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Abstract

The study of genetic minority variants is fundamental to the understanding of complex processes such as evolution, fitness,
transmission, virulence, heteroresistance and drug tolerance in Mycobacterium tuberculosis (Mtb). We evaluated the performance of the
variant calling tool LoFreq to detect de novo as well as drug resistance conferring minor variants in both in silico and clinical Mtb next
generation sequencing (NGS) data. The in silico simulations demonstrated that LoFreq is a conservative variant caller with very high
precision (≥96.7%) over the entire range of depth of coverage tested (30x to1000x), independent of the type and frequency of the minor
variant. Sensitivity increased with increasing depth of coverage and increasing frequency of the variant, and was higher for calling
insertion and deletion (indel) variants than for single nucleotide polymorphisms (SNP). The variant frequency limit of detection was
0.5% and 3% for indel and SNP minor variants, respectively. For serial isolates from a patient with DR-TB; LoFreq successfully identified
all minor Mtb variants in the Rv0678 gene (allele frequency as low as 3.22% according to targeted deep sequencing) in whole genome
sequencing data (median coverage of 62X). In conclusion, LoFreq can successfully detect minor variant populations in Mtb NGS data,
thus limiting the need for filtering of possible false positive variants due to sequencing error. The observed performance statistics
can be used to determine the limit of detection in existing whole genome sequencing Mtb data and guide the required depth of future
studies that aim to investigate the presence of minor variants.
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Introduction
Tuberculosis (TB), caused by Mycobacterium tuberculosis
(Mtb), is one of the top 10 causes of death worldwide and
the leading cause of death from a single infectious agent
[1]. Mtb continuously evolves through genomic acquisi-
tion of single nucleotide polymorphisms (SNPs), inser-
tions and deletions (indels). The acquisition of genomic
variants that confer drug resistance and the acquisi-
tion of compensatory mutations to overcome the fitness
effect of these drug resistance causing mutations [2] have
been widely studied. Understanding the patient’s iso-
late’s genomic drug resistance profile will help to define
the optimal individualized treatment [3, 4]. Investigation
of genomic variants in Mtb associated with other charac-
teristics such as virulence, bacterial fitness, transmissi-
bility and drug tolerance remains limited.

For decades, it was believed that Mtb infection was
clonal with a single genome to be representative of an
infection [5]. Advances in molecular biology have high-
lighted genomic diversity in Mtb and thereby frequent
occurrence of polyclonal infections [6]. Within a sin-
gle patient, multiple unrelated clones can be present
from different infections (mixed infection) or multiple
closely related clones can be present reflecting micro-
evolution in a previously clonal Mtb population within a
lesion. Variants that represent polyclonal infection can
be present at different levels, showing frequencies any-
where between 0 and 100% and can become the only
(fixed) variant of the Mtb population or become lost [7].
Confidently calling the presence of minor variants in
Mtb whole genome sequence (WGS) data is essential to
study population dynamics. For example, the dynamics
of heteroresistance—where both wild type and mutant
alleles co-occur in genes associated with resistance—is
of clinical interest as this has been associated with poor
treatment outcomes [8]. Understanding drug tolerance,
by studying the change in Mtb populations in response
to drug exposure, and gaining insight in how Mtb popula-
tions can overcome drug pressure in the absence of drug
resistance mutations can help with the development of
novel treatment strategies [9]. Improved sensitivity to
characterize Mtb population structures can greatly ben-
efit the accuracy of TB transmission studies, especially
in high burden settings where mixed infections occur
frequently [6].

Until recently, detection of minor variants in WGS data
was difficult due to the inability of ad hoc trimming,
filtering and threshold approaches to distinguish true
low-frequency variants from sequencing error [10]. Minor
variants are therefore usually excluded from bioinfor-
matic analyses even though they may be biologically
relevant and fundamental to the analysis of population
evolution and dynamics [11]. Lately, a bioinformatic tool
called BinoSNP has been developed to detect minor drug
resistant variants in Mtb next generation sequencing
(NGS) data [4]. BinoSNP evaluates a user-defined list of
genomic positions using a binomial test procedure to
determine the presence of low-frequency variants in Mtb

NGS data. The tool can accurately distinguish between
true variants and sequencing error at a 1% frequency
with a coverage ≥400x [4], but is restricted to the detec-
tion of SNPs in (per default) resistance conferring genes.
Consequently, tools such as BinoSNP are not suitable for
detection of variants that are not pre-specified such as
de novo detection of minor populations in genetic regions
not associated to drug resistance.

