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Jonas Knölla,b,c,d, Jonathan W. Pillowe,f, and Alexander C. Huka,b,c,d,1

aDepartment of Psychology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Neuroscience, The University of Texas at Austin, Austin, TX
78712; cCenter for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712; dInstitute for Neuroscience, The University of Texas at Austin,
Austin, TX 78712; ePrinceton Neuroscience Institute, Princeton University, Princeton, NJ 08544; and fDepartment of Psychology, Princeton University,
Princeton, NJ 08544

Edited by Tony Movshon, New York University, New York, NY, and approved August 31, 2018 (received for review April 26, 2018)

Much study of the visual system has focused on how humans
and monkeys integrate moving stimuli over space and time. Such
assessments of spatiotemporal integration provide fundamental
grounding for the interpretation of neurophysiological data, as
well as how the resulting neural signals support perceptual deci-
sions and behavior. However, the insights supported by classical
characterizations of integration performed in humans and rhesus
monkeys are potentially limited with respect to both generality
and detail: Standard tasks require extensive amounts of train-
ing, involve abstract stimulus–response mappings, and depend on
combining data across many trials and/or sessions. It is thus of
concern that the integration observed in classical tasks involves
the recruitment of brain circuits that might not normally subsume
natural behaviors, and that quantitative analyses have limited
power for characterizing single-trial or single-session processes.
Here we bridge these gaps by showing that three primate species
(humans, macaques, and marmosets) track the focus of expan-
sion of an optic flow field continuously and without substantial
training. This flow-tracking behavior was volitional and reflected
substantial temporal integration. Most strikingly, gaze patterns
exhibited lawful and nuanced dependencies on random pertur-
bations in the stimulus, such that repetitions of identical flow
movies elicited remarkably similar eye movements over long and
continuous time periods. These results demonstrate the general-
ity of spatiotemporal integration in natural vision, and offer a
means for studying integration outside of artificial tasks while
maintaining lawful and highly reliable behavior.
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For effective interactions with the world, animals have to per-
form some degree of spatiotemporal integration to form

decisions and guide appropriate motor actions. This fundamen-
tal transition from sensory to cognitive processing has been
studied extensively in the context of visual motion processing
(1–3). Visual motion is a model system for this because of the
apparent simplicity of the involved circuits in the primate brain,
and also because motion is inherently defined as integrating
information appropriately over space and time. This work has
operated within the context of artificial tasks that involve dis-
sociated (and often intentionally arbitrary) stimulus-to-response
mappings, and thus, in turn, rely on extensive training. This clas-
sical approach is elegant for isolating various subprocesses, but
also raises the specter of generalizability in several domains: Do
similar degrees of integration also support naturally occurring
behaviors? Can substantial integration occur volitionally but nat-
urally, or is it the by-product of extensive training, perhaps only
in higher primates with substantial cognitive capacities?

Although ecological validity and broad generalizability are
attractive ideals for transcending what can be learned within
a well-controlled model system, it is commonly assumed that
leaving simplified domains involves substantial losses of exper-
imental rigor and quantitative power. Here, we sidestep this

apparent tradeoff with an experimental paradigm that lies at the
transition between synthetic and naturalistic. By coopting a nat-
urally occurring behavior controlled by simple aspects of visual
stimuli, we demonstrate the capability to make detailed quanti-
tative assessments of visual integration with strong experimental
efficiency and statistical power—thereby establishing the gen-
eral nature of spatiotemporal integration and facilitating more
detailed and broader insights into this basic sensory–cognitive
computation.

To test for naturally occurring spatiotemporal integration, we
exploited the basic insight that primates look at important things:
They naturally direct their gaze where they are going, and also
look at things that are directly approaching them. Regardless
of whether a dynamic visual array corresponds to self-motion
or object motion, such naturally salient events can be defined
by the spatiotemporal structure of movement across the visual
field. This allowed us to leverage a naturally occurring but goal-
directed behavior as the crux of a synthetic behavioral context
that supports detailed quantitative characterizations analogous
to those of classical tasks. We implemented this motion struc-
ture within a dynamic field of dots, and defined the direction of
(either ego or object) motion as the focus of expansion (FOE)
within this dynamic dot field. In the simplest ideal case, reti-
nal velocity at the FOE is zero, and all velocity vectors emanate
from this single point. In our implementation, we added random
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perturbations over space and time to partially decorrelate this
idealized spatiotemporal structure, supporting the characteriza-
tion of how portions and periods of the stimulus guide gaze
behavior over space and time.

When the FOE moved according to a random walk, we found
that three primate species (humans, rhesus macaques, and com-
mon marmosets) tracked the meandering FOE with their freely
occurring gaze. Such tracking was often continuous for long
periods of time, thus providing a very high data efficiency: Char-
acterizations of temporal integration that typically involve many
hours worth of data were now attainable within a few minutes.
The detailed oculomotor behavior was reliable over repeats of
identical stimuli and contained large fractions of fixations fol-
lowed by saccades toward the tracked FOE. Analyses of slow eye
movements in between saccades and fixations were inconsistent
with more reflexive behaviors, such as optokinetic nystagmus and
ocular following (4–6). Taken together, these results offer evi-
dence that these naturally occurring, goal-directed patterns of
gaze allow for detailed spatiotemporal characterizations, provide
insights via analysis of behavior across repetitions of identical tri-
als, and allow for integration of studies across a range of species
with widely varying cognitive abilities.

