B! 0, KFB B ! 0, and kBC !1. Inspecting Eqs (24)–(26), we
see that in this limit B! 0; however, node C becomes infinitely sensitive to changes in B, so

that kBC B remains finite. We therefore define a “renormalized” buffer node: ~B ¼ kBCB. Multi-
plying the equation for dB/dt by kBC gives

d~B
dt

¼ kCBkBC
KCB

� �
Cð1� BÞ � FBðkFBkBCÞ

~B
~B þ ðKFBkBCÞ

! kCBkBC
KCB

� �
C � FBðkFBkBCÞ

~B
~B þ ðKFBkBCÞ

ð27Þ

This limit likewise has a natural physical interpretation: the sensitivity of the buffer node B
to changes in node C is irrelevant for adaptation because it can be compensated for by the sub-
sequent sensitivity of node C to changes in B. This limit therefore removes information about

the absolute scale of the B from the model and replaces it with a relative scale ~B.
The process may be repeated until the model is sufficiently simple. Based on the phenome-

nological argument above, a four parameter model should have enough flexibility to describe
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the adaptation response to a single step input such as illustrated in Fig 5. The four parameter
model derived from Eqs (19)–(21) is

dA
dt

¼ kIA I Yð1� AÞ ð28Þ

d~B
dt

¼ kCBkBC
KCBKBC

� �
C � FB

kFB
KFB

� �
~B ð29Þ

dC
dt

¼ kACA Yð1� CÞ � ~BC; ð30Þ

where Θ(x) is the Heaviside function with the convention Θ(0) = 0 and ~B has been renorma-

lized again: ~B ¼ BkBC=KBC

The four parameters in Eqs (28)–(30) can be connected to the adaptation phenomenology
through a sensitivity analysis. In Fig 7 we have plotted the sensitivities of the system output (C
(t)) with respect to each of the four parameters. From these figures we see that the phenomeno-
logical parameter ϕ4 (precision) can be controlled by tuning the microscopic parameter combi-
nation kFB B/KFB B.

The sensitivity can similarly be controlled by tuning a combination of kFB B/KFB B and kAC.
Specifically, note that increasing kAC leads to an increase in the precision, but it also raises the
new equilibrium level (i.e., lowers the precision). Thus increasing kAC while appropriately low-
ering kFB B/KFB B is the microscopic control knob for sensitivity. The other phenomenological
parameters can be identified with a microscopic control knob in a similar way.

It is interesting to compare the simplified version of the negative feedback loop with those
of the incoherent feed forward loop:

dA
dt

¼ kIAI
1� A

1� Aþ KIA

� FAkFA
A

Aþ KFA

ð31Þ

dB
dt

¼ kABA
1� B

1� Bþ KAB

� FBkFB
B

Bþ KFB

ð32Þ

dC
dt

¼ kACA
1� C

1� C þ KAC

� kBCB
C

C þ KBC

: ð33Þ

The equivalent four parameter model becomes

dA
dt

¼ kIA I Yð1� AÞ ð34Þ

dB
dt

¼ kAB A Yð1� BÞ ð35Þ

dC
dt

¼ kAC A Yð1� CÞ � kBC
KBC

� �
B C: ð36Þ

The sensitivities of this reduced model are given in Fig 8.
Minimal models for both mechanisms of adaptation share the parameters kIA and kAC.

Inspecting Figs 7 and 8 we see that these parameter play the same functional role in both topol-
ogies. Furthermore, the combination kBC/KBC appears in both models and with the same
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functional effect. The difference between the two mechanisms is therefore manifest in the
remaining parameter for each model. In particular, notice that in both cases the steady state
value for the output node is given by CSS / A/B. For the case of the negative feedback loop

mechanism, the steady state value of ~B is controlled by the external inhibition. For the case of
the incoherent feed forward loop, both A and B always saturate, leaving the steady state value
of C to be controlled only by the proportionality constant kAC(KBC/kBC). Observe how the dif-
ference between the mechanisms becomes immediately clear by inspecting the relevant equa-
tions and through the sensitivity analysis in Figs 7 and 8.

An important consequence of this analysis is that phenomenology alone cannot identify
mechanisms. Both the negative feedback and incoherent feed forward loops exhibit behavior
that is statistically indistinguishable from this set of QoIs. In order to identify control mecha-
nisms for either system, prior information about the underlying system structure is necessary.
However, the topology also does not uniquely specify the behavior since there are many param-
eter values with the same topology that exhibit non-adaptive behavior. A complete characteri-
zation of adaptation requires knowledge of both the network structure and the families of
parameter values within those networks that give rise to the behavior.

Fig 7. Parameter sensitivities in a minimal negative feedbackmodel. The negative feedback model in Eqs (19)–(21) is reduced
to four parameters given by θ1 = log(kIA), θ2 = log(kCB kBC/KCB KBC), θ3 = log(kFB B/KFB B), and θ4 = log(kAC). With four parameters,
the model can still reproduce the QoIs within the desired tolerances (black lines lying within the red band). Varying any of the
remaining parameters moves the model behavior beyond the acceptable region (dashed lines). These four parameters control the
identifiable features in the QoIs and span the same degrees of freedom as ϕ1, . . ., ϕ4 in Fig 5.

doi:10.1371/journal.pcbi.1004915.g007
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EGFR Pathway
We now consider a model of EGFR signaling due to Brown et al. [7] that has been used exten-
sively as a prototypical “sloppy model” for purposes of sensitivity analysis [6, 7, 9] and experi-
mental design [21, 23]. The model describes the system response to two external stimuli, extra-
cellular EGF and NGF hormones. The differing responses to these stimuli ultimately determine
the differentiated cell type. The authors applied the MBAM to this model in reference [26]
where the quantities of interest were taken to be the experimental conditions of the original
analysis. From the original 48 parameter model, a 12 parameter model was constructed that
could fit all of the data in the original experiments.

