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Abstract: The influence of calf (R1), kid (R2) and pig (R3) rennets on microbiota, biogenic amines
(BAs) and γ-aminobutyric acid (GABA) accumulation in raw milk ewe’s cheeses was evaluated.
Cheeses were investigated at different ripening times for their microbial composition, free amino
acids (FAAs), BAs and GABA content. Moreover, the expression of tyrosine (tdc) and histidine
(hdc) decarboxylases genes was evaluated by quantitative Real Time–Polymerase Chain Reaction
(qRT-PCR). Microbial counts showed similar values in all samples. Pig rennet were cheeses were
characterized by higher proteolysis and the highest values of BAs. The BAs detected were putrescine,
cadaverine and tyramine, while histamine was absent. qRT-PCR confirmed this data, in fact hdc gene
was not upregulated, while tdc gene expression increased over time in agreement with the increasing
content of tyramine and the highest fold changes were detected in R3 cheeses. GABA showed the
highest concentration in R2 cheeses reaching a value of 672 mg/kg. These results showed that the
accumulation of BAs and GABA in Pecorino di Farindola is influenced by ripening time and type
of coagulant. Further studies are required to develop starter cultures to reduce BAs content and
improve health characteristics of raw milk ewe’s cheeses.

Keywords: γ-aminobutyric acid; biogenic amines; raw milk ewe’s cheese; Pecorino di Farindola;
histidine decarboxylase (hdc) gene; tyrosine decarboxylase (tdc) gene

1. Introduction

Pecorino di Farindola is an artisanal cheese of the Abruzzo region (Italy) produced following
traditional practices. Farindola is a town located in National Park of Gran Sasso, Italy, at an altitude of
530 m (1740 ft). This cheese is produced only in this geographical area and has a soft texture with a
thin yellow rind or can appear with a harder texture and intense/piquant flavour as the ripening time
increases. It is exclusively produced with raw ewes’ milk and pig rennet without the use of natural or
commercial starter cultures [1–3].

Lamb and kid rennet are the main coagulants used in Mediterranean countries for the production
of Protected Denomination Origin (PDO) ovine and goat cheeses, like Pecorino Romano, Fiore Sardo
and Canestrato Pugliese in Italy and Feta cheese in Greece [4,5]. Di Giacomo et al. [6] reported that pig
rennet was already used by the ancient Romans to produce a “cheese of Vestini” (an ancient tribe of
Abruzzo). Pig rennet is obtained from stomach mucus membrane and after an incubation of 2–3 days
in salt, it is mixed with white vinegar, white wine and chili pepper and stored for 3–4 months. Finally,
it is filtered for 5–6 days and only at this point it is ready to use [7–9]. Pig pepsin is unstable above
pH 6.0 [9]. Its clotting activity strongly depends on pH, in fact coagulation does not occur above pH
6.7 [10]. Previous studies evaluated the influence of pig rennet in the manufacture of Pecorino di
Farindola in terms of physico chemical properties, microbiota, proteolysis, volatile molecule profiles
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and other characteristics [3,9]. The studies showed that the use of pig makes it possible to distinguish
the traditional variant from cheeses made with other coagulants.

Pecorino di Farindola cheese production is not standardized and autochthonous lactic acid bacteria
(LAB) are the main responsible of the definition of final product characteristics [1]. On the other hand,
non-starter lactic acid bacteria (LAB) deriving from raw milk or from the dairy environment play
an important action during ripening in terms of sensory characteristics and safety issues, such as
biogenic amines (BAs) accumulation [11]. Type of cheese, ripening time, manufacturing process
and microorganisms highly influence the BAs content [12] and for this it can be extremely variable.
BAs were found in Pecorino di Farindola cheeses examined by Schirone et al., [1]. Their total content
ranged from 209.0 to 2393.0 mg/kg cheese and tyramine was the main BA detected.

