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Abstract
Background: The obstructive sleep apnea (OSA) detection has become a hot research topic because 
of the high risk of this disease. In this paper, we tested some powerful and low computational signal 
processing techniques for this task and compared their results with the recent achievements in OSA 
detection. Methods: The Dual-tree complex wavelet transform (DT-CWT) is used in this paper to 
extract feature coefficients. From these coefficients, eight non-linear features are extracted and then 
reduced by the Multi-cluster feature selection (MCFS) algorithm. The remaining features are applied 
to the hybrid “K-means, RLS” RBF network which is a low computational rival for the Support 
vector machine (SVM) networks family. Results and Conclusion: The results showed suitable OSA 
detection percentage near 96% with a reduced complexity of nearly one third of the previously 
presented SVM based methods.
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Introduction
There is a close relationship between 
the heartbeat and the breathing process. 
Therefore, we can use the electrocardiogram 
(ECG) signals to detect the breathing 
problems. Obstructive sleep apnea (OSA) 
disease is one of the most dangerous 
breathing deficiencies that happen during 
sleep and can be detected directly from the 
ECG signals using the signal processing 
techniques.[1] The usage of ECG signals in 
OSA detection is only one way to do this 
task and the apnea can be detected using 
respiration and other kinds of signals.[2] 
However, in this article, we only considered 
the OSA detection using the single‑lead 
ECG. Several separated OSA detection 
methods have been proposed up until 
now.[1,3‑18] Most of these methods have 
consisted of feature extraction, feature 
selection, and classifier parts. In Figure  1, 
we can see the collective flowchart of an 
OSA detection approach based on the ECG 
signal processing:

Here, we describe some of the proposed 
methods in the apnea detection. Khandoker 
et  al.[3] have proposed the usage of 
the wavelet transform for ECG feature 
extraction. Furthermore, Rachim et  al.,[9] 
Zarei  et  al.,[5] Avcı and Akbaş et  al.,[8] and 
many other researchers have proposed the 
discrete wavelet transform  (DWT)‑based 
ECG decomposition for the OSA detection. 
Furthermore, the Tunable Q‑factor 
wavelet transform is proposed in[7] 
by Nishad et al. Some researchers, including 
Hassan et  al.[6,19] and Thomas et  al.,[20] 
have proposed the usage of the dual‑tree 
complex wavelet transform  (DT‑CWT) to 
extract the transform coefficients from the 
ECG signal. After, collecting the transform 
features, the usual path is to extract the 
statistical features from these coefficients. 
Based on these works, in this article, we 
used the DT‑CWT for feature extraction 
of the apnea ECG signal. However, the 
nonlinear feature extraction from the 
DT‑CWT coefficients is something that 
have not been experimented in Hilmisson 
et al.[1] and Hassan et al.[6]
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After feature extraction, feature reduction is necessary 
to reduce the computational complexity of the proposed 
method. Zarei et  al.[5] have used the sequential forward 
feature selection method, whereas the principal component 
analysis have been suggested in Avcı and Akbaş 
et al.[8] and Rachim et al.[9] In this article, we proposed the 
multi‑cluster feature selection  (MCFS)[10] method for the 
feature reduction as much as possible for the best results.

The final part of the OSA detection process is the 
classification. Many researchers including Zarei et al.[5] have 
proposed the usage of the support vector machines (SVMs) 
for classifying between the apnea and normal ECG signal. 
Other classifiers like the Neural networks  (NNs) have 
been proposed by Khandoker, et  al.,[3] the Random forest 
by[7] and[8] the Adaboost classifier by,[11] Rusboost by,[12] 
Boot‑strap by,[13] Convolutional NNs  (CNNs) by[14‑17] and 
Deep NNs  (DNNs) by[18] for OSA detection. However, the 
SVMs are still the most prevalently used classifiers in this 
topic and we compared our results to these classifiers. It is 
important to mention that the articles that have proposed 
the usage of DNNs and CNNs, usually report near 100% 
OSA detection results that are not very credible due to the 
high computational complexity of theses network, also the 
deep networks are usually biased to the train data and do 
not perform well for the new data.[5] The proposed classifier 
in this article is the Hybrid Radial basis function  (RBF) 
network with the “K‑means‑recursive least‑squares  (RLS)” 
learning algorithm.[21,22] The selection of this network is to 
compare its results with that of the SVM networks in the 
OSA detection. These networks have been compared before 
in other tasks,[21] and it has been shown that the hybrid 
RBF network is superior to the SVM network.