Results
We measured eye movements during continuous tracking of
the meandering FOE of an optic flow pattern in three primate
species (one human, subject, H; two rhesus monkeys, M1 and
M2; and one common marmoset, C), in which the FOE moved
according to a random walk defined by the global velocity pat-
tern of a large dot field (Fig. 1, SI Appendix, and Movie S1).
Subjects followed the FOE with their gaze with little instruction,
training, or practice (see Materials and Methods). A single con-
tinuous trial could last up to 5 min. Trials were ended by the
subjects by either blinking for longer than 250 ms or by looking
near or beyond the edges of the screen. Continuous trial time
varied by subject and comprised extended consecutive periods
(median successful trial duration: H, 300 s; M1, 23 s; M2, 140 s;
C, 300 s).

Fig. 2 shows the goal-directed and lawfully reliable nature of
this flow-tracking behavior. It displays eye movements across
“frozen repeats” of the same motion displays (i.e., repetitions
with the same random seed, and thus identical stimulus char-
acteristics). Eye position traces comprised periods of stable (or

low-velocity) fixation, interrupted by recentering saccades. A
majority of saccades were directed toward the FOE, even though
the flow pattern switched from contracting to expanding multi-
ple times (and hence the local motions alternated from pointing
mostly toward to mostly away from the FOE). To evaluate the
goal-directed nature of the saccades, we calculated the percent-
age of saccades in which the component parallel to the eye–FOE
axis was reduced. Evidence for FOE-targeted saccades was sim-
ilar in human and macaque subjects: For both expanding (H,
85%; M1, 80%) and contracting (H, 82%; M1, 75%) stimuli, sac-
cades were more likely to be directed toward the FOE, which
makes them distinct from more reflexive oculomotor behaviors
such as optokinetic responses, for which fast phases are typically
directed against the motion and thus would switch with changing
flow patterns within our paradigm.

A closer inspection of the eye movements during these frozen
seed trials also revealed strong similarities across repetitions
within observers (individual traces in Fig. 2, Insets). This is best
seen in a video (SI Appendix and Movie S3) where the meander-
ing FOE (black square) and the eye trace from each frozen trial
(orange discs) are shown over time. Again, human and macaque
subjects exhibited similar repeatability of gaze patterns, although
the larger macaque dataset makes this more compelling and
allows for richer quantification. Thus, although the experimen-
tal design and lack of explicit training impose very little direct
behavioral constraint, the resulting behavior is very predictable
down to single similar gaze patterns occurring repeatedly within
windows as small as 300 ms.

Quantification of Flow-Tracking Performance. To quantify the tem-
poral integration underlying this naturally occurring visually
guided “flow-tracking” behavior, we characterized the relation
between the gaze and the history of FOE positions (using ridge
regression) on data with unique motion displays (“liquid seed”).
Gaze was mostly influenced by the FOE of roughly the previous
100 ms to 500 ms, with a peak impact at a lag of ∼200 ms (see Fig.
3A, gray lines, for the shape of the full kernel). With this, we were
able to predict the gaze patterns on left-out (frozen seed) data
using the extracted temporal kernels (Fig. 2, blue lines). The gaze
is generally predicted well from the kernels and the prediction
resembles the gaze much more closely than it follows the raw
FOE (SI Appendix and Movie S2) and captures systematic
differences between the FOE and the gaze tracking it.
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Fig. 1. Naturalistic tracking paradigm. (A) Dots were moving in 115 hexagonal subfields according to a randomly varying FOE with a small randomly
varying offset for each subfield, covering the central 80◦ by 50◦ of the visual field. White arrows show the median direction and relative speed of dots
within each subfield. Dashed white lines project from the arrows of selected subfields to the location of the FOE encoded by their dot’s motion. (B) Example
spatiotemporal course of an FOE (black) and gaze (orange) from a macaque over 20 s. Thin lines show projections onto the x-time and y-time planes. Gray
lines on the xy plane show the distribution of FOE locations throughout one 300-s trial. See also SI Appendix and Movie S1.
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Fig. 2. Reliable goal-directed eye movements. Eye traces (thin orange lines, single repeat; thick orange lines, average) from a subset of trials which had
identical stimulation (15% of all trials) for a macaque (Left) and a human (Right). Saccades appear to be very predictable and directed toward the FOE
(black). See also SI Appendix and Movie S3. Gaze is well explained by the prediction (blue), which is the FOE filtered with the temporal kernel (Fig. 3A)
obtained from all other trials (with random stimulation parameters). Time points from 1 s before to 1 s after a blink are removed. Insets show an enlarged
view of 2 s of data.