BAs, mainly histamine, can lead to intoxications and adverse reactions to human health, especially
after the ingestion of food products rich in BAs content [13,14]. The “cheese syndrome” caused
by tyramine is rather a side effect of monoamino oxidase (MAO) drugs than a food safety issue.
The consumption of cheese containing tyramine is unlikely to cause health problems in healthy
individuals. EFSA report showed the absence of negative effects on health for healthy individuals after
the exposure to following BA levels in food: (a) 50 mg histamine; (b) 600 mg tyramine for individuals
not taking monoamino oxidase inhibitor (MAOI) drugs, but 50 mg for those using third generation
MAOI drugs or 6 mg for those taking classical MAOI drugs. For putrescine and cadaverine not enough
information is available [15].The intoxications related to BAs consumption can get worse in association
with alcohol, other amines and monoamine and diamine oxidase-inhibiting drugs, resulting in serious
problems for human health [14]. Diamine oxidase inhibitor (DAOI) drugs can also be responsible
of histamine related symptomatology. Monoamine oxidase (MAO), diamine oxidase (DAO) and
polyamine oxidase (PAO) are enzymes naturally present in the organism and responsible of BAs
detoxification through acetylation and oxidation [16,17].

Moreover, in cheeses, there are also substances present without a defined nutritional function which
could have a beneficial impact on human health and, among these compounds, γ-aminobutyric acid
(GABA) has been reported with numerous positive effects on animal and human metabolic disorders [18].
This compound is synthesized by glutamate decarboxylase (GAD) catalysing the decarboxylation of
L-glutamate to GABA [19]. Some studies revealed the ability of this to decrease arterial pressure and
to reduce blood pressure in hypertensive patients [20–22]. Therefore, several GABA-enriched food
products have been manufactured, such as GABA-enriched green tea [23], rice germ [24], tempeh and
fermented beverages [25]. Dairy products fermented with GABA-producing LAB have also been
studied and found to have physiological effects [26,27]. In fact, native caseins contain a high proportion
of L-glutamate that can be released during milk fermentation and proteolysis.

Because of its positive impact on health, it gained the attention of the food and pharmaceutical
industries. GABA is a non-protein amino acid with multiple physiological functions produced by some
yeasts and bacteria. Recently, the development of functional GABA-enriched foods, such as cheese,
have been reported [26,27]. In this study the role of pig rennet in the safety hazards and bioactive
compounds production in Pecorino di Farindola was evaluated. In particular, cheeses were produced
with three different coagulants (pig, lamb and kid) and obtained cheeses were compared in terms of
microbiota, BAs and GABA.

2. Materials and Methods

2.1. Cheese Manufacture

Cheese samples were made with raw ewe’s milk according to the traditional protocol [23].
Calf (R1), kid (R2) (Colombo s.r.l., Sirtori, Italy) and pig (R3) rennets (Azienda Agricola Martinelli
Pietropaolo, Farindola, Italy), were used to coagulate three different milk batches obtained during
the milking day, as reported by Tofalo et al. [9]. Three experimental batches consisting of 24 cheeses
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were carried out. After pressing and dry salting, the cheeses (∼2.8 kg each) were placed in a ripening
chamber at 14–15 ◦C. Analysis were performed after 7, 15, 30, 60, 90, 180 and 270 days of ripening.

2.2. Microbial Analysis

For the microbiological analysis, serial dilutions in sodium citrate (2% w/v) were prepared starting
from 10 g of each cheese The following microorganisms were investigated: aerobic mesophilic bacteria
(AMB) on Plate Count Agar (PCA; Oxoid, Milan, Italy) at 30 ◦C for 2 days; mesophilic lactobacilli on
MRS agar (Oxoid, Basingstoke, UK), acidified to pH 5.4 with acetic acid, at 30 ◦C for 2 days in anaerobic
conditions using the Gas-Pack anaerobic system (AnaeroGen; Oxoid, Basingstoke, UK); lactococci on
M17 (Oxoid, Basingstoke, UK), containing 1% (w/v) lactose (Fluka Chimica, Milan, Italy), at 30 ◦C for
2 days in anaerobic conditions; enterococci on Slanetz-Bartley agar (Oxoid, Basingstoke, UK) at 37 ◦C
for 48 h; Enterobacteriaceae on Violet Red Bile Glucose Agar (VRBGA; Oxoid, Basingstoke, UK) at 37 ◦C
for 24 h. Cell counts were performed in duplicate.