In the current context the model is interesting because the level of ERK activity (the final
protein in the signaling cascade) exhibits adaptation behavior in response to EGF stimulus but
long-term sustained ERK activity in response to NGF. We therefore seek a hybrid mechanistic/
phenomenological description of this dual response. This requires a different set of QoIs from
those in reference [26]. We here consider how the reduced model varies as the quantities of
interest change. We will see that by systematically coarsening the QoIs, we can bridge the
mechanistic and phenomenological descriptions of the system and gain a deeper understand-
ing for the relationship between the structure of the model’s components and the resulting
phenomenology.

Fig 8. Parameter sensitivities in a minimal IFFLPmodel. The incoherent feed forward model in Eqs (31)–(33) is reduced to four
parameters given by θ1 = log(kIA), θ2 = log(kAB), θ3 = log(kAC), and θ4 = log(kBC/KBC). With four parameters, the model can still
reproduce the QoIs within the desired tolerances (black lines lying within the red band). Varying any of the remaining parameters
moves the model behavior beyond the acceptable region (dashed lines). These four parameters control the identifiable features in
the QoIs and span the same degrees of freedom as ϕ1, . . ., ϕ4 in Fig 5.

doi:10.1371/journal.pcbi.1004915.g008
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Specifically, we consider the effect of four successive coarsening of the QoIs. First, we pre-
serve the predictions of all species in the model under the same experimental conditions as ref-
erence [7] and deduce an 18 parameter model. Next, we consider only those species
experimentally observed in reference [7], in which case we recover the 12 parameter model of
reference [26]. Third, we consider only the response of ERK activity to EGF and NGF stimulus,
reducing the model further to 6 parameters. Finally, we consider only the response of ERK to
an EGF stimulus and recover a four parameter model exhibiting a minimal negative feedback
loop topology characterizing the system’s adaptation and spanning the same phenomenologi-
cal degrees of freedom in Fig 5.

Fig 9 shows the FIM eigenvalues for the entire reduction process. The initial reduction pro-
cess from 48 to 18 parameters is summarized in Fig 9 (top left). The initial 48 parameter model
exhibits the characteristic “sloppy model” eigenvalue spectrum in which the eigenvalues are
logarithmically spaced over many orders of magnitude [6–9]. Observe that each iteration of
MBAM removes the smallest FIM eigenvalue from the model while the remaining eigenvalues
are approximately unchanged. Thus, the resulting approximate model is not sloppy; the eigen-
values cover fewer than four orders of magnitude. At this point the remaining parameter com-
binations are precisely those phenomenological parameters necessary to explain the important
features of the QoIs; further reductions would sacrifice statistically significant model flexibility.

Fig 9. EGFRmodel eigenvalues at each stage of the reduction. Top, left: The model of Brown et al. [7] has 48 parameters, most of
which are unidentifiable as illustrated by many small FIM eigenvalues. The MBAM procedure effectively removes the least identifiable
parameter combination from the model, one at a time, until all parameters are identifiable to a given tolerance (dashed lines correspond
to a standard relative error of 1/e.). Observing all species in the network would identify an 18 parameter model. Top, right: The
observations in reference [7] would identify a 12 parameter model. Bottom, left: Observing only input/output relations would identify a 6
parameter model. Bottom, right: Observing only the adaptive response to EGF stimulus could identify a four parameter model.

doi:10.1371/journal.pcbi.1004915.g009

Bridging Mechanistic and Phenomenological Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004915 May 17, 2016 18 / 34



We can also consider the effect of the reduction process on the model’s network structure
as summarized in Fig 10. Observe the condensation of the network between the top left and
right panels in Fig 10. Many of the nodes in the network exhibit similar behavior; the reduc-
tion naturally clusters these nodes and highlights the emergent, effective topology governing
the system.

Using this 18 parameter model as a starting point, we next coarsen the QoIs by ignoring
those species for which experimental data was not available in reference [7]. The remaining
observed species are Ras, Raf1, Rap1, B-Raf, Mek1/2, and Erk1/2. The eigenvalues of the 18
parameter model in top right panel of Fig 9 therefore correspond to the same parameters as
those in the top left of the same Figure. This is the eigenvalue spectrum that would have
resulted if the 18 parameter model had been fit to the original data. Notice that three eigenval-
ues are now zero (numerical zero*10−16). These correspond to the three remaining parameter
of the EGF/PI3K/Akt cascade for which there were no observations in reference [7]. The data
allow no predictions for these unobserved species.

Two other eigenvalues are dramatically smaller after coarsening the QoIs (
ffiffiffi
l

p � 10�4).
One parameter corresponds to the relative activity level of P90/Rsk (exactly analogous to
the limit leading to Eq (27)). The other parameter is the unbinding rate of NGF from NGFR.
The dramatic decrease in these eigenvalues upon coarsening the QoIs indicate that these
QoIs contain practically no information about these parameters. These parameters are
therefore irrelevant for explaining the system behavior. Additionally, one other parameter
can be removed which lumps MEK and ERK as a single dynamical variable. These approxi-
mations are further reflected in the condensed network (Fig 10 bottom center). Model pre-
dictions that depend strongly on these parameters could not be constrained by the original
data.