The rest of this paper prepared as follows:

In part II, the signal preprocessing steps are described. Part 
III, explains the feature extraction and selection methods 

from the apnea ECG signals. Part IV is dedicated to the 
explanation of the hybrid RBF classifier and its differences 
with the SVM network. Part IV presents our OSA detection 
results, and Part V consists of our concluding remarks and 
the suggestions for the future investigations.

Dealing with the Electrocardiogram Signal
In this section, we focus on the preliminaries of the ECG 
signal processing for the OSA detection. First, we introduce 
the data base that is used in this article because there 
are other ECG data bases that contain the heart signals 
of the apnea diseased patients. Then, we proceed to the 
preprocessing and signal preparation techniques.

Data base

The Physionet data base that is used for ECG apnea signals 
consists of the sleep duration parts of the 70  patients. In 
this data base, we have 35 records for the train set with 
13 healthy  (normal with Apnea Hypopnea Index  ≤5) and 
22 apnea participants. For the test set, we have 35 records 
with 12 healthy and 23 apnea cases. Furthermore, in this 
text file, the apnea or healthy condition of each segment 
is pointed out. Based on these we have presented our 
results in Table 1, with the segment by segment (minute 
by minute) assumption. As we mentioned, there are other 
apnea data bases[23] that we did not consider in this paper 
because of the comparison of the results with a long list of 
references.

Signal preparation

Before processing an ECG signal, we must first remove 
the power line interference and baseline wandering from 
it using a Chebyshev band‑pass filter with the frequency 
range of 0.5–48 Hz. In Figure  2, we can see a typical 
ECG signal before and after interference cancelation and 
normalization.

Segmentation and segment selection

Not all the parts of the recorded ECG signal is useful 
for the OSA detection. Some parts become useless due 
to the movements of the patients and other parts may be 
contaminated with high noise levels. After we performed 
filtering, the weight calculation approach is applied 
for deleting the noisy segments. In[5] a simple method 
is proposed for the automatic cancelation of the noisy 
parts. In this method, a weight  (W) is calculated for each 
segment based on the similarity of its autocorrelation 
Function  (ACF) with other segments ACF, by taking into 
account, the cosine pairwise similarity as the metric. The 
similarity values are then given as:
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Where dst is the correlation distance, and Xs and Xt are 
the ACF of two different segments. –Xs and –Xt are the mean 

Figure 1: The overall steps of the obstructive sleep apnea detection using 
the single‑lead electrocardiogram signals
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value of the Xs and Xt, respectively. The output of  (1) is a 
vector showing the similarity of each segment. W  of each 
segment is calculated with the normalized summation of 
all the values. For our method, all the dst segments with a 
calculated weight lower than 0.8 were pointed out as the 
noisy segments and deleted from the tested segments.

Feature Extraction and Selection
The feature extraction of the ECG signal segments in this 
article consists of three parts: In Part A, we explain the 
DT‑CWT feature extraction and in Part B, we introduce the 
methods of nonlinear feature extraction from the DT‑CWT 
coefficients. In part C, the feature reduction or selection 
method which is the MCFS is explained.

The dual‑tree complex wavelet transform

In[6,20] the usage of DT‑CWT in ECG feature extraction 
is proposed. The main deficiency of DWT‑based feature 
extraction in analyzing 1D ECG signal is the lack of shift 
invariance. It means that the amplitude of the wavelet 
coefficients varies substantially as the input signal is 
shifted a little. This happens because of the down sampling 
operation at each level. A  better way of achieving shift 
invariance is to implement the undecimated form of 
the dyadic filter tree; however, this method has heavy 
computation demands and high redundancy in the output. 
The DT‑CWT tackles this problem with a redundancy 
factor for 1D signal, which is significantly lower than 
the undecimated DWT. In[21] the authors have explained 
the shift invariance property of DT‑CWT in detail. The 
DT‑CWT implements two trees of real filters  (Tree A and 
Tree B), as shown in Figure  3. The two trees correspond 
to the real and complex part of the CWT. The DTCWT of 
a signal x  (n)  (ECG) is implemented using two critically 
sampled DWTs in parallel to the same data. The filters 
are designed so that the sub band signals of the upper 
DWT can be interpreted as the real part of a CWT and 
subband signals of the lower DWT can be interpreted 
as the imaginary part. When the transform is designed 
in this manner, the DT‑DWT is approximately shift 