2.3. qPCR Analysis

Tyrosine decarboxylase (tdc) and histidine decarboxylase (hdc) genes were detected as described
by Nadkarni et al. [28], Torriani et al. [29] and Fernández et al. [30]. Primer pairs and qPCR conditions
are reported in Table 1. Total RNA was extracted using a MO BIO RNA Power Soil Kit (QIAgen,
Milan, Italy), according to the manufacturer’s instructions. The possible presence of contaminating
DNA was checked by PCR and eventually the DNase treatment was repeated. One µg of total RNA
was retrotranscribed using the iScript™ cDNA Synthesis Kit (Bio-Rad, Milan, Italy), according to the
manufacturer’s instructions. Real-time analysis was performed using an iCycler IQ realtime PCR
Detection System (Bio-Rad, Milan, Italy). A reaction mixture of 25 µL containing 12.5 µL 2XIQ SYBR
Green PCR Supermix™ (Bio-Rad, Milan, Italy), 0.2 µmol/L of each primer (Life Technologies-Invitrogen,
Milan, Italy) was prepared. Fold changes were determined as previously described [31]. 16S rRNA
was used as reference genes. Its relative stability was evaluated using NormFinder program [32].
After real-time PCR, a melting-curve analysis was performed by measuring fluorescence during heating
from 50 to 95 ◦C at a transition rate of 0.2 ◦C/s to verify the presence of unspecific products or primer
dimers. A single peak was obtained highlighting the specificity of the amplification. All analyses were
performed in triplicate.

Table 1. Primer sequences and PCR conditions used in this study.

Primer Sequence (5′-3′) qPCR Conditions References

16SF
16SR

TCCTACGGGAGGCAGCAGT
GGACTACCAGGGTATCTAATCCTGTT

95 ◦C for 10 min, 40 cycles at 95 ◦C for
15 s, 60 ◦C for 1 min, 72 ◦C for 45 s [28]

Tyr3
Tyr4

CGTACACATTCAGTTGCATGGCAT
ATGTCCTACTTCTTCTTCCATTTG

94 ◦C for 5 min, 35 cycles at 94 ◦C for
20 s, 58 ◦C for 30 s, 72 ◦C for 45 s [29]

Hdc1
Hdc2

TTGACCGTATCTCAGTGAGTCCAT
ACGGTCATACGAAACAATACCATC

95 ◦C for 10 min, 40 cycles at 95 ◦C for
15 s, 58 ◦C for 1 min, 72 ◦C for 45 s [30]

2.4. Free amino Acids (FAAs)

Free amino acids (FAAs, expressed as mg leucine/g) were evaluated at 507 nm after reaction
with Cd-ninhydrin according to Folkertsma and Fox [33]. Analyses were performed in triplicate on
each sample.

2.5. Biogenic Amines Determination

Determination of BAs was performed by acid extraction and derivatization according to
Eerola, et al. (1993) [34], and Moret and Conte [35], as reported by Tittarelli et al. [17]. The presence of
putrescine, cadaverine, tyramine, histamine, spermidine and spermine was determined homogenizing
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2 g of cheese in 20 mL of 0.1 M HCl containing 100 mg/L of 1,7-diaminoheptane (Fluka, Milano, Italy)
used as internal standard. A Waters Alliance High Performance Liquid Cromatography (HPLC) system
(Waters SpA, Vimodrone, Italy), equipped with a Waters 2695 separation module connected to a Waters
2996 photodiode array detector was used. Analytes were separated using a Waters Spherisorb C18
S3ODS-2 column (3 µm particle size, 150 mm × 4.6 mm I.D.). Acetonitrile (A) and ultrapure water
(B) were used for the separation of BAs. The following elution gradient was applied: 57% A for
5 min; concentration was increased up to 80% linearly in 4 min, 90% A for 5 min. The flow rate was
0.8 mL/min and the column temperature was set at 30 ◦C ± 0.1 ◦C. The peaks were detected at 254 nm.
The system was controlled by Waters Empower personal computer software. Identification of the BAs
was based on their retention times.