LoFreq [12], a genome wide variant calling tool that
models sequencing run-specific error rates and position-
specific sequencing biases to call minor (<0.05%) vari-
ants overcomes these limitations as it allows detection
of both low-frequency SNPs and indels in both pre-
specified genetic regions such as resistance associated
loci and previously unidentified genetic regions. The
performance of LoFreq has been assessed for several
pathogens (dengue virus [12], respiratory syncytial
virus [10]). Unfortunately, as is the case for most
variant-calling tools, performance evaluation has been
restricted to the typical ‘average’ human or viral dataset,
containing variants present at various frequencies
and/or at a mixture of sequencing depths [10, 12–21].
In practice, however, researchers are interested in more
precise information on the performance of bioinformatic
tools that they can use to evaluate the performance
of a tool for their own specific application. Due to
differences in genome size, GC content, presence of
highly repetitive regions and ploidy, the appropriateness
of the assumptions and statistics used in variant callers
may differ for microbial genomes [22]. Benchmarking of
a WGS variant calling tool that is suitable to detect minor
Mtb variants at different coverage depths and different
variant frequencies remained to be done.

We generated in silico (simulated) WGS datasets to
assess the performance (sensitivity and precision) of
LoFreq for the detection of SNPs and indels when present
at a range of low-level frequencies and at a range of
sequencing depths. We also applied the LoFreq tool to
call minor variants in the Rv0678 gene in clinical Mtb
WGS data and compared this to the findings obtained by
targeted deep sequencing (TDS) [23].

Methods
Generation of in silico datasets
We used the ART next-generation sequencing simulator
(Version 2.5.8) [24] to generate in silico sequencing reads
in a way that mimics the technology-specific sequenc-
ing process. To simulate pair-end reads that would be
obtained by sequencing Mtb DNA on the Illumina MiSeq
v3 system, we used ART to generate reads with a length
of 150 bp and a mean DNA fragment size of 350 bp with
a standard deviation of 18.7 bp. ART’s default param-
eters were used except for masking that was turned
off to include repetitive regions. Ten randomly mutated
H37Rv reference genomes containing 1000 SNPs, 50 sin-
gle base deletions and 50 single base insertions were
generated to (1) guarantee sufficient statistical power,
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and (2) to reflect the observation that clinical samples
typically differ 600–2600 SNPs from the H37Rv reference
genome [25]. The performance of LoFreq to detect minor
variants present at 0.1–20% frequency was investigated.
Levels of coverage depth ranged from 30x to 1000x to
explore the extremes of sequencing depth obtained when
sequencing at minimalistic (30x) or deep sequencing
(1000x) levels for Mtb WGS. In silico generated H37Rv
(NC_000962.3) reference genome sequence reads were
then merged with in silico generated random (but known)
mutant sequence reads (SNPs and indels) to generate a
WGS dataset of 640 Mtb genomes that represent the 64
combinations of minor variant frequency (0.1, 0.5, 1, 3,
5, 10, 15 and 20%) and depth of coverage (30, 50, 100,
200, 300, 400, 500 and 1000x). For example, to generate
a dataset where a 3% variant is present at 400x depth,
we merged 12x in silico generated mutant sequence reads
with 388x in silico generated H37Rv (NC_000962.3) refer-
ence genome sequence reads.

Clinical WGS and TDS data
Clinical data used in this study have been published
earlier by De Vos et al. [23] and are available online.
WGS data from serial isolates from a previously reported
case study were retrieved from the public European
Nucleotide Archive (Project number: PRJEB32109) and
TDS of the full Rv0678 region were retrieved from
Bioproject at NCBI (project number PRJNA531707) [23].

Variant calling
Prior to LoFreq variant calling, in silico generated and
clinical WGS fastq files were processed using the Com-
pleX Bacterial Samples (XBS) pipeline to generate bam
files [26]. Briefly, Fastq sequence data were mapped to
the reference genome (H37Rv NC_000962.3) using BWA
mem, after which the XBS pipeline performed identified
read deduplication in the bam files using GATKMarkDu-
plicates (Picard) (Reference paper accepted, still to be
added). Of note, unlike other Mtb pipelines, base qual-
ity score recalibration (BQSR) is not applied by XBS to
avoid that variants in contaminant (non-Mtb) DNA are
interpreted as systematic error by BQSR, which would
result in reduced base qualities, including for genuine
Mtb variants. The resulting bam files were indexed using
the H37Rv reference genome and indel quality scores
were assigned using LoFreq indelqual prior to variant
calling. LoFreq (v2.1.2) was run using default parame-
ters with the indel variant calling function turned on to
evaluate the performance of both SNPs and indels [12].
Variant calling using Lofreq was performed on the whole
Mtb genome, including highly repetitive regions such as
PE/PPE regions.