Given the mostly discrete nature of the flow-tracking behavior
(i.e., fixations plus saccades), we performed a saccade-triggered
analysis in which we interpreted each saccade endpoint as a deci-
sion about the estimated FOE location that was formed over
some amount of time before the saccade start. This temporal
dissociation between the time the decision was made (relative
to saccade start) and the time the estimate takes effect (saccade
end) automatically shifts the kernel toward earlier times by the
mean saccade duration. The measured saccade-triggered ker-
nels (Fig. 3A, turquoise lines) also concentrate the weight over
a narrower time window, indicating that this analysis captures a
temporally precise aspect of the tracking behavior, but that it still
involves substantial integration.

In further quantifications, we found that the fitted kernels pro-
vided better accounts of the gaze than a variety of alternatives
(Table 1). For example, kernel-predicted gaze outperformed a
variety of null models (e.g., from stable fixation without track-
ing to perfect zero-lag tracking) and models described by simpler
mechanisms (e.g., perfect tracking with optimal lag). Together,
these comparisons provide quantitative confirmation not only
that subjects were tracking the stimulus but that the idiosyn-
crasies of their tracking behavior are well accounted for by the
simple kernel estimates described earlier.

To characterize the spatial integration of motion, we had
also perturbed the FOE represented by the motion in each
hexagon by a random amount that was reassigned in each sub-
field at random intervals (two frames to 0.5 s). To determine
the retinocentric spatial integration, we performed a regression
analysis on each hexagon’s FOE time course (in retinocentric
coordinates) on the residuals from the temporal regression. Spa-
tial integration was largely dominated by input from the central
hexagon that included the fovea, with some contribution of the
ring of hexagons surrounding the central hexagon (Fig. 3B). This
pattern of spatial integration is in line with the current location of
gaze playing a central role in determining future gaze position, as

well as prior studies that have emphasized wide-field spatial inte-
gration of optic flow (7), as information correlated with the FOE
can be sampled at any eccentricity.

Efficiency of Estimation and of Task Acquisition. Robust temporal
kernels could be estimated from very little data (Fig. 4). Clear
structure of temporal integration emerged after just 30 s of track-
ing, and captured most of the dynamics after 5 min to 10 min of
data collection. Given that sessions lasted several times longer
than that (median single FOE data per session in minutes: M1,
125; M2, 33; H, 47; C, 30), this efficiency provides surplus exper-
imental power for addressing other (more complex) aspects of
perceptual function in extensions of the paradigm.

We carefully monitored the training of one macaque and
analyzed the behavior from the first time this monkey was
ever subjected to an optic flow stimulus to about 360 min of
training. To facilitate initial learning of the task, the reward
contingency was formalized to dispense reward whenever the
accumulated reward from a Gaussian spatial field around the
FOE exceeded a set threshold. Initially, there were no empty
hexagons and no subfield directional perturbations. Over the
course of the next few hours, we increased the number of empty
hexagons as well as the spatial distortions. Fig. 5 shows the
performance over the course of this training. The median dis-
tance of the gaze to the FOE over 10-min slices of data (Fig.
5A) started low and further decreased and reaches asymptote
after about 100 min. The temporal kernels showed the same
windows of temporal integration from the start of the training
and quickly stabilized after about 300 min (Fig. 5B, similarity
of plotted curves for 240 min and 320 min). In summary, rhe-
sus monkeys figured out the general stimulus–response mapping
within minutes, and stabilized their performance within hours.
Thus, this paradigm requires only a small fraction of training
time relative to conventional behavioral paradigms, and involves
refinement on time scales that are amenable to the study of
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Fig. 3. Spatiotemporal motion integration during single FOE tracking for a
macaque (Left) and a human (Right). (A) Temporal integration kernels for all
data (gray) or triggered on saccades (turquoise). Kernels were estimated by
a ridge regression of the horizontal component of the FOE with different
lags to the horizontal component of the gaze. For saccade-triggered ker-
nels, FOE data were limited to time points of the detected saccade onset and
regressed against the detected location of the saccade end points. (B) Foveo-
centric integration weights for the central 40◦× 40◦ of the visual field. The
time course of the individual foci of expansions of each subfield reorganized
in a retinocentric frame of reference was first filtered with the temporal
kernels from A to then perform a ridge regression on the residuals from the
temporal regression.

changes within a session or across a small number of back-to-
back sessions.

Tracking by a Marmoset. The stimulus was designed with the
goal of generalizing to animals with lower cognitive abilities
compared with humans or rhesus monkeys. To test whether mar-
mosets could also learn to perform flow tracking, we recorded
behavior of a marmoset in this paradigm. Because marmosets
have a reduced natural range of eye-in-head movements, we
scaled down the FOE location range by a factor of 0.25 (8).
Additionally, the data reported here were collected without any
spatial distortions to the FOE and with 70% of the hexagons con-
taining dots. The width of the hexagons was reduced to half to
account for the reduced dynamic range of the FOE.