2.6. GABA Determination

GABA was determined according to Kőrös, et al. [36] and Ianni et al. [37]. Analyses were
performed using the High Pressure chromatographic system (Perkin-Elmer, Monza, Italy) equipped
with an autosampler and a UV-VIS detector set at 210 nm with an ion-exchange column (Phenomenex
Gemini C18, dimensions: 250 × 4.6 mm, particle size: 5 µm, pore size: 110 Å) (Phenomenex, Bologna,
Italy). GABA was derivatized with phthaldialdehyde Reagent (Sigma-Aldrich, Milan, Italy) and
injected into the HPLC system.

3. Results and Discussion

Due to the increasing awareness towards the impact of diet on human health, issues relating to
food safety and quality, have a crucial role on the consumers’ behaviour. Therefore, dairy industries are
developing foods with improved nutritional quality. Cheese is one of the most important fermented
food product. Despite it is rich in positive compounds for human health (e.g., GABA) [38], it is also
associated to BAs intoxication [13]. For this reason, the European Food Safety Authority (EFSA) Panel
on Biological Hazards (BIOHAZ) has put forth an opinion on risk assessment related to BAs pointing
out that the actual knowledge of their toxicity is still limited, and that further research is needed [15].
In this study, the influence of different animal rennets on microbiota, BAs and GABA accumulation in
Pecorino di Farindola cheese during ripening was evaluated.

3.1. Microbial Analysis

The evolution of microbial populations at different days of ripening is reported in Figure 1.
In general, no significant differences were observed. After 90 days of ripening a decrease of cell counts
was detected for all microbial groups, with Enterobacteriaceae disappearing. The highest values of
Enterobacteriaceae were detected in R2 cheeses with cell counts of 3.69 Log CFU/g at 90 days.

Enterobacteriaceae are an indicator of the hygienic conditions in milk and cheese production.
Their occurrence has been reported in some raw milk cheeses of the Mediterranean basin after 30 days
of ripening [39,40]. Moreover, some studies highlighted that this microbial group can influence taste,
aroma and texture, of some artisanal cheeses [41,42]. Enterococci were present with cell counts of
about 6 Log CFU/mL in all samples until 90 days of ripening, while after this time a decrease of about 3
Log was observed. Their occurrence has been reported in other Pecorino cheeses [9,43]. Their presence
can be due to milk contamination and to their ability to face the conditions of cheese manufacture and
ripening since they are able to develop at different temperatures and are tolerant to heat and salt [44].
Moreover, they have a crucial role in cheese ripening and aging influencing aroma and flavour thanks
to their proteolytic and lipolytic activities as a result of citrate metabolism [44]. On the other hand,
enterococci have often been associated with clinical infections and BAs production, such as tyramine
and histamine [45].
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Figure 1. Heat maps depicting abundance of microbial groups characterizing the cheeses obtained with
different rennets throughout ripening. Calf (R1), kid (R2) and pig (R3) rennets. Aerobic Mesophilic
Bacteria (AMB); Lactic Acid Bacteria (LAB).

Lactococci were present in lower concentration at the end of ripening, about 4 Log CFU/mL in R2
and R3 cheeses and about 2 Log CFU/mL in R1 cheese. LAB counts throughout the ripening were similar
to those observed for AMB suggesting that they were the predominant microorganisms. Similar results
have been reported by Renes et al. [46]. Their counts increased during the first days of ripening reaching
values of about 8 Log CFU/g in R2 and R3 cheeses after 90 days of ripening, while in R1 cheeses cell
counts of about 7 Log CFU/mL were observed. LAB are the main components of the autochthonous
cheese and are known to participate to the fermentation process and maturation of cheeses, producing a
number of desirable substances that can improve the flavour, texture, nutritional value, shelf-life,
and safety of foods [46–48]. However, some LAB species have been shown to include strains producing
high amounts of BAs such as histamine and tyramine [46,49–54].