For clinical isolates, variant frequencies called by
LoFreq were compared to the variant frequencies earlier
reported by De Vos et al. [23], where variant calling was
performed (1) on TDS data (using the ASAP pipeline) and
(2) on WGS data by means of a combination of GATK and

a visual approach using Tablet (after preprocessing WGS
data with Novoalign).

Statistical analysis of LoFreq’s performance
To assess the performance of LoFreq at each of the 64
combinations of variant frequency (0.1, 0.5, 1, 3, 5, 10,
15 and 20%) and depth of coverage (30, 50, 100, 200,
300, 400, 500 and 1000x), we compared the truth, i.e. the
mutations introduced in the in silico generated mutated
H37Rv reference genome, to the observed, i.e. the absence
or presence of each minor variant as reported in the VCF
files generated by LoFreq. This allowed us to calculate
the number of true positive (TP), false positive (FP), and
false negative (FN) variants reported by LoFreq in each of
the 640 WGS datasets. Using these results, we assessed
the performance of LoFreq by calculating the sensitivity
(defined as the ratio of true positives over true positives
plus false negatives) and precision (defined as the ratio
of true positives over true positives plus false positives)
at each of the 64 combinations. All analyses of the per-
formance of LoFreq on in silico generated Mtb WGS data
were done in Rstudio. Regression lines were constructed
applying locally estimated scatterplot smoothing (LOESS)
using the ggplot package in RStudio.

For the patient samples, the detection of minor vari-
ants by LoFreq could not be compared to a known set
of all true variants (as was done for in silico datasets).
Instead, the detection of minor variants by LoFreq in
the Rv0678 gene in the WGS data was compared to the
variants identified by TDS of the Rv0678 gene of the
same samples as previously described by De Vos et al.
[23] In addition, we also compared the ability of Lofreq
to detect these minor variants in the WGS data to what
has been previously been reported by De Vos et al. [23],
where a combination of GATK and a visual inspection
was used. To compare the variant frequencies that were
predicted by the different variant calling methods (TDS,
GATK/Visual-method and LoFreq) two proportion Z-tests
were performed.

Results
At very high Mtb depth of coverage of 1000x, the limit
of detection of LoFreq to call minor variants was 3% for
SNPs, with a sensitivity of 48.6% (95% CI 47.7%, 49.6%)
(Figure 1, Supplementary Figure S1). At this depth, sen-
sitivity increased to ≥98% for variants present at fre-
quency ≥5%. For variants present at 10% frequency and
higher, the sensitivity increased rapidly with increasing
depth of coverage: at 50, 200 and ≥400 depth, sensitivities
were 19.6% (95% CI 18.9–20.4%), 90.7% (95% CI 90.1–
91.2%) and 98.5% (95% CI 98.2–98.7%), respectively.

Lowfreq’s limit of detection was lower for insertions
than for SNPs. The sensitivity of LoFreq for the detection
of insertions present at 0.5% frequency was 43.6% (95% CI
39.2–48.1%) at 1000x coverage. Insertions present at 1%
were detected with a sensitivity of 56.6% (95% CI 52.1–
61.0%) at 500x coverage and 92.2% (95% CI 89.5–94.4%)
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Figure 1. Sensitivity of the LoFreq tool for whole genome calling of minor SNP variants (present at 0.1–20%) at different levels of coverage (30–1000x)
when evaluated on in silico whole genome sequence data sets.

at 1000x coverage (Figure 2, Supplementary Figure S2). At
higher minor variant frequencies (≥3%), sensitivity to
detect insertions increased fast with increasing coverage
before plateauing around 98.8%. At low coverage (30x),
insertions present at 10, 15 or 20% could be detected with
59.4% (95% CI 55.0–63.7%), 78.8% (95% CI 75.0–82.3%) and
91.8% (95% CI 89.0–94.1%) sensitivity, respectively.