invariant, unlike the critically sampled DWT. The filters 
implemented in each stage are of length 10. The sets of 
filter coefficients (H) used in this transform are given in.[21] 
The selected transform coefficients are x1a, x01a, x001a, x000a, 
x1b, x01b, x001b, and x000b.

In Figures  4 and 5, we depicted the subband signals for 
three levels of the tree A and B, respectively. It is important 
to mention that all of these signals are depicted for the a01 
record of the Physionet database.

The absolute energy of the signal x000b, is depicted in 
Figure 6.

The absolute energy of the signal x000b, is depicted in 
Figure 7.

The nonlinear feature extraction from the dual‑tree 
complex wavelet transform coefficients

After extracting the subbands of the DT‑CWT from the 
selected ECG segments, we calculate some nonlinear 
features based on the extracted transform coefficients. In[5] 
it has been shown that the ApEn, FE, interquartile range, 
RP and Poincare plot features make large differences 
among the two classes (Apnea and Normal). These features 
are collected in Table 1 and as they are explained in,[5] we 
do not present their theoretical calculations here.

Using these seven feature extraction methods with the 
8 DT‑CWT coefficients that are explained in Part III, we 
have 56 features for each ECG to be fed to the classifier. 
However, we used the feature reduction to reduce these 
features as much as possible.

The multicluster feature selection algorithm

The MCFS[10] is an algorithm that can reduce feature 
dimensionality without their class labels. It is a highly 
powerful algorithm for reducing the correlation between 
the features. Here, we describe this algorithm:

We assume there are N training samples each with 
Np features, i.e.,  pN

ix R∈ that construct the matrix 
( )1 2, , , NX x x x= … . The function of MCFS is to determine 

Figure 2: The first 3 s of a typical normalized electrocardiogram signal before (left) and after (right) preprocessing
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mentioned before is defined and the graph Laplacian is 
calculated in the manner:

L = W − D� (2)

To find the flat embedding for the data points, the 
generalized Eigen problem mentioned below must be 
solved:

Ly = Dy� (3)

Each row of =  (y1, , yc, flat embedding for each data 
point, where yi’s are the eigen vectors of  (2) with respect 

the feature subset with NF information features from 
X. In other words, MCFS is able to generate the points 
( )' ' '

1 2, , , Nx x x…  in FNR  which preserves the geometric 
structure as the data in the original  Np‑dimension space. 
Training samples build a graph with N vertices in which, 
each of the vertexes correspond to a training sample. 
MCFS at first finds p nearest for each training sample xi 
and put edge between xi and its neighbors. Then, we could 
define the weight matrix W on the graph. Next, diagonal 
matrix D with its column being the sum of W which was 

Figure 3: The three level dual-tree complex wavelet transform

Figure 4: The sub bands of the electrocardiogram signal for Tree A
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to smallest eigenvalue, C is the intrinsic dimensionality 
of data and data distribution reflected as yi along the 
corresponding dimension. Minimizing the fitting error as 
follows could result in finding the relevant subset of the 
features:

 T
k k kSubject ty X a o a γ− ≤ � (4)

Where ak is a Np‑dimension vector, ,
1

pN

k k j
j

a a
=

= ∑ denotes 

the L1‑norm of ,,k k ja a  is the jth element of the vector 

ak and γ is a parameter to be quantified. The least angel 
regression algorithm can be used to solve the optimization 
problem in  (4). For every feature j, the MCFS score is 
defined as:

( ) ,  k jMCFS Score j a= � (5)

Then, all properties according to their MCFS scores are 
then sorted in the descending order with top NF features 
being selected. The MCFS method reduces the 56 features 
that are mentioned in Part B.