The activity level of ERK is the quantity of primary biological interest in this model as it sig-
nals to the nucleus the presence of extra-cellular EGF or NGF and ultimately determines cell
fate. Therefore, we next consider only the level of ERK activity in response to EGF and NGF sti-
muli (Fig 9 bottom left and Fig 10 bottom center). These QoIs can be explained by a six param-
eter model. Of these six parameters, two are associated with the C3G cascade which is only
activated by NGF stimulation. Coarsening the QoIs to only include an EGF stimulus therefore
reduces the model to four parameters (Fig 9 bottom right) and a minimal negative feedback
loop (Fig 10 bottom right) analogous to that in Fig 6 (left).

In Fig 11 we illustrate the sensitivities of the ERK adaptation curve to each of the four
coarse-grained parameters. The sensitivities of parameters 1 and 4 are very similar in that they
both increase the over-all level of ERK activity through the time series. Unlike parameter 4,
parameter 1 is also characterized by a narrowing of the response peak.

It is interesting to compare these sensitivities with those in Fig 7. Parameters 2 in both mod-
els have the same functional effect, controlling the turnover point for the adaptation. Similarly,
parameters 4 in both models control the over scale of the time series.

In contrast, parameters 1 and 3 in the minimal EGFR model have a different functional role
from parameters 1 and 3 in the simple negative feedback loop above. However, by tuning an
appropriate combination of parameters 1 and 3 in the minimal EGFR model, it is possible to
control only the final steady state of the model without affecting the transient peak, directly
analogous to parameter 3 in Fig 7. Likewise, another combination can be chosen to be func-
tionally equivalent to parameter 1 in Fig 7. Although the mechanism by which these degrees of
freedom are controlled are different in the two models, they ultimately span the same four
degrees of freedom summarized in Fig 5.
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Fig 10. EGFR network condensation for each choice of QoI. By coarsening the QoIs, MBAM gives models with fewer identifiable
parameters as in Fig 9 that condense the full network into an effective, minimal, topology. Top, left: The full topology of the original
model. Top, right: The reduced topology that can explain the time series of all biochemical species. Bottom, left: The minimal topology
for explaining the data in reference [7]. Bottom, center: The minimal topology for explaining only the input/output relations of the
network. Double lines represent algebraic relationships between nodes. Bottom, right: Considering only the adaptive response to EGF
stimulus recovers the minimal negative feedback motif in Fig 6.

doi:10.1371/journal.pcbi.1004915.g010
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Universal Characterization of Adaptation
We have seen that all three adaptation models can be simplified to four phenomenological
parameters. These four parameters span the same four degrees of freedom illustrated in Fig 5.
The four parameter models can fit artificial adaptation data generated from the full models,
and the systematic errors due to approximations in the model are indistinguishable from the
artificial noise. However, removing more parameters results in statistically significant errors
when the models are fit to data. That is, further simplifications result in observable systematic
errors. However, it is possible to remove additional parameters and still preserve the qualitative
behavior of the system. For example, by increasing error bars for the QoIs, additional parame-
ters can be removed. The resulting models still exhibit adaptation, but are unable to fit the
exact curvature of the true model’s time series.

In general applications, the level of granularity in the final model will be driven by many fac-
tors, and it may be preferable to consider several models of varying levels of complexity. We
illustrate this for the adaptation models considered above. In all three cases, the qualitative
adaptation behavior can be approximated by models with two parameters. Although these
minimal models are not quantitatively accurate they provide insight into the governing
mechanisms.

Fig 11. Parameter sensitivities in a minimal EGFR Signalingmodel. A four parameter EGFRmodel can explain the adaptive
behavior of ERK in response to EGF stimulus (black line within the red bands, compare Figs 7 and 8). Varying any of the four remaining
parameters move the behavior of the model outside the allowed region (dashed lines). These parameters span the same four
phenomenological degrees of freedom as in Figs 5, 7 and 8.

doi:10.1371/journal.pcbi.1004915.g011
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The equations governing the two parameter negative feedback model are

d
dt

½C� ¼ kACI Yð1� CÞ � ~B½C� ð37Þ

d
dt

~B ¼ kCBkBC
KCBKBC

½C�: ð38Þ

Those governing the two parameter incoherent feed forward loop model are

d
dt

½C� ¼ kACI Yð1� CÞ � ~B½C� ð39Þ

d
dt

~B ¼ kABkBC
KBC

I: ð40Þ

In both cases ~B ¼ ½B�ðkBC=KBCÞ. The only difference between these two adaptation mechanisms
is how in the stimulus information is transmitted to the buffer node, either indirectly through
the adaptive node C in the case of negative feedback, or directly from the input in the case of
feed forward.