Similar results were obtained for the detection of dele-
tions. When present at 0.5% frequency, the sensitivity for
detection of deletions was 46.2% (95% CI 41.8–50.7%) at
1000x coverage. The sensitivity to detect minor variants
present at 1% was 56.8% (95% CI 52.3–61.2%) at 500x
coverage and 88.8% (95% CI 85.7–91.4%) at 1000x cov-
erage (Figure 3, Supplementary Figure S3). Sensitivity to
detect deletions increased quickly with increasing cover-
age before plateauing around 98.2% for variants present
at ≥3%. At low coverage (30x), the sensitivity to detect
deletions present at 10, 15 and 20% was 59.8% (95% CI
55.4–64.1%), 80.6% (95% CI 76.9–84.0%) and 89.8% (95% CI
86.8–92.3%), respectively. In case of FP indel mutations,
LoFreq reported 91.8% (45/49) of the FP deletions and
5.4% (2/37) of the FP insertions to contain a large (>10
base-pair) insertion or deletion region.

With regards to precision, our analysis of in silico
data showed that LoFreq had a very low rate of calling
false positives resulting in a precision of 1 for the
detection of SNPs independent of frequency of the minor
variant and depth of coverage (Supplementary Table S1).
In the in silico datasets, a few false positive indels

were reported, resulting in precision estimates between
≥99.5% for insertions and ≥96.7% for deletions
(Supplementary Table S1).

In addition to simulation experiments, we assessed
LoFreq’s ability to detect minor variants in clinical
WGS data (at 62x average depth) using four serial Mtb
samples collected from a patient with XDR-TB who
failed a BDQ-containing treatment regimen [23] and
compared results to when variant calling was performed
by GATK followed by visual inspection using Tablet or
on TDS data. LoFreq detected all variants in Rv0678
as detected by TDS, including the variants present
at lower frequency (5.7% and 3.2%). In contrast, the
GATK/visual detection method detected variants present
at a frequency exceeding 25%, but missed the variants
that occurred at a frequency of ≤5.7% (Table 1). Predicted
variant frequencies also differed between TDS and
LoFreq for all (four) high frequency (>65%) variants,
with LoFreq systematically predicting a lower frequency
of variants to be present. A similar observation was
made for three out of four of these variants when
comparing predicted variant frequency when variant
calling was done using GATK and visual inspection
using Tablet or by LoFreq (Table 1). For lower frequency
variants no significant difference was observed when
comparing predicted variant frequency between the
different variant calling methods.

In terms of speed, we found LoFreq’s runtime to scale
linearly with sequencing depth. Using a single core QEMU
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Figure 2. Sensitivity of the LoFreq tool for whole genome calling of minor insertion variants (present at 0.1–20%) at different levels of coverage (30–1000x)
when evaluated on in silico whole genome sequence data sets.

Figure 3. Sensitivity of the LoFreq tool for whole genome calling of minor deletion variants (present at 0.1–20%) at different levels of coverage (30–1000x)
when evaluated on in silico whole genome sequence data sets.
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Table 1. Minority populations identified in Rv0678 when variant calling was performed on TDS data or whole genome sequencing data
with variant calling either performed by a combination of GATK and visual inspection (using Tablet) or by the LoFreq variant caller

Sample accession
number European
nucleotide archive

Rv0678
variant

Variant frequency % (number of mutant/total reads) P-value

TDS WGS GATK/Visual WGS LoFreq TDS versus
GATK/Visual

TDS versus
LoFreq

GATK/Visual
versus LoFreq

SAMEA5562524 192 G ins 96.66% (17
551/18 158)

100% (56/56) 87.06% (74/85) 0.31 <0.0001 0.013

SAMEA5562526 138 GA ins 97.52% (13
299/13 638)

100% (75/75) 80.91% (89/110) 0.31 <0.0001 0.0002

SAMEA5562527 138 G ins 65.48% (9317/14
230)

63% (45/71) 55.21% (53/96) 0.81 0.046 0.37

138 GA ins 28.35% (4034/14
230)

25% (18/71) 19.79% (19/96) 0.67 0.08 0.50

192 G ins 3.22% (461/14
230)

No MV detected:
data missing

4.49% (4/89) 0.71

SAMEA5562528 138 G ins 91.68% (13
029/14 212)

96% (79/82) 81.55% (84/103) 0.18 0.0004 0.004

138 GA ins 5.86% (832/14
212)

No MV detected:data
missing

6.80% (7/103) 0.85

ins = insertion; WGS = whole genome sequencing; TDS = targeted deep sequencing; MV = minor variant.