3.2. Biogenic Amines

BAs accumulation in cheese depends on several factors including ripening time, the manufacturing
process, presence of decarboxylase positive microorganisms and precursors availability [14,46].
In general, during cheese ripening secondary proteolysis occurs with the accumulation of FAAs
which can be decarboxylated to BAs by the microbiota [46]. Therefore, the level of protein degradation
was firstly evaluated.

Figure 2 shows the evolution of FAAs during the ripening period. Obtained data revealed a certain
variability of FAAs content among samples. The FAAs content increased significantly during ripening
in all samples, reaching values of 233.74, 252.54 and 296.84 mg leucine/g in R1, R2 and R3 cheeses
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respectively after 270 days of ripening. This increase is in agreement with previous observations in
Caciocavallo Pugliese, in Picante cheese, in Kashkaval cheese and in other Pecorino cheeses [9,55–58].
The greater proteolytic activity in R3 cheeses was in agreement with Tofalo et al., (2015) [9] who
observed a higher proteolytic activity for pig rennet than for calf and kid ones. R3 cheeses contained
the highest total concentrations of BAs (1293 mg/kg) (Figure 3). However, all the studied cheeses
accumulated high total BAs contents even if with quantitative differences. It could be assumed that
milk quality produced by the sheep in the Gran Sasso area is a relevant factor influencing the high BAs
content of Pecorino di Farindola, probably also depending on the autochthonous microbiota [59,60].
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Figure 3. Biogenic amines evolution in Pecorino di Farindola manufactured with the three different
rennets: calf (R1), 216 kid (R2) and pig (R3). Putrescine (PUT); Cadaverine (CAD); Tyramine (TYR);
Biogenic Amine (BA).

The main BAs detected were putrescine, cadaverine and tyramine, while histamine was not
detected. Putrescine showed the highest concentration with values of 400 mg/kg, 598 mg/kg and
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732 mg/kg in R1, R2 and R3 cheeses, respectively after 270 days. Cadaverine presented values ranging
from 241 mg/kg (R1) to 154 mg/kg (R2) at the end of ripening. These BAs are considered indicators
contamination and markers of the hygiene standards of the production process. Their production
mainly relies on Gram-negative bacteria, especially belonging to the families Enterobacteriaceae and
Pseudomonadaceae, generally associated with spoilage [61]. LAB and staphylococci have also been
reported [62]. Tyramine was present in all samples and its concentration increased over time. To our
knowledge, Enterococci play a predominant role in the formation of tyramine [63]. The high BAs
content detected in cheeses could be related to the productions practices associated to Pecorino di
Farindola. In fact, it is produced starting from raw milk from sheep fed in a limited mountain area
(Gran Sasso) and pig rennet as coagulant. The combination of these two factors could be a cause of
high BAs content in the cheese. In fact, it has been already proved that there is a relationship between
alpine pastures and milk quality during grazing [64].

Tyramine presents several negative effects on human health such as headaches, migraine,
neurological disorders, nausea, vomiting, respiratory disorders, hypertension [13,65]. However,
even though histamine was considered as the most toxic BA for a long time, recently Linares et al. [66]
revealed that tyramine is even more toxic than histamine reporting the cytotoxicity threshold detected
for histamine (441 mg/kg) and for tyramine (302 mg/kg). Amino acid decarboxylase activity is strain
dependent rather than species specific, thus suggesting the occurrence of horizontal gene transfer events
as part of a mechanism of survival and adaptation to specific environments [67]. Wüthrich et al. [68]
sequenced the histamine positive strain FAM21731 of L. parabuchneri showing that hdc gene cluster
was located in a genomic island, transferred within this species. This species has been frequently
reported in dairy products and is responsible for the accumulation of histamine in many types of
cheeses [49–51]. Its occurrence in milk is probably related to a contamination focus at farm level, because
its capacity to adhere to stainless steel [50,52,53]. Moreover, L. parabuchneri strains are able to develop
and to produce histamine also at refrigeration temperatures, suggesting that when L. parabuchneri
is present, refrigeration can only delay but not prevent the accumulation of histamine in cheese [54].
For this reason, aminogenic strains may be found within the contaminant species but also as part of the
spontaneous fermentative microbiota. Therefore, the expression of tdc and hdc genes was checked by
qRT-PCR. In all samples hdc gene was not upregulated confirming the absence of histamine in cheeses,
whereas tdc expression increased over time in agreement with the increasing content of tyramine
(Figure 4). The strongest increase in tdc expression was found in R3 cheese after 270 days of ripening
(a 93-fold increase), whereas the other cheeses showed 61- (R1) and 82- (R2) fold increases of the
tdc gene.