In both models, one parameter defines the time unit of the system. In particular, the models
are invariant to the transformation t! αt, kAC ! kAC/α, kCB ! kCB/α, kBC ! kBC/α, kAB!
kAB/α. By choosing units in which kAC = 1, i.e., the initial slope of the rising portion of the
curve, the models are reduced to a single parameter. The lone remaining parameter controls
the time scale for recovery from the initial inputs. Adaptation can therefore be universally char-
acterized by the dimensionless ratio τ of these two scales:

tNFBLB ¼ kAC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KCBKBC

kCBkBC

s
ð41Þ

tIFFLP ¼ kAC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KBC

kABkBC

s
: ð42Þ

The time series for various values of τ are given in Fig 12 for both mechanisms. While the
curves are similar, notice that negative feedback loop generally achieves better sensitivity, i.e.,
height of the peak in response to the input. The incoherent feed forward loop, in contrast,
achieves better precision (i.e., final steady state closer to zero) after the initial transient has
faded. Fig 13 shows the time to achieve a maximal response and the value of the maximal
response for various values of τ for the two mechanisms.

In going from the four phenomenological parameters in Fig 5 to the single parameter τ, the
models have lost some flexibility. It is important to remember that the sensitivities in Figs 7, 8
and 11 are based on a local analysis. An actual adaptive system can vary its parameters to make
small adjustments to all four phenomenological degrees freedom. However, the primary adap-
tation response is characterized by the value of τ as in Fig 12. Notice that the phenomenological
interpretation of τ does not correspond directly to any one of the four phenomenological
parameters in Fig 5. From Fig 12 we see that increasing τ corresponds to an increase in parame-
ters ϕ1, . . ., ϕ4. This correlation is common to both mechanisms and indicates a universality in
the types of adaptation curves that can be constructed in nature. There will be small small vari-
ations from these universal curves from system to system that represent fine-tuning of less
important parameter combinations.
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The equations governing the two parameter EGFR model are

d
dt

½Erk� ¼ y1½EGF� �gP90½Erk� ð43Þ

d
dt
gP90 ¼ y2½Erk�; ð44Þ

which are identical to those governing the negative feedback loop. The phenomenological
parameters have expressions in terms of the structural parameters:

y1¼
KmRasGapKmdErkKmdMekKmdRaf 1kEGFkRasToRaf 1kSoskpMekCytoplasmickpRaf 1

KmEGFKmpMekCytoplasmicKmpRaf 1kRasGapkdErkkdMekkdRaf

 !

� Mek Sos

PP2A2Raf1PPtase RasGap

� �
ð45Þ

Fig 13. The phenomenological parameter τ controls both the time to achieve a maximal response (left) as well as the relative
size of the response (right). The two topologies have slightly different τ dependencies.

doi:10.1371/journal.pcbi.1004915.g013

Fig 12. Adaptation for various values of τ. Both the negative feedback (left) and incoherent feed-forward (right) adaptive models can
be characterized by a single parameter τ that quantify the trade-off between sensitivity and the time to return the pre-input state.

doi:10.1371/journal.pcbi.1004915.g012
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y2 ¼
kdSoskpP90Rsk

KmdSosKmpP90Rsk

 !
P90Rskð Þ ð46Þ

gP90 ¼ KKmpP90Rsk

kpP90Rsk
P90Rsk; ð47Þ

with values θ1 � 1.558 and θ2 � 0.977. The dimensionless parameter characterizing the EGFR
system for the rat model from reference [7] is therefore τEGF � 1.6.

Discussion

Analysis of Reduced Models
The control mechanisms underlying adaptation in both the negative feedback and incoherent
feed-forward loops has been discussed extensively in the literature, particularly in reference
[40]. It is therefore interesting and instructive to consider these analyses in light of the minimal
models derived above.

First, consider the steady state values for the four-parameter negative feedback loop in Eqs
(28)–(30):

A� ¼ 1 ð48Þ

B� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KFBkACkCBkBC
FBkFBKCBKBC

s
ð49Þ

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FBkFBkACKCBKBC

KFBkCBkBC

s
: ð50Þ

Of particular interest is the case of “perfect adaptation” in which node C returns very nearly to
its pre-input value (zero in this case). Precision refers to the discrepancy between the final
steady state of node C and the its pre-input value. Eq (50) identifies a combination of parame-
ters that control this system behavior. Note, that one way to accomplish this is for the parame-
ter KCB to become very small, consistent with one of the findings of reference [40].

At first, this result appears to contradict the limit (kCB, KCB)!1 was used in deriving the
equations for the negative feedback loop. However, this limit should not be interpreted to
mean that kCB and KCB are really large in the full model. Rather, it means that the model predic-
tions do not require these parameters to be finite so long as the ratio kCB/KCB has the appropri-
ate value. In a real system KCB will certainly be finite and decreasing its value will affect the the
system behavior. The effect decreasing KCB has on the outputs of the full model is preserved in
the reduced system through the ratio kCB/KCB.

Eq (50) also predicts that large values of KFB are preferable for improved precision. Interest-
ingly, reference [40] found that KFB was often small. These results are not necessarily in contra-
diction. Eq (50) allows for high precision with small KFB provided other parameter compensate
accordingly. Reference [40] reports on a global search over all parameter space, i.e., allowing
other parameter values to float as well. However, holding all other parameters fixed, precision
can be improved by increasing KFB, a result that we confirm numerically.