With these adjustments, the marmoset’s gaze quickly reflected
tracking of FOE (SI Appendix and Movie S4). Fig. 6A shows
the histogram of performance for the recorded marmoset for
300 min of data as measured by the average distance of the
marmoset’s gaze to the FOE at any given frame. The perfor-
mance exceeded that of a comparison dataset, where the eye
position data were shuffled within each trial. Fig. 6B shows the
temporal kernels computed from the recorded data. Results
are comparable to human and macaque kernels; although
slightly noisier, they exhibit a clearly similar temporal integra-
tion time course relative to the other species. This similarity

demonstrates that flow tracking grants the potential to study
visual integration in a range of species using similar tasks and
stimuli.

Extension to a Visual Selection Task. Subjects could track an FOE
in a visual selection task comprising multiple alternatives. Even
when we extended the flow-tracking paradigm to allow for spon-
taneous selection between two independent targets (statistically
identical FOE patterns represented by dots of different colors in
distinct hexagon subfields), subjects were able to track an FOE
without notable influence of the other FOE. The task can be
seen as an extension of traditional attention tasks to a more
dynamic selection of task-dependent information. The use of
two statistically identical stimuli provides the additional bene-
fit of allowing the combination of data from either flow to an
untracked FOE and a tracked FOE, independent of which FOE
was being tracked, and thus providing data for the tracked and
untracked FOE in parallel. In the core single-FOE task, 45%
of the hexagons were carrying information for the FOE, with
55% of the fields remaining empty at any given time. For this
parallel FOE selection task, another 45% of the fields were
showing information for a second, statistically independent, FOE
(Fig. 7A). Subjects were free to track either FOE and were
allowed to switch between tracking the one or the other FOE (SI
Appendix and Movie S5). We used the temporal kernels obtained
from the single-FOE conditions to estimate which target was
being tracked (Fig. 7B) and then rearranged the regression
design matrices for both FOEs into a tracked and untracked
FOE design matrix. We then performed the same analyses as
in the single-FOE task for the tracked and untracked FOE data
separately.

The structure of temporal integration for the tracked FOE
mimics that from the single-FOE conditions (Fig. 8A), albeit with
a slightly reduced amplitude, while those from the untracked
FOE are at or close to the noise level. The spatial kernels of the
tracked FOE (Fig. 8B) show the same central peak as observed
in the single-FOE condition. This demonstration affirms that
subjects can easily select information to track one FOE while
discarding most (if not all) information from the other, un-
tracked, FOE.

Discussion
We investigated flow-tracking behavior in three species for a
continuously changing FOE. The results show a highly reliable
tracking behavior for repeats of the same stimulus, down to
occurrences of similar saccades at similar times, and were well
predicted from temporal kernels obtained from nonrepeating
stimuli. Visual information was integrated over roughly 100 ms to
250 ms, and spatial kernels obtained through perturbations in the
flow shown in different subfields of the visual array show a strong
reliance on the parafoveal information. In addition, the track-
ing paradigm allowed for easy training across all three primate
species investigated, yielding comparable results with a high data
efficiency.

Our characterizations of integration align with classical mea-
sures of these properties. The temporal kernels match the
integration windows derived in classic trial-based experiments
studying the integration of visual motion, which specify ∼100 ms
of integration evident in the sensory representation in MT
(9) with further temporal integration attributed to cognitive/
decision processes (10, 11). The spatial weights also qualita-
tively align with results from two alternative forced choice tasks
and optimal observer analyses on the sensitivity to changes in
FOE (7).

The flow-tracking behavior is also distinct from well-described
purely reflexive optokinetic eye movements which are typically
associated with slow phases in the direction of the dot motions
and fast phases in the opposite direction. In this task, saccades
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Table 1. Various quantifications of reliability and variability of gaze

Residual SD for difference models, deg

Dataset parameters Reference values Alternate models Regression

Subject No. of repeats Dimension Fixation Frozen average Frozen single 0 lag Opt. lag kernel

M1 68 x 6.5 2.6 3.7 4.6 3.9 3.2
y 5.1 2.5 3.4 4.7 4.0 3.1
xy 4.6 2.6 3.7 3.6 3.3 2.6

M2 12 x 6.6 4.5 7.6 7.4 7.0 5.2
y 5.2 3.5 5.5 7.3 7.1 4.2
xy 5.3 3.2 5.7 5.4 5.4 3.6

H 2 x 6.2 1.3 2.6 5.3 4.0 2.2
y 6.4 1.7 3.4 6.3 5.0 2.6
xy 5.5 1.2 2.5 3.9 3.2 1.8

C 4 x 1.7 1.0 2.0 1.9 1.9 1.5
y 2.2 1.4 2.6 2.5 2.3 2.1
xy 1.5 0.9 1.8 1.7 1.6 1.4