The Classifier and Detector
We compared the results of our proposed method with that 
of several classifiers in Part IV. Explaining the operation of 
all these classifiers would increase the volume of the paper 
inordinately. Therefore, we addressed them accordingly 
in Table  2 for the interested researchers to find their 
explanation in the references. Here, we only explain the 
performance of our proposed classifying network:

Radial basis function classifier with hybrid “K‑means, 
recursive least‑squares” learning

The SVMs are the most prevalently used classifiers in 
the field of disease detection and classification. The RBF 
networks, on the other hand, are not used as much as SVMs. 
The hybrid RBF network[22] is the solution for this, because, 
they can rival the SVMs. The hybrid RBF consists of three 
layers and the middle and the output layers work with the 

Figure 6: The absolute energy of the sub band signal  x000a

Figure 5: The sub bands of the electrocardiogram signal for Tree B
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K‑means and the RLS algorithms, respectively, and for this 
reason, the hybrid adjective is attributed to them.

In this part, we describe RBF classifier with the hybrid 
learning scheme that is our proposed classifying tool. We 
call the proposed classifier as hybrid RBF because it has 
a hybrid‑learning procedure with two stages as follows:[22]

•	 Stage 1: Implements the K‑means clustering algorithm to 
train the hidden layer in an unsupervised scheme. Usually, 
the number of clusters and the computational units in the 
hidden layer are notably smaller than the size of the train 
sample

•	 Stage 2: Implements the RLS algorithm  (or another 
adaptive algorithm) to determine the weight vector of 
the linear output layer.

The two‑stage design procedure has some desirable features 
such as low computational complexity and fast convergence.

As we mentioned, the RBF network consists of three layers 
as in Figure 8. Here, we describe them briefly:

1.	 Input layer, which contains the source nodes that 
connected the network to its inputs. The inputs of the 
network for classification are the features vectors

2.	 The second layer, consisting of hidden units, implements 
a nonlinear transformation from the input space to 
hidden  (feature) space. For most applications, the 
dimensionality of the only hidden layer of the network 
is high; this layer is trained in an unsupervised manner 
using stage 1 of the hybrid learning scheme. Each unit 
in hidden layer is described mathematically by a RBF:

	 ( ) ( ) 1, 2, ,j j j Nϕ ϕ= − = …x x x � (6)

Table 1: List of nonlinear features that are extracted 
from the dual‑tree complex wavelet transform 

coefficients in this article
Features Description
FE[5] Fuzzy entropy
ApEn[5] Approximate entropy
IQR[5] Interquartile range
RP[5] Recurrence plot
SD1, SD2, SD1/SD2[5] Poincare plot Figure 7: The absolute energy of the sub band signal  x000b

Table 2: The comparison of the obstructive sleep apnea detection results based on various methods
References Feature extraction/selection 

method
Classifier Results

Accuracy % Sensitivity % Specificity %
Hilmisson et al., 2018[1] Frequency features Statistical analysis 93 100 81
Janbakhshi et al., 2018[2] EDR SVM‑KNN‑NN‑LD‑QD 90.9 89.6 91.8
Ma et al., 2019[4] Statistical features Statistical analysis 87 89 79
Zarei and Asl 2018[5] DWT + SFFS SVM (RBF kernel) 92.98 91.74 93.75
Hassan et al., 2017[6] DT‑CWT AdaBoost 84.4 90.38 74.38
Nishad et al., 2018[7] Tunable‑Q wavelet transform features Random Forest 92.78 93.91 90.95
Avcı and Akbaş 2015[8] DWT + PCA Random forest 92‑98 ‑ ‑
Rachim et al., 2014[9] DWT + PCA SVM 94.3 92.65 92.2
Hassan and Haque 2017[11] Normal invers Gaussian modeling AdaBoost 87.33 81.99 90.72
Hassan and Haque 2016[12] TQWT RUSBoost 88.88 87.58 91.49
Hassan 2016[13] Statistical and spectral Bootstrap aggregating 85.97 84.14 86.83
Wang et al., 2019[14] RR‑intervals CNN (LeNet‑5) 92.3 90.9 100
Singh et al., 2019[15] Time‑frequency Scalogram features CNN (AlexNet) 86.22 90 100
Urtnasan et al., 2018[16] RR‑intervals CNN 96 96 96
Wang et al., 2018[17] RR‑intervals CNN 97.8 100 93
Wang et al., 2019[18] RR‑intervals and frequency features DNN 97.1 100 91.7
Proposed method DT‑CWT + MCFS Hybrid “k‑means, RLS” 