Virtual CPU version 0.12 operating at 2.5GHz the runtime
for LoFreq was roughly 10 min for assigning indel
quality scores using the LoFreq Indelqual command and
approximately 2 h to perform the variant calling using
the LoFreq call command for a single sample where the
full Mtb genome (size = 4.4 Mbp) was sequenced at 1000×
coverage.

Discussion
The finding that LoFreq’s sensitivity to detect minor
variants increases with sequencing depth and variant
frequency is consistent with the general assumption
that sequencing populations at higher coverages reduces
the uncertainties associated with random sequencing
errors [27]. This finding is in sheer contrast with two
previous studies where similar coverage ranges where
investigated and LoFreq’s sensitivity was not found to
be significantly affected by depth of coverage [10, 13].
Moreover, our results indicate that LoFreq’s performance
depends on the type of variant to be detected, with
greater sensitivity to detect indel mutations than SNPs.
This likely reflects that random sequencing errors
generated by short-read sequencers are mostly SNPs
rather than indels [28], allowing LoFreq to more rapidly
and confidently call an observed indel variant as true as
opposed to a sequencing error.

Congruent with what is reported in literature, our in
silico assessment confirms LoFreq to be a conservative
variant caller with high precision, minimizing the need
for subsequent filtering of false positive variants and
potentially losing a significant proportion of true positive
variants [10]. In contrast to the perfect precision of 1
when variant-calling is performed on in silico introduced
SNPs, in some cases a precision smaller than 1 (but >0.96)
for calling indel variants was observed, which is in agree-
ment with what has been previously reported and has

been attributed to mis-alignment of the indel supporting
reads [14]. We further observed that for a considerable
proportion of FP indels (91.8% for deletions and 5.4% for
insertions) LoFreq reported considerably large (>10 bp)
indels to be present, suggesting that additional filtering
of indel variants on length might further decrease FP-
rate.

From a clinical perspective, previous publications have
suggested that only variants occurring at a frequency
of ≥19% become fixed in Mtb populations [7, 11]. This
clinically relevant variant frequency threshold is further
supported by the observation that the presence of
low-frequency resistance mutations (<5%) does not
affect treatment outcomes of patients infected with
drug-susceptible TB [29]. Our in silico results indicate
high specificity (>0.97) to detect minor Mtb variants
at such clinically relevant frequency levels (20%) when
sequenced at ongoing sequencing depth (100X), support-
ing LoFreq to be a clinically relevant variant calling tool
for Mtb WGS data.

On the other hand, from a biological perspective, it
can be expected that variants with biological advantages
(such as drug resistance, drug tolerance or higher fitness)
may be selected even when initially occurring at very
low frequencies [30]. For variants occurring below or
at the detection limit (3% for SNP calling and 0.5%
for indel calling) for which—even at high coverage
(1000X)—sensitivity of LoFreq is low (<50%), very high
coverages currently seem indispensable, favoring a
targeted sequencing approach.

The study by McCrone et al. [15] found LoFreq’s sen-
sitivity to call variants in data resembling clinical sam-
ples to be lower than what was expected from previ-
ous benchmarking, pointing out potential variation in
LoFreq’s performance on clinical data. In contrast to
this study (performed on viral populations with very
low to low (0.16–5%) frequency variant populations), we
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found LoFreq able to detect all TDS-determined minor
variants in WGS data from clinical isolates. In our setup,
LoFreq detected two low-frequency variants (3.22% and
5.86%) that could not be identified by a combination
of GATK and visual inspection. The ability of LoFreq to
detect these low-frequency variants at a median cover-
age of only 62X indicates that the results of in silico sim-
ulations described above may underestimate sensitivity
compared to when clinical data are used. In our hands,
LoFreq did not have lower sensitivity to detect variants in
clinical data compared to in silico datasets. Other studies
have shown that sequential sequencing of serial patient
samples generates a large number of transient variants.
It is however unclear whether such variants are genuine
or the result of sequencing error [7]. The fact that for our
clinical dataset LoFreq finds exactly and exclusively the
same variants that are found by TDS (which is known
to be precise and where called variants are unlikely to
be due to sequencing error when present >1%), suggests
that variants called by LoFreq are genuine rather than
sequencing error. For the transient variants described in
the clinical study referred to in this paper, we would
thus argue that variants are thus genuine rather than
sequencing error.