Performance of different models in predicting the gaze time series during repeats of the same FOE time course (frozen repetitions) for all four subjects
(M1, M2, H, C). All values (except # repeats) are the residual SD calculated by subtracting the model’s prediction from the actual eye trace, over all samples
in a given repeat, and combining over all repeats. Samples from 1 s before to 1 s after a blink or the end of trial were removed. Additionally, samples of
time points with less than two repeats for a given subject were discarded. The columns “Fixation” and “Frozen average” provide reference points for the
minimum and best a model can be expected to perform. Fixation denotes a model of steady fixation. This reflects the SD of the eye trace itself and is the SD
to be explained by other models. Frozen average denotes predicting a given repetition’s trace using the mean trace from all repetitions (including its own).
This is a measure of a lower bound for the explainable SD, as this metric uses all data to directly predict the time series. “Frozen single” denotes prediction
of any one repetition’s trace for all other repetitions. This provides a complementary characterization of how well a single repetition can explain another
one. The “0 lag” column is the model of perfect tracking. This null model attempts to explain the gaze with the instantaneous FOE, corresponding to perfect
tracking with no lag. “Opt. lag” denotes the model of delayed perfect tracking, using a delta function kernel (i.e., with all weight localized to one delay),
with the delay optimized to minimize residual SD during liquid trials. “Kernel” denotes residual SD applying the kernel obtained during nonfrozen trials.
This characterizes the variability of gaze across repeated frozen trials relative to the predicted gaze, and thus can be compared with the other metrics in
earlier columns; note that these values are universally lower (with exception to the lower bound frozen average column), indicating that estimating the full
kernel does a better job in accounting for the gaze time series than other, simpler, models.

were often directed toward the FOE, for both expanding and
contracting motion patterns. Such eye movements have been
described before (12) in the context of optic flow stimuli in free
viewing conditions, and we propose that they represent a non-
reflexive, goal-directed response to the stimulus. Together, this
highlights that the results found in these and future experiments
using this paradigm relate back to previous work, support-
ing the study under naturalistic conditions without abandoning
comparability to more-classic paradigms.

Relation to Other Paradigms. The flow-tracking paradigm is highly
efficient, yielding temporal integration kernels in as little as
4 min, and requiring minimal training. In some regards, our
approach is conceptually similar to those recently introduced
by other members of our research group, which involve explicit
verbal instruction of human subjects to manually track a small,
randomly moving stimulus by controlling a cursor (13). Our
approach here does not require verbal instruction, by working
within an even more intuitive (and essentially naturally occur-
ring) context that is evident in the quick engagement in the task
by both rhesus monkeys and common marmosets. Furthermore,
the flow-tracking paradigm adds the ability to determine spa-
tial integration parameters by virtue of using widely distributed
visual patterns.

Steering paradigms have been used before to study optic flow,
although such tasks have typically required training and have
focused on a specific experimental manipulation, as opposed
to offering a general platform for assaying spatiotemporal inte-
gration (14, 15). Likewise, smooth pursuit eye movement and
ocular following paradigms have been expanded to assess spatial
integration (16–18), but are typically conceived of within a trial-
based format (as opposed to being continuous over long time
scales) and do not offer as clear a route to generalization and
extension. Thus, while we wish to emphasize that our paradigm

is, in fact, richly contextualized within a number of existing
approaches, it is uniquely suited to general quantitative analysis,
and is broadly generalizable (as described further in Appli-
cation to Neurophysiological Data) while exploiting naturalistic
behavior.

Application to Neurophysiological Data. The ability to efficiently
characterize motion-selective neural responses during more
natural behaviors was one of the key aims for designing the par-
adigm. Specifically, the stimulus needs to provide information
to simultaneously determine the receptive fields and their direc-
tion tuning over a wide range of the visual field. The motion of
a conventional (fixed-FOE) optic flow stimulus is perfectly cor-
related, making a reverse correlation of neural responses under
stable fixation impossible. Here the tracking behavior already
comes as a benefit, as it causes variations of the retinal stim-
ulus parameters. Furthermore, naturally occurring variation of
the gaze position relative to the array of subfields composing the
stimulus allows for mapping of RFs at finer-than-subfield resolu-
tion, although analytic tools for smoothing are likely desirable to
maintain analytic tractability (19).

Another source of information for the mapping of recep-
tive fields is the changing pattern of hexagons showing dots
and the spatially localized distortions of the motion between
hexagons. Similarly, for estimating the direction tuning, the
course information of the alternating motion directions during
expanding and contracting phases is complemented by variations
due to said distortions and the behavior. Together, this allows
for a multilinear regression of neural parameters, by iteratively
and repeatedly estimating one parameter set (e.g., direction
and space) after another. The paradigm may also help bring
approaches to characterize neural responses using naturalistic
movies (20) during passive fixation to continuous naturalistic
behavior.
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Broader Applications Within Primates and Across Other Species.
Training of the task was also successful in a marmoset and
yielded comparable temporal kernels. However, the limited
range of eye-in-head movements required the motion of the FOE
random walk to be scaled down, thereby reducing the statisti-
cal power of the paradigm. This could be improved by using
head-free measurements or by placing the animal in a virtual
reality (VR) environment, allowing it to move in the direction of
the FOE.