In reference [40], the mechanism of the incoherent feed-forward loop was explained as an
“anticipation” by directly monitoring the input node A. This was confirmed by demonstrating
a proportionality between the steady state values of node A and node B so that “Node B will
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negatively regulate C in proportion to the degree of pathway input” [40]. This result can be
seen readily in the reduced model in Eqs (34)–(36) for the entire dynamics. Assuming a con-
stant input (as we have done), the equations for A and B can be integrated exactly to give (for
times before saturation)

A ¼ kIAIt ð51Þ

B ¼ ð1=2ÞkABkIAIt2 ¼ ð1=2ÞkABtA: ð52Þ

Both the negative feedback and incoherent feed-forward loops share a more general integral
control mechanism. For the simple three node models, the topology of these networks is pre-
served by the reduction process so that previous analyses specific to the topology still apply to
the simplified models [40]. In many cases of practical importance, however, the relevant con-
trol mechanism is embedded in a large network with many more than three nodes that has
many potential control mechanisms. Consider, for example, the full network of in Fig 10 (top
left) that contains both extended negative feedback and incoherent feed-forward loops as well
as many other interconnections. In such a case, it is desirable to condense the network into a
minimal mechanistic model in order to identify the relevant control mechanism. This is what
is done by the MBAM. Strikingly, this relatively complicated network was reduced to exactly
the same functional form as minimal negative feedback topology.

Advantages and Limitations of MBAM
We have presented the Manifold Boundary Approximation Method specialized to the context
of differential equation models of biochemical kinetics. We have shown that MBAM is capable
of deriving simple phenomenological models of system behavior directly from a microscopic,
mechanistic description. Because it was derived directly from the microscopic, the resulting
simplified model is not a black box but provides real insights into how the microscopic mecha-
nisms govern the emergent system behavior.

MBAM connects the microscopic to the macroscopic through a series of limiting approxi-
mations that are automatically identified and rigorously justified in a specific context defined
by the Quantities of Interest (QoI). The parameters of the reduced model are therefore given as
(often nonlinear) expressions of microscopic parameters that are exactly the identifiable com-
binations relative to the specific QoIs. It therefore becomes possible to identify how micro-
scopic perturbations, such as gene mutations, over-expression, or knockout, will alter the
macroscopic phenomenological parameters.

Selecting appropriate QoIs is an important component of the MBAM; however, the results
are usually robust to many changes in the QoIs. The question of how the MBAM results are
dependent on the QoIs has begun to be explored in reference [16]. Changing the QoIs will
change the Fisher Information and by extension the geometric properties of the manifold.
First, consider changes to the QoIs such as changing which time points are considered or the
time dependence of the inputs. These changes effectively “stretch” or “compress” portions of
the manifold, i.e., transform the model in a differentiable way–transformations known as dif-
feomorphisms. Because the boundaries of the model manifold are singularities of the FIM, the
relationship among the boundaries are invariant to these diffeomorphisms. In other words, the
boundaries are a feature of the differential topology of the family of manifolds generated by
varying the QoIs. MBAM is therefore robust to changes in the QoIs because it is identifying a
topologically invariant feature of the parameter space. MBAM uses geometric operations (e.g.,
geodesics) find these topological invariants, so that the QoIs are incidental to the process, but
the details of the QoIs are not critical to the final result.
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More drastic changes to the QoIs, such as changing which chemical species are observed,
are not necessarily differentiable changes to the model manifold. Indeed, we have seen for the
case of the Brown et al. model, that observing fewer species had a dramatic effect on the final
reduced model as summarized in Fig 10. Other cases are considered in reference [16] where it
is observed that changing the QoIs can lead to folding/unfolding of the manifold or even a
“manifold collapse” along some dimensions. By systematically coarsening the QoIs, we have
seen how the microscopic mechanism can be connected to the simple effective description.

In many cases it may not be obvious which QoIs should be chosen. Drastically different
choices in QoIs will lead to different reduced models. While MBAM cannot say which choice is
correct, it does provide way to systematically study the implications of different choices and
generate testable hypotheses about how some intermediate behaviors may or may not influence
larger-scale phenomena such as phenotype.

MBAM requires a model that is a more-or-less complete microscopic description as a start-
ing point. Of course, any real model is never complete in the reductionist sense. However,
microscopic models that can be used effectively with MBAM have made approximations that
do not affect the important dynamics of the system. For example, the Brown et al. model is
already a dramatic simplification over a comprehensive pathway map [5]. In many cases, how-
ever, little to nothing is known about the microscopic mechanisms. Although beyond the scope
of this paper, we speculate that MBAM could be used to reverse engineer mechanisms when
the microscopic model is unknown.

It is instructive to compare the MBAMwith another common approach to parameter identifi-
cation in complex biological models. Many parameter values are often fixed based on educated
guesses found for example from in-vitro experiments. The small number of remaining parame-
ters are fit to data. If there are only a few effective degrees of freedom in the model, this procedure
will succeed if the remaining parameters have components along the stiff direction of the com-
plete model. While this procedure will reduce the number of fitting parameters in the model, the
model is not made conceptually simpler. Furthermore, it is difficult to know a priori how many
or which parameters to fix and which to fit. After fixing several parameters, the remaining degrees
of freedom in the model are generally misaligned with the true long axes of the model manifold.
The restricted model will therefore not encompass the full range of possible model behavior of
the original model. In other words, this procedure gives a local approximate model. For different
regimes in the model’s parameter space, it will be necessary to fix a different set of parameters.