RBF
95.62 96.37 96

ECG – Electrocardiogram; EDR – ECG derived respiratory; DWT – Discrete wavelet transform; SFFS – Sequential forward feature 
selection; PCA – Principal component analysis; TQWT – Tunable Q‑factor wavelet transform; MCFS – Multi‑cluster feature selection; 
SVM – Support vector machine; RBF – Radial basis function; CNN – Convolutional neural network; RLS – Recursive least‑square; 
KNN – K-nearest neighbor; NN – Neural network; LD – Linear discriminant; QD – Quadratic discriminant
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	 The jth input data point xj identifies the center of the 
RBF and the vector x is the signal  (pattern) applied 
to the input layer. Therefore, the links connecting the 
source nodes to the hidden units are direct connections 
with no weights. There are multiple RBFs for using 
in the hidden layer, but we implement the Gaussian 
function for the sake of comparison between SVM and 
RBF in[5]

3.	 The output layer is linear and provides the response 
of the network to the activation pattern implemented 
to the input layer; this layer is trained in a supervised 
fashion using Stage 2 of the hybrid scheme. There is 
no limitation on the size of the output layer, except that 
typically, the size of the output layer is much smaller 
than that of the hidden layer.

Here, we describe the learning algorithms of RBF:

K‑means clustering

K‑means is a method that utilizes distances for clustering 
with two steps:

Step 1: The total cluster variance is minimized with respect 
to the assigned set of cluster means ( ) 1

ˆ K

j=
μ , the following 

minimization must be performed:

( )
( )1

2

1
ˆ

   ˆmi  n K
j

K

i j
j C i j

for a given C
= = =

−∑ ∑ x
μ

μ � (7)

Step 2: After computing the optimized cluster means 
( ) 1

ˆ K

j=
μ , we optimize the encoder as follows:

( ) 2
1 ˆmin j K i jC i arg ≤ ≤= −x μ � (8)

The recursive least‑squares algorithm in hybrid learning

Adaptive algorithms have been designed to converge to 
certain weight vectors. These weights in RBF network are 
adjusted in the learning phase. The RLS algorithm is one 
of the most powerful adaptive algorithms. In this section, 
we explain the role of RLS in the output layer of RBF 
network.[22] Let the K × 1 vector:

( )

( )
( )

( )

1

2

,
,

,

i

i
i

i K

ϕ
ϕ

ϕ

 
 
 =  
 
  



x
x

x

x

μ
μ

Φ

μ

� (9)

Represent the outputs of the K units in the hidden layer. 
This vector is constructed to respond to the stimulus xi, 
i  =  1,2,…., N. Thus, insofar as the supervised training of 
the output layer is concerned, the training sample is defined 
by [ ] [ ]( ) 1

,
N

i
i d i

=
Φ , where di is the desired response at 

the overall output of the RBF network for input xi. This 
training is implemented by the RLS algorithm described as 
below:[22]

Given the training sample [ ] [ ]( ) 1
,

N

i
i d i

=
Φ , do the following 

calculations for iterations n = 1,2, ..., N:

( ) ( ) ( ) ( ) ( )
( ) ( )

1 ( 1) 
1

1 ( 1)
n n n n

n n
n n n

− −
= − −

+ −

T

T

P P
P P

P
Φ Φ

Φ Φ
� (10)

( ) ( ) ( ) n n n=g P Φ � (11)

( ) ( ) ( ) ( )ˆ 1Tn d n n nα = − −w Φ � (12)

( ) ( ) ( )1ˆ ( )ˆn n n nα= − +w w g � (13)

To initialize the algorithm, we have 
( ) ( ) 10 0 and 0ˆ P λ−= =w I  where  is a small positive 

constant. In[21] a complete analysis was made to show 
the superiority of hybrid RBF to the SVM classifier both 
computationally and with respect to accuracy. Furthermore, 
at least a 30% percent time‑saving is guaranteed using RBF 
in comparison with SVM.[22] This is important because we 
compared the results of our proposed method with that of 
the reference.[5]