Similarly, the paradigm is a tractable one for experiments
in rodents, for whom VR environments have recently taken a
prominent role (21). In such experiments, visual cues are pre-
sented under computer control, often used to probe the neural
mechanisms of spatial memory. Versions of the statistical per-
turbations we have introduced could provide greater leverage on
how sensory information is integrated and ultimately translated
into memories in such paradigms. Similarly, this approach may
also generalize studies of behavioral and neural sensory inte-
gration in invertebrates, where navigational patterns are often
studied but may benefit from the additional efficiency and sta-
tistical power when it comes to understanding the integration
of information over space and time, especially considering the

emerging technical abilities to study large portions of neural
circuits simultaneously.

The efficiency of the FOE-tracking paradigm also makes it
a potential tool for other applications within primates, such
as the study of perception where long experiments are unsuit-
able, and/or with populations with reduced abilities to learn
complicated new tasks. As an example, scotomas could poten-
tially be detected in the lack of spatial integration of certain
subregions of the visual field. Because tracking behavior will
correlate with the ability to see the stimulus, another potential
option would be to embed secondary visual perception ques-
tions into the framework of FOE tracking. For example, to study
color perception, one could vary the color of the dots and/or
background and analyze tracking performance as a function of
chromatic contrast. Likewise, studies of children, the elderly, or
patients with neurological dysfunction are likely amenable to this
task framework. Relatedly, although we observed strong consis-
tency of gaze patterns within observers, it will be intriguing to
test for cross-subject consistency. Such commonalities have been
observed in more-natural tasks (22), but gaze patterns for more
synthetic stimuli often show less consistency, instead carrying sig-
natures of individual differences in sensitivity across the visual
field (23).

We wish to highlight one last critical point regarding gen-
eralization: Although we have focused on motion per se in
our initial demonstrations, other stimulus dimensions can be
assessed within this framework. As described above, one class
of generalizations would maintain flow tracking per se but vary
nonmotion aspects of the visual scene to focus on the processing
of these other cues. Another class of generalization could main-
tain the spatiotemporal structure of the target but replace it with
cues from other senses, such as tracking auditory, somatosen-
sory, or even olfactory targets. Thus, the essence of this paradigm
simply involves finding a continuous behavior driven by a stimu-
lus dimension of interest. While we have focused on space and
time, any dimensions can be probed given that one can add
time-varying statistical fluctuations, central to the estimation of
kernels that map stimulus to behavior.

Summary. A variety of primate species exhibited lawful tracking
behavior within a continuous, dynamic stimulus. The tempo-
ral and spatial kernels obtained with this paradigm align with
results obtained with more traditional tasks, demonstrating the
generality of spatiotemporal integration in natural vision. This
allows the study of mechanisms of spatial and temporal visual
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integration in a more naturalistic behavioral setting by doing
away with single decisions after exposure to a stimulus and,
instead, moving to the continuous integration of (and reaction
to) ever-changing stimuli; these conditions likely dominate in
natural behavior. The flow-tracking paradigm we described also
supports tractable studies of learning, with a few-hour time
course of acquisition to capture the initial learning phase and
the ability to potentially guide or manipulate temporal integra-
tion by adjusting reward using quickly assessed temporal kernels.
Furthermore, the paradigm extends to dual stimulus selection
tasks, which are conceptually similar to classical psychophysical
tasks that involve binary choices. By reducing the requisite train-
ing times while providing high data efficiency per unit time, we
hope that this framework will assist the investigation of scien-
tific questions that have previously been challenged by the need
for extensive training time, and/or the requirement of averaging
over separate measurement periods to have sufficient data to test
hypotheses or refine characterizations.

Materials and Methods
Research Subjects. Two rhesus macaques (Maccaca mulatta, M1 and M2),
one common marmoset (Callithrix jacchus, C), and one naı̈ve human (H) took
part in this study. The nonhuman primates were kept and handled in accor-
dance with National Institutes of Health guidelines and the Institutional

Animal Care and Use Committee at The University of Texas at Austin. Stan-
dard surgery procedures were performed to place a head-stabilizing post
in both the macaques (24) and marmoset (25). The human observer (male,
aged 24 y) had good stereopsis and corrected-to-normal vision. Experiments
were undertaken with the written consent of the human observer, and all
human experiments were approved by the University of Texas at Austin Insti-
tutional Review Board. Across the macaques, marmosets, and human, a total
of 39 sessions (M1, 8; M2, 15; C, 9; H, 8) and 1,675 min (M1, 539 min; M2,
601 min; C, 294 min; H, 240 min) of data were analyzed for this paper. Pre-
ceding the recording of analyzed data, H was preexposed to the stimulus
for two sessions (66 min). M2 had no stimulus preexposure. Optimization
of the stimulus parameters to each species (as done for macaques and mar-
mosets, M1 and C) precluded quantification of the task acquisition process
for those subjects, but it was similarly on the order of a small number of
sessions of exposure, with no explicit training beyond the standard reward
contingencies. We collected a relatively modest amount of data in a human
subject to establish ground truth for task performance, and then focused
on acquiring larger amounts of data in the macaques to confirm the gener-
alizability of the paradigm to nonverbal species and to perform additional
quantification.