In contrast, the MBAM is a semi-global approximation scheme. Boundaries are a global,
topological feature of a manifold [16]. By construction, the parameters of an MBAM simplified
model are aligned with the true principal axes of the original model manifold and naturally fol-
low its curvature. The MBAM approximation will generally be valid over a much broader
range of the original parameter space than a model in which a handful of parameters are fixed.
Furthermore, the boundaries represent structurally simplified approximate models that lead to
conceptual insights about collective behavior while retaining an explicit connection to the
microscopic mechanisms.

The key insight that enables this semi-global approximation scheme is an empirically
observed correlation between local information, i.e., the eigenvalues of the FIM, and the global
structure of the manifold, i.e., manifold widths [48, 49]. This observation allows the geodesic to
find a path to the nearest model boundary using the eigenvalues of the FIM calculated at some
point in the interior. In order for this to work, it is generally necessary for the parameters to be
dimensionless and in the natural units of the QoIs. This is the reason we recommend using
log-transformed parameters (see Materials and Methods section).

In our experience, the procedure of identifying limits from a single geodesic generally
works; however, it is not fool-proof. On some occasions, the geodesic may encounter a region
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of high-curvature and bend away from the desired boundary and become lost–analogous to a
spaceship experiencing a gravitational slingshot around a planet. In these cases, it will be neces-
sary to guide the method by hand. In our experience, calculating a few geodesics starting from
either nearby points or oriented along different directions in the sloppiest subspace (i.e. two or
three eigendirections with smallest eigenvalues) will eventually identify the desired limit. For
most models, the curvature has been demonstrated to be small, so this is a rare occurrence. We
encountered it twice in our reduction of the EGFR model and once in our reduction of the
adaptation models.

Because MBAM is a nonlinear approximation, it is involves considerably more computa-
tional expense than other local approximations. Fortunately, as mentioned above, the corre-
spondence between FIM eigenvalues, manifold widths, and the existence of boundaries greatly
reduces the computational cost associated with finding a semi-global approximation. Here, we
have applied the method to a model of 48 parameters and 15 independent differential equa-
tions. However, we estimate that the method could be reasonably applied to models with sev-
eral hundred parameters given standard simulation methods common in systems biology.

Bridging Mechanistic and Phenomenological Models
“Phenomenological” and “mechanistic” are two adjectives often used to describe models as
well as general modeling philosophies. These two approaches reflect a dichotomy that pervades
nearly all scientific disciplines between top-down, phenomenological models and bottom-up,
mechanistic models [12, 50–55]. Both approaches have relative strengths and weaknesses.
Phenomenological models reflect the relative simplicity of the collective behavior, automati-
cally including the appropriate number of parameters to avoid over-fitting but lacking mecha-
nistic explanations. Phenomenological models exploit correlations among observed data to
make predictions about statistically similar experiments. In contrast mechanistic models are
constructed to reflect causal relationships among components. These models are often complex
and consequently susceptible to over-explaining behavior or over-fitting data. Because they
model causal relationships, mechanistic models have a type of a priori information about the
system behavior. Mechanistic descriptions are therefore an important ingredient for enabling
new engineering and control applications that directly manipulate microscopic components.

A precise delineation between “mechanistic” and “phenomenological”modeling is difficult
to define. Here, we take the difference between phenomenological and mechanistic models to
be the model interpretation with respect to physical reality (in the reductionist sense). For
example, the EGFR model summarized in Fig 10 (top left) is mechanistic because the modeler
claims that there really is a biochemical agent known as Ras, for example, that really does
respond to mSos and really does influence Raf1 and PI3K. In contrast, consider the phenome-
nological models derived from time series data by Daniels and Nemenman [54, 55]. In this
case, the S-systems that make up the model components are not claimed to correspond to any
realmicroscopic components.

The models derived in this work have properties of both phenomenological and mechanistic
models. The original EGFR model of Brown et al. is mechanistic, but what about the minimal,
condensed, negative feedback loop of Fig 10 (bottom right)? We claim that this mechanism
reflects the reality of the collective biological system. Similarly, we interpret the components of
this minimal model as representing real biological components.

In some sense, the parameter τ is phenomenological; it can be easily determined from exper-
imental data without regard to microscopic mechanisms. However, because the expression for
τ was derived incrementally from a mechanistic description, expressions such as Eqs (41)–(42)
and Eqs (45)–(47) explicitly identify the mechanisms that control its value. In principle it
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would be possible to use these expressions to predict the value of τ from the microscopic
parameter values. This is an important conceptual advance because it bridges the high-level
phenomenological description and the low-level mechanisms. Indeed, these expressions iden-
tify which information about the microscopic components are necessary to predict a macro-
scopic behavior or conversely, which information about microscopic mechanisms can be
inferred from systems-level observations.

Expressions directly relating microscopic and phenomenological parameters allows one to
easily predict the effect on phenomenology (i.e., τ) in response to changes in any of the micro-
scopic parameters (such as gene-knockout, over-expression, etc.) without the need to directly
explore the large microscopic parameter space. Compressing parameter space in this way
reduces the potential for over-fitting and over-explaining system behavior and significantly
simplifies the ensuing statistical analysis.

In many cases of interest, mechanistic explanations are elusive. Although we have not explored
the possibility here, we believe the current approach may be useful in these situations as well. For
example, given several candidate mechanistic models, understanding how each mechanistic
would hypothetically explain a system-level behavior could be useful in motivating experiments
to distinguish among competing hypotheses by providing insights into competing theories.