This development was expected, because in LAB, BAs formation provides metabolic energy and/or
acid resistance during a long ripening [69,70]. In general, a positive correlation between tdc expression
and tyramine production was observed (Figure 4). This evidence is in agreement with other studies
and suggests that the expression of this gene can be used to predict tyramine accumulation [13,17,43].
The high content of tyramine could be related with the high content of putrescine. In fact, agmatine
deiminase pathway genes, involved in putrescine production, are linked to the tyrosine decarboxylation
operon in LAB [71]. The agmatine deiminase and the tyrosine decarboxylase pathways, appear to be
widespread throughout several species of LAB and are often simultaneously present [72]. Moreover,
the formation of the different BAs could be also influenced by the microbial contamination in the
processed milk.
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3.3. γ-Aminobutyric Acid

The GABA content determined in this study is reported in Figure 5. The highest concentrations of
GABA were found in R2 and R3 cheeses, with values of 672 and 554 mg/kg, respectively.
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These results are in agreement with the proteolysis outcome, in fact in R1 cheeses a slower
proteolysis was observed. In general, GABA production is associated to different LAB species in
a strain dependent way [73]. Siragusa et al. [73] studied 22 Italian cheese varieties for their GABA
concentrations that varied from 0.26 to 391 mg/kg. The highest values of GABA were found in five varieties
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of Pecorino cheeses, but especially in Pecorino di Filiano (391 mg/kg). Moreover, Nomura et al. [74]
analysed seven commercial cheeses (Camembert, Gouda, Blue, Cream, Cheddar, Edam and Emmental)
and reported GABA concentration lower that those obtained in this study. In general ewe’s milk
quality and coagulant seem to have some influence on GABA accumulation in cheese.

4. Conclusions

Traditional cheeses like Pecorino di Farindola, maintain high diversity in cheese-making practices
as well as in autochthonous cheese microbial communities. The combination of hygienic quality of raw
ewe’s milk, the different handling and cheesemaking processes and pig rennet could be a cause of its
high BAs content. However, it is expected to see a total BAs content rise in cheese as a consequence of
many BAs precursors released by coagulants from a raw milk with a high proteins content. Pig rennet
imparts specific features to Pecorino di Farindola cheese, probably through its specific proteolytic
patterns resulting from the unique enzymatic composition of this coagulant. However, this study
confirms a greater BAs formation and proteolytic activity, as suggested by FAA values, in cheese made
by pig rennet than those made by calf and kid rennet. It is difficult to modify the process without
denaturing the organoleptic and sensorial characteristics of this traditional cheese. A possibility could
be the pasteurization of raw milk, but this procedure denatures milk enzymes and reduces the levels
of milk natural microbiota. Moreover, the pasteurized cheeses are negatively perceived by consumers
compared with the sensory characteristics of cheese made with raw milk. A possible strategy for
reducing BAs accumulation, increasing the safety and maintaining the sensorial characteristics of
traditional cheese could be the selection of autochthonous amine-negative and amine-oxidizing LAB.
These strains could be used as a starter or an adjunct/attenuated starter. In addition, Pecorino di
Farindola contains high amounts of GABA which can be correlated with the use of ewe’s milk, time of
ripening and type of coagulant. This cheese together with other Italian “Pecorino” cheeses could
be a source of microorganisms able to synthesize GABA for the production of dairy products with
functional and probiotic properties.
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