Experimental Apparatus. Macaque and human participants were seated 57
cm away from a 150 cm × 86 cm rear-projection screen (IRUS; Draper Inc.)
covering the central 106◦ × 73◦ of visual angle. Images were projected onto
the screen by a PROPixx projector (VPixx Technologies Inc.) driven at a res-
olution of 1,920 × 1,080 pixels at 120 Hz. Marmoset viewing distance was
28.5 cm from a 52 cm × 29 cm ViewPixx display (VPixx Technologies Inc.)
covering the central 85◦ × 54◦ of visual angle. Eye movements in all species
were recorded with head fixed (M1, M2, C; head post) or head stabilized
(H; chin and forehead rest) at 1 kHz using an Eyelink 1000 eye tracker (SR
Research Ltd.).

Visual stimuli were generated by a Mac Pro-6.1 (H, M1, M2) or 5.1 (C)
(Apple Inc.) using Matlab (MathWorks), Psychtoolbox (26), and version 4 of
PLDAPS (27). Stimulus code is stored in an online repository, and data are
stored on a local server.

Stimuli. The core stimulus comprised a moving cloud of dots, representing a
large optic flow field within the central 80◦ × 50◦ of visual angle (M2: 60◦

× 40◦), each having individually assigned x, y, and z coordinates in 3D space.
Initially, all dots were positioned randomly to uniformly fill the screen, and
virtual (z) distances to the observer were assigned from a uniform distribu-
tion (1 m to 3 m). To characterize the integration of the visual motion across
the visual field, we divided the field into hidden hexagonal subfields with a
common length of the sides of 3.75◦ (C: 1.875◦) and an area of 36.5 deg2

(C: 9.16 deg2). On each frame, the 3D locations of the dots were updated
according to the dot cloud’s 3D velocity and then drawn at the resulting
location projected onto the screen. When the depth of a dot fell below or
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above 0.5 m or 3.5 m, respectively, it was replaced to a random depth and
a random location within its subfield. When the calculated new position
of a dot fell outside its subfield, it wrapped to the other side, with a new
location given by its speed and direction.

The FOE of the flow field is defined as the location at which the motion
on the screen is zero. At each point in time, the FOE defined the velocities
present in each subfield (but each subfield’s velocity was then perturbed, as
explained later). The FOE can be interpreted as the direction of heading in a
static environment, or as indicative of an object’s motion direction relative
to the observer (ignoring eye movements; the current experiments do not
attempt to distinguish between these perceptual interpretations). The FOE
is given by

xs
foe =

ẋ

ż
· zs, [1]

where xs
foe is the location of the FOE on the screen, ẋ and ż are velocities

of the dot in 3D, and zs is the distance of projection plane (the screen). In
degrees of visual angle, the FOE is described as

tan(θx,foe) =
ẋ√

ẏ2 + ż2
. [2]

As such, the velocity of the dot cloud directly relates to the location of the
FOE on the screen.

The location of the FOE on the screen was not constant, but moved
continuously according to a random walk on a damped spring (28). This
time-varying walk of the FOE is the key manipulation, serving both as an
intuitive way for subjects to engage in a continuous tracking behavior and
as a means for temporal decorrelation of the FOE and the behavior.

We chose FOE movement parameters that resulted in Gaussian distri-
butions of the FOE with respect to both the location and velocity. The

horizontal and vertical FOE trajectories were independent of one another,
each with an SD of the location within a trial of about 7.5◦ (C: 2.5◦) and
an SD of the velocity of about 33◦ · s−1 (C: 8.3◦ · s−1). A small trial by trial
offset in the center of the FOE’s motion increased the SD of the position to
10◦. In addition, the direction of the dot cloud through depth alternated
randomly, resulting in expanding or contracting optic flow patterns, with
an average switch time of 3.6 s and an SD of 1.3 s.

Because the dots within each subfield were drawn according to the pro-
jection of the dots’ motion through (virtual) 3D space, the motion within
each subfield by itself contained sufficient information about its distance
relative to the FOE. To allow for a partial decorrelation of the visual
information across the subfields, each subfield either had a small, random
perturbation relative to the motion associated with the “true” FOE or was
blank (i.e., with no dots rendered within it). Perturbations to the FOE loca-
tion across subfields were implemented by adding Gaussian noise N(0,σ) to
the 3D velocity of the dots in a given subfield,

xs
foe =

ẋ + N(0,σ)

ż
· zs
. [3]

The random offset of each subfield remained constant for 16 ms to 500 ms,
at which point all parameters of the subfield were randomly reassigned.
This resulted in an offset of the FOE in the subfields with σx =σy = 2.8◦ (C,
0◦; M2, increasing from 0◦ to 5◦). Because this manipulation occurred in the
physical (i.e., virtual 3D) velocity space, the effect of the noise in degrees of
visual angle depended on the location of the FOE, with larger offsets when
the FOE was close to the center compared with the eccentricity. The noise
was, however, constant across subfields. Note that, because the informa-
tion showed in each subfield pointed toward a (slightly) different FOE that
was unique from the FOEs shown in all other subfields at that same time,
we were able to pick up on these differences to infer which of the sub-
fields’ information (and to what amount) was taken into account to direct
the gaze.