For resistance-associated genes, variants are often
categorized into micro- (<5%) and macro- (5–95%)
heteroresistant variants [30]. However, our observation
that absolute variant frequencies diverge between the
chosen variant caller for multiple samples indicates that
such categorization should be done with care. Multiple
factors could result in discrepant variant frequencies: (1)
stochasticity of the sequenced reads (which decreases
with sequencing depth and thus favors variant frequency
as predicted by TDS (>13.000X) as compared to WGS
(62X)); (2) Some forms of bias tend to push variants
to above 50% allele frequency, particularly at higher
coverages and when more selective events occur. Forms
of PCR biases present in both TDS and WGS library
preparations could thus underly the observed variation
in variant frequency and explain why lower frequency
variants increase and higher frequency variants decrease
when variant calling is done using TDS compared
to WGS.

Strengths and Limitations
To our knowledge, this is the first study benchmarking
a WGS variant calling tool suitable to detect minor Mtb
variants. This study yielded precise in silico as well as
clinical information on the performance of bioinformatic
tools, allowing researchers to evaluate the performance
of tools for their own specific application.

One limitation of the in silico validation performed in
this study is that the introduced indel mutations were
limited to single nucleotide insertion or deletions, while
the power to sensitively detect indels has been reported
to decrease with indel-length [14]. This is particularly
relevant as longer indel regions (>50 bp) have shown

to be present in the Mtb genome [31]. Moreover, indels
have been reported to occur with increased frequency in
low-complexity regions in the Mtb genome where indel-
calling is known to be more error-prone, while in silico
generated indels were randomly distributed throughout
the genome [32]. Therefore, the sensitivity of LoFreq to
detect longer indels and indels present in low-complexity
regions requires further investigation.

Another limitation of the study is that the small clin-
ical sample size did not allow to statistically validate
LoFreq’s in silico predicted performance metrics when
applied on clinical sequencing data. For the same reason,
our serial data (corresponding to a single patient) do
not allow us to properly address the debated question
whether transient variants observed upon sequential
sampling are in general genuine (as suggested by our
data) or due to sequencing error. Similar studies contain-
ing larger sample size would be required to generalize our
findings. In addition, all variants present in the clinical
data were insertions. Further validation of LoFreq’s per-
formance on larger clinical sample sizes containing both
SNP and indel mutations thus remains to be done and
would be highly complementary to the in silico findings
reported in this paper.

Key Points

• A benchmarked genome wide minor variant call-
ing tool is currently missing for Mtb.

• Sensitivity of LoFreq to detect minor variants
ranges from up to 98.8%, improving with increas-
ing frequency of minor variants in the Mtb
genome and increasing levels of coverage depth.

• Sensitivity of LoFreq is found to be higher for
calling indel mutations than single nucleotide
polymorphisms.

• LoFreq shows to be a highly precise, conservative
variant caller, limiting the need for subsequent
filtering of false positive variants.

• LoFreq is a clinically valuable whole genome
sequence (WGS) variant calling tool.

• Performance statistics as reported in this study
are required to guide future studies aiming
to investigate the presence of minor variants
in Mtb WGS datasets, such findings are nec-
essary to improve our understanding on vari-
ous—currently understudied—tuberculosis top-
ics including bacterial transmissibility, bacterial
fitness, virulence and drug tolerance.

Conclusion
We found that sensitivity of LoFreq to detect minor vari-
ants ranged from up to 98.8%, improving with increasing
frequency of minor variants in the Mtb genome and
increasing levels of coverage depth. Sensitivity of LoFreq
was found to be higher for calling indel mutations than
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SNPs. LoFreq shows to be a highly precise, conservative
variant caller, limiting the need for subsequent filter-
ing of false positive variants. Despite its low sensitivity
(<50%) for detection of low-frequency variants (≤3% for
SNP calling and ≤0.5% for indel calling), even at high cov-
erage (1000X), we report LoFreq to be a clinically valuable
WGS variant calling tool, as in silico results indicate high
sensitivity (>0.97) to detect minor variants at clinically
relevant frequency levels (20%) when sequenced at easily
achievable sequencing depth (100X). LoFreq’s ability to
detect all minor variants that were detected by TDS
in the clinical data analyzed further supports LoFreq’s
clinical applicability. Performance statistics reported in
this study can guide future studies aiming to investigate
the presence of minor variants in Mtb WGS datasets by
providing the required sequencing depth to detect minor
variant populations with the desired specificity at a given
variant frequency. We believe these findings will con-
tribute to accelerating and improving our understanding
on various—currently understudied—TB topics includ-
ing bacterial transmissibility, bacterial fitness, virulence
and drug tolerance.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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