Modeling Complexity in Biological and Physical Systems
Complexity in biological modeling is often contrasted with the apparent simplicity of models
from the physical sciences. Indeed, many of the seminal examples of physics models are sur-
prisingly simple and have very few parameters. Consider for example, the diffusion equation
that is typically characterized by a single parameter [11]. Furthermore, the forms for many of
the simple, phenomenological models of physics were guessed long before the microscopic
mechanisms were understood. In contrast, the immense complexity of biological models often
give rise to arguments that biology demands a new approach to mathematical modeling and
that analogies drawn from physics are not likely to be useful for guiding computational biology.
In many cases the justification for simple models in physics can be traced to either a small
parameter or the symmetries of the underlying physical interactions. That these symmetries
are not present in living systems gives credence to this perspective.

Despite the complexity of the underlying mechanisms, biological systems, like physical sys-
tems, often exhibit relativity simple collective behavior, especially when only a few QoIs are
considered at a time. Adaptation, for example, is a common biological function that, as we
have seen, could be modeled by a simple function with just one parameter. This situation is not
unlike the diffusion equation from physics. In both cases, a simple macroscopic form can be
expressed, independent of the microscopic details, with a few parameters that are easily inferable
from data.

The stability of macroscopic behaviors to microscopic perturbations leads to the concept of
a universality. Universality has been used with great success in physics by mapping the behav-
ior of many different systems into a relatively small number of universality classes. Once the
appropriate universality class has been identified, a simple, computationally tractable model
can be used to calculate all universal physical quantities. For example, the critical exponents of
many different fluids can be predicted almost exactly by the Ising model, a toy model of ferro-
magnetism. It does not matter that the Ising model is not a mechanistically accurate model of
fluids because it is in the same universality class. There has been considerable speculation
about the extent to which universality may or may not prove useful in biology or other complex
systems. Here we consider one such argument that is particularly relevant in the context of the
manifold boundary approximation.
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One source of complexity in biology arises when attempting to predict how the simple col-
lective behavior will be altered by microscopic perturbations, such as mutating genes or apply-
ing protein-targeting drugs, or how a desired collective behavior could be engineered from
microscopic components. Indeed, this is a much more challenging question that is not easily
answered by phenomenological models without mechanistic information. However, this prob-
lem is not unique to biology. In physics, for example, the Ising model does not predict the criti-
cal temperature and pressure of a fluid, only the properties at the critical point. Similarly,
macroscopic, phenomenological models of material strength do not give any insights into how
to engineer stronger alloys. Phenomenological models have limited predictive power for exper-
iments that manipulate microscopic control knobs. As experimental and engineering efforts in
physics, biology, and other scientific fields have advanced to the realm of the microscopic,
these simple macroscopic theories need to be explicitly connected to their microscopic mecha-
nisms. How does one systematically identify the microscopic parameter combinations that
control the non-universal behavior of a system?

It is true that the types of questions advanced by both modern physics and biology demand
new approaches to modeling beyond what has been “unreasonably successful” historically in the
physical sciences [56]. Indeed, the challenges faced by biological and physical modeling are shared
by many disciplines across the sciences. How domicroscopic mechanisms govern collective behav-
ior and how can that behavior be controlled and engineered? Simple, phenomenological models
can play an important role in answering these questions since they distill the essence of the system
behavior. What is often missing, however, is an explicit connection between the phenomenology
and the mechanistic description. The manifold boundary approximation method is a step toward
providing such a bridge in a general way. It is our hope that similar analysis can lead to a likewise
comprehensive picture of other complex processes both in physics, biology, and elsewhere.

Materials and Methods

The Manifold Boundary Approximation Method
The Manifold Boundary Approximation Method (MBAM) is a model reduction scheme
described in reference [26]. As the name suggests, it is based on a geometric interpretation of
information theory (known as information geometry [48, 49, 57–61]) that is applicable to a
wide range of model types. In this section we give a more algorithmic description and presenta-
tion specialized to the types of models common in systems biology, i.e., those that are formu-
lated as differential equations of chemical kinetics that would be fit to data by least squares.
Notably, this excludes stochastic differential equations. In principle, the MBAM formalism can
be applied to SDEs, but we do not address that question here. Throughout this section, we refer
to the relevant information geometric objects (manifold, metric, geodesics, etc.) and provide
external references for completeness. However, the reader can ignore these technicalities if
desired and implement the method as summarized here.

We assume the existence of a model of a biological system with many parameters θ that can
be evaluated to make predictions. Examples of possible predictions include the concentrations
of specific chemical species at specific times in response to specific stimuli. Approximations
inherently disregard pieces of the model, so it is necessary to decide the objective of the model,
i.e., which model behaviors the approximation should preserve. Therefore, from the many pos-
sible predictions, the modeler selects a subset that we refer to as Quantities of Interest (QoI).
We denote these by

rmðyÞ ¼
ymðyÞ
sm

ð53Þ
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wherem is an index that enumerates the QoIs, ym(θ) denotes the prediction of the model for
the corresponding QoI evaluated at parameters θ, and σm represents the tolerance with which
the QoI should be preserved. The QoI is analogous to a data point ym(θ) with experimental
uncertainty σm.

In practice, the QoIs will often include predictions for which experimental data is available.
The data will then be used to calibrate the reduced model. However, QoIs may also include pre-
dictions for which data is unavailable but for which the modeler would nevertheless like to
make predictions. Alternatively, QoIs may include a very small subset of possible predictions
as we have done here for the case of EGFR signaling.