Core Task. In the simplest conditions, the motions within 45% of all sub-
fields were noisy representations of a single FOE, and the task was to direct
the gaze at the FOE. Dots in the remaining 55% of subfields remained invis-
ible. Visibility of subfields as well as their perturbations from the FOE were
randomly reassigned every 16 ms to 500 ms. In each trial, dots could either
be all black or all white. To maintain interest and solidify flow tracking,
for M1 and H, we dispensed rewards periodically whenever the gaze was
within 7.5◦ to 11◦ of the FOE for typically 1.7 s. The human subject (H) was
instructed that a beep was to be interpreted as a reward, and received ver-
bal instructions simply to look at the screen and figure out the task. For M2
and C, the animal was rewarded whenever an accumulated reward from a
Gaussian reward field around the FOE exceeded a set threshold. For all sub-
jects, trials ended when the gaze left the screen for more than 250 ms (e.g.,
a blink) or after 300 s of uninterrupted visual stimulation.

Visual Selection Task. In the visual selection variant of the task, different
subfields could show motion for either of two independently moving FOEs,
with the dot luminance (black or white) indicating subfields showing infor-
mation for one FOE or the other. In these cases, each 45% of the subfields
contained dots corresponding to one or the other FOE, with the remaining
10% of the subfields empty. Subjects were free to switch between the two
FOEs, and were rewarded for tracking either FOE.

Eye Movements. Eye velocities were obtained by discrete differentiation of
the unfiltered eye positions. Saccades were detected using a variable veloc-
ity criterion in four stages. Whenever the speed exceeded 100◦/s of the
average speed of the previous 20 samples, a potential saccade was detected.
For each saccade, a first estimate of the onset and offset was obtained
by finding the last and first samples, respectively, with a speed of 5◦/s
below that running average speed. The 2D velocity was then projected onto
the estimated saccade trajectory for a final estimate of the saccade onset
and offset, when the velocity along the trajectory was last below 5◦/s of
the velocity of the preceding 20 samples and when it first fell below 5◦/s
relative to the following 20 samples again. Finally, overlapping detected
saccades were combined, a minimum saccade duration of 5 samples and a
minimal latency of 50 samples between two saccades were assumed, and
data around 50 ms of a blink were ignored. For the gaze time series shown
in Fig. 2, and for quantifications in Table 1 and Fig. 5A, time points 1 s before
to 1 s after a blink were removed from analysis; for all other figures and
reports, the full time series was considered, although censoring blinks would
have only small effects.
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Bilinear Regression to Estimate Temporal and Spatial Parameters. We used
a bilinear regression model which assumes that the temporal and spatial
integration are separable. In the bilinear regression, we first estimate the
temporal integration parameters by initially assuming an equal weighing of
the information in all subfields, and next use the resulting temporal ker-
nel to aid the extraction of the spatial integration weights. These weights
could then be used to iteratively improve the estimates by using the esti-
mate of the spatial weights to better estimate the temporal weights, and
so on. While this iterative component is critical for estimates of neural
integration, we found it to yield little improvement for the behavioral
results focused on here, and thus only iterated once. The bilinear regression
allowed us to determine the combination of temporal and spatial weights
that best predicted the subject’s gaze. To determine the temporal kernel, we
regressed the location of the average FOE represented in all visible analyzed
subfields for the same underlying FOE over time against the current eye
position.

Foveocentric spatial integration parameters were then computed by
regressing the subfields’ unique FOE time courses to the residuals from
the temporal regression. Specifically, we first determined the time course
of FOEs that were shown in each subfield relative to the subfield that was
fovealized at any given frame. We next filtered each subfield’s time course

of FOE locations with the causal portion of the temporal kernel (t≤ 0), fill-
ing times where no dots were shown with the mean FOE location of all
visible subfields at that time. We also filtered the mean FOE location of all
subfields in the same manner and subtracted this time course from each
subfield’s filtered time course, and from the gaze (residual error).

To offset scaling effects due to variations in the number of subfields sup-
plying data to the regression, the gaze was multiplied by the filtered sum
of subfields with data at each point in time. Finally, both the gaze and the
subfield data were multiplied by that same value to perform a weighted
regression with more weight for times with more stimulus-carrying sub-
fields. To add robustness against the large autocorrelation of the stimulus,
we used ridge regression, which is equivalent to placing a zero-mean Gaus-
sian prior on the regression weights. The ridge parameter was determined
using evidence maximization (29, 30). Data from the horizontal (x) and
vertical (y) position of the FOE and gaze were fit independently. Unless spec-
ified otherwise, all data shown here are from the x component, but the y
component was typically comparable.
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