The Computational Complexity
Up until now, several researchers have tried to present 
different analyses about the computational comparison 
between the hybrid RBF and the SVM networks.[21,22,24,25] 
In all of these references, it has been declared that the 
RLS‑based classifiers need less time to be trained and 
converge to the SVMs while having similar or better 
classifying results. Rifkin[21] has shown that the excess 
computational complexity of the SVM networks arises 
from the solving of the quadratic programming problem. 
The computational complexity of this optimization problem 
can be in the order of 3 2(   )s s sO N N m N nm+ +  where 
Ns is the number of support vectors, n is the dimensions 
and m is the number of the input data. In the worst case, 
Ns m≈  we have 2( )O nm . On the other hand, solving the 
linear system of equations using the RLS‑based learning 
algorithm in the worst case can be bounded by 2.376( )O m  
Overall, a RLS solution can be obtained much faster than 
that computed by SVMs.[24] However, the “K‑means, 
RLS” algorithm that has been presented in[22] and is used 
by us, could not be fully analyzed for the computational 
complexity. Therefore, we trust on the experimental results 
both in[22] and in our work that shows the time for training 
and processing of the hybrid RBF network is one third of 
the SVM network for the same problem and conditions. 

Figure 8: The implemented hybrid radial basis function network for the 
obstructive sleep apnea detection



Ostadieh, et al.: Enhancing obstructive apnea disease detection 

226� Journal of Medical Signals & Sensors | Volume 10 | Issue 4 | October-December 2020

It is important to mention that our comparisons were 
conveyed with the SVM networks with the RBF kernels 
that are from the strongest presented SVM schemes.

Results and Discussion
The comparison between the proposed methods for the 
OSA detection is usually based the accuracy and the 
complexity of the used signal processing techniques in 
each part of the task. As we emphasized earlier, the feature 
extraction, reduction, and detection are the main parts of 
the OSA detection. Therefore, in this part, we present them 
for each proposed method in our references along with 
the proposed detection results to facilitate the comparison. 
Some of the proposed methods  (as for example in[4]) 
have obviously weak detection results while having less 
computational complexity. Other methods  (like the ones 
associated with the DNNs) have satisfactory results but also 
have extracomputational complexity. The aim of this article 
is the reconciliation between the computational complexity 
and accuracy. We claim that, apart from the results from 
DNNs and CNNs, our proposed method is both accurate 
and less complex.

It is obvious that after feature extraction we get 56 features 
from each ECG signal  (7 sub bands and 8 no‑linear 
features). One of the contributions of this article is the 
usage of the MCFS feature reduction algorithm in apnea 
detection.[10] Using this algorithm, the number of features 
for the ECG signals reduces to ten features which is much 
lesser than the 18 features of the proposed method in.[5] Our 
OSA detection results are presented based on the accuracy, 
sensitivity, and specificity of the proposed methods that are 
given as follows:

( ) Tp TNAccuracy ACC
TP TN FP FN

+
=

+ + +
� (14)

( )  TPSensititivity Sen
TP FN

=
+

� (15)

( ) TNSpecificity Spec
TN FP

=
+

� (16)

Where, TP, TN, FP and FN denotes true positive, true 
negative, false positive, and false negative, respectively. 
The comparison of the results of the proposed method and 
the results in several recent references are given in Table 2.

As we can see, the proposed method can detect the 
OSA with overcoming results in comparison with the 
conventional classifiers and can closely rival the results of 
the computationally complex CNN classifiers. The main 
purpose of this article was to improve the results in.[5] By 
comparing the results, we can see that an average of 3% 
improvement is achieved in all the performance metrics. 

Furthermore, the computational complexity of our classifier 
is at least 30% lesser than the proposed SVM classifier in.[5]

Conclusion
In this article, we considered the OSA detection using 
various signal processing techniques to compare the 
results with the previously proposed methods. The feature 
extraction in this article is based on the nonlinear properties 
of the DT‑CWT coefficients. After feature extraction, in 
order to reduce the computational complexity, we used 
the MCFS algorithm that shrinks the feature vector size to 
10. Using these features and the “Hybrid RBF” network, 
we presented the results that were better than those of the 
previously presented SVM networks. Furthermore, the 
proposed method has less computational complexity that 
makes it a powerful rivalry to the computationally costly 
but very accurate DNNs and CNNs. In future works, we 
will consider other low computational signal processing 
methods for the OSA detection.
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