The underlying idea of the MBAM is that rm(θ) can be interpreted as a vector in R
M, where

M is the number of QoIs. If the model contains N parameters, then this vector sweeps out an
N-dimensional hyper-surface embedded in R

M. This hyper-surface is known as the model
manifold and denoted byM. For biological systems such as we consider here (in addition to
models from many other fields), the model manifold is bounded. Furthermore, the model man-
ifold has many cross sections that are very thin. Consequently,M often has an effective
dimensionality that is much less than N. Our goal is to construct a low dimensional approxima-
tion to the model manifold by finding the boundaries ofM. The procedure for doing this can
be summarized as a four step algorithm.

First, from an estimate of the parameters θ0 calculate the matrix

gmn ¼
X
m

@rm
@ym

@rm
@yn

: ð54Þ

This matrix is the Fisher Information Matrix (FIM) of the model and corresponds to the Rie-
mannian metric onM. Calculating the eigenvalues of this matrix reveal the “sloppiness” of the
corresponding parameter inference problem. The eigenvectors with small eigenvalues corre-
spond to the parameter combinations that have negligible effect on the QoIs. We denote the
direction of the smallest eigenvector by v0.

The second step is to calculate a parameterized path through parameter space θ(τ) corre-
sponding to the geodesic originating with parameters θ0 and direction v0. This is found by
numerical solving a differential equation:

d2

dt2
ym ¼

X
n;m

ðg�1Þmn
@rm
@yn

AðvÞm ð55Þ

where A(v) is the directional second derivative:

AmðvÞ ¼
X
mn

dym
dt

dyn

dt
@2rm

@ym@yn
: ð56Þ

(As an aside, in order to avoid unnecessary complications for the uninitiated, we have not used
many of the standard differential geometric conventions, including the Einstein summation
convention or the use of raised and lowered indices to denote contravariant and covariant vec-
tor components.) It is possible to estimate Am(v) efficiently using finite differences

AmðvÞ �
rðyþ hvÞ þ rðy� hvÞ � 2rðyÞ

h2
; ð57Þ

where v ¼ dy
dt.

The solution to Eq (55) is a parameterized curve through the parameter space. Along this
curve, the modeler monitors the eigenvalues of the FIM (Eq (54)). A boundary of the model

Bridging Mechanistic and Phenomenological Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004915 May 17, 2016 30 / 34



manifold is identified by the smallest eigenvalue of gμν approaching zero. When the smallest
eigenvalue becomes much less than the next smallest, then the corresponding direction will
reveal a limiting approximation in the model. This leads to step three.

The approximation will typically correspond to one or more parameters approaching zero
or infinity in a coordinated way. The goal is to identify this limit and analytically evaluate it in
the model. This is done explicitly for several models in this manuscript. The result of the pro-
cess is a new model with one less parameter than the previous. We denote the new vector of
parameters by ϕ and the QoIs for this approximate model by ~ymð�Þ=sm

Finally, the values of the parameters ϕ in the approximate model are calibrated to the
parameters θ0 by minimizing the sum of square distance between

min
�

X
m

ymðy0Þ � ~ymð�Þ
sm

� �2

: ð58Þ

This four-step procedure is iterated, removing one parameter at a time, until the model
becomes sufficiently simple.

A python script that can be used for calculating geodesics is available on github [62].
The procedure just described requires a few comments, particularly as it applies to biological

systems. First, the MBAM requires a parameter estimate as a starting point θ0, which usually
cannot be estimated accurately. Although an accurate estimate of θ0 might be elusive, it has
been shown that the resulting reduced model is largely independent to these uncertainties.
Indeed, one purpose of the MBAM is to remove the unconstrained parameters from the model.
The reason for this is seen by considering a geometric argument given in reference [26]. Huge
variations in parameter values can result when fitting to data, but these variations all lie within
the same statistical confidence region, which means they map to nearby points on the model
manifold. Starting from any points within this confidence region will identify the same
sequence of boundaries as the true parameters.

For most systems biology models, the microscopic parameters are restricted to positive val-
ues (reaction rates, Michaelis-Menten constants, Hill coefficients, and initial concentrations).
In order to guarantee positivity, we assume that these parameters have been log-transformed in
the model, i.e., θ = log k, where k are the reaction rates, etc. This serves the dual purpose of
non-dimensionalizing the parameters, that is important for the initial eigendirection of the
FIM to point to the narrowest width of theM. MBAM is a semi-global approximation method
that is enabled by a correspondence between local information (FIM) and global structure
(boundaries). This correspondence is less likely to hold if the parameters are not log-
transformed.

We use the term semi-global to denote something between purely local and fully global. For
the case of the enzyme-catalyzed reaction in Fig 1, the MBAM approximation is a global
approximation; the Michaelis-Menten model is capable of well-approximating the full range of
behavior of the mass-action kinetics. However, one could imagine, a more complicated model
manifold with several narrow “arms” extending from a central location (something like a star).
Beginning from a point in one of the arms of the manifold, the MBAM will likely only approxi-
mate the behavior along of the principal axis of that arm. Because of this possibility, we
describe MBAM as semi-global. With the exception of the enzyme-substrate reaction (Fig 1), it
is unknown whether the approximations given in this paper are global or semi-global. This is
due to the intrinsic difficulties in both exploring and characterizing high-dimensional spaces.
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