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A B S T R A C T   

In this study, initial elements of a modelling framework aimed to become a spatial forecasting model for the 
transmission risk of West Nile virus (WNV) are presented. The model describes the dynamics of a WNV epidemic 
in population health states of mosquitoes, birds and humans and was applied to the case of Greece for the period 
2010–2019. Calibration was performed with the available epidemiological data from the Hellenic Centre for 
Disease Control and Prevention and the environmental data from the European Union’s earth observation pro-
gram, Copernicus. Numerical results of the model for each municipality were evaluated against observations. 
Specifically, the occurrence of WNV, the number of infected humans and the week of incidence predicted from 
the model were compared to the corresponding numbers from observations. The results suggest that dynamic 
downscaling of a climate-dependent epidemiological model is feasible down-to roughly 80km2. This below 
nomenclature of territorial units for statistics (NUTS) 3 level represents the municipalities being the lowest level 
of administrative units, able to cope with WNV and take actions. The average detection probability in hindcast 
mode was 72%, improving strongly as the number of infected humans increased. Using the developed model, we 
were also able to show the fundamental importance of the May temperatures in shaping the WNV dynamics. The 
modeling framework couples epidemiological and environmental dynamical variables with surveillance data 
producing risk maps downscaled at a local level. The approach can be expanded to provide targeted early 
warning probabilistic forecasts that can be used to inform public health policy decision making.   

1. Introduction 

According to World Health Organization (WHO) estimates vector- 
borne diseases are a global health threat and cause more than 700,000 
deaths globally each year [1] with substantial economic and social im-
pacts. Environmental, including climate, phenomena contribute to the 
establishment of the necessary conditions for vector-borne diseases to 
thrive. Factors such as temperature and precipitation affect survival and 
reproduction rates of infectious diseases vectors and pathogens [2]. 
Climatic factors influence vector-borne disease ecology changing the 
geographic and seasonal distribution, and the intensity of vector-borne 
pathogen transmission, hence modifying the probability of epidemics 
[3]. 

West Nile virus (WNV) is the causative pathogen for West Nile Fever 
(WNF) and West Nile neuro-invasive disease (WNND) in humans. WNV 
belongs to the flavivirus genus and it is a neurotropic mosquito-borne 

virus [4]. The virus was first isolated in the West Nile district of 
Uganda in 1937 [5]. The transmission and geographic distribution of 
WNV is associated with the presence of both the avian host and mosquito 
vector, which is affected by environmental and socio-economic condi-
tions. These conditions can influence viral persistence and the dynamics 
of outbreaks [6]. The virus is maintained in nature in a mosquito-bird- 
mosquito transmission cycle. Mosquitoes of the genus Culex are gener-
ally considered the principal vectors of WNV, especially Culex Pipiens 
[7–9]. Wild birds are the predominant reservoir hosts of WNV [10]. 
Human infection is most often the result of bites from infected 
mosquitoes. Mosquitoes become infected when they bite infected birds 
and the virus circulates in their blood for a few days. Bites of infected 
mosquitoes may inject the virus into humans and animals, in some of 
which the virus can cause severe illness. They are “dead-end” hosts, so 
they become infected, but they do not develop sufficient high viremia to 
pass the virus on to other biting mosquitoes [11]. The incubation period 
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is 2–14 days. WNV has the potential to adapt into new environmental 
conditions [12]. About 80% of the infections in humans are asymp-
tomatic, while about 20% are present as a mild illness (characterized by 
fever, headache, chills, excessive sweating, fatigue, muscle pain, mal-
aise, arthralgia, nausea, anorexia, diarrhea, vomiting, rash, and swollen 
lymph nodes) known as WNF. In less than 1% of the infections in 
humans a WNND, is manifested with symptoms of the central nervous 
system mainly encephalitis, but also meningitis, meningoencephalitis, 
or acute flaccid paralysis. The fatality rate of WNND cases is approxi-
mately 10%. Population vulnerable groups at risk are the elderly and 
persons with an underlying disease or with immunosuppression. A sig-
nificant number of patients develop long-term or permanent impair-
ments (like depression, fatigue, cognitive deficits, movement disorders 
or paralysis) [13,14]. Currently no human vaccine is available. There-
fore, the principal way to prevent or reduce the infection burden in 
people is by educating people about the measures they can take to 
reduce exposure to the virus and raising awareness of the risk factors 
[11]. 

The role climatic factors may play in the epidemiology of WNV in-
fections in humans is indicated in associative studies pointing to the 
relevance of taking them into consideration when evaluating the risk of 
pathogen transmission and disease spread [15]. Temperature, precipi-
tation, relative humidity, soil water content and wind speed have been 
associated with WNV prevalence [16–19]. However, quantitative as-
sessments with partially contradicting results, and the complex zoonotic 
transmission cycle make the establishment of evidence and causative 
attribution a major challenge [20,21]. 

Culex mosquitoes typically breed underground in the foul water 
standing in city drains and catch basins [22]. During a drought, those 
pools become richer in the rotting organic material that the mosquitoes 
need to prosper. Drought can also lead to a decline in the number of 
mosquito predators and it may encourage birds to congregate around 
water sites, where the virus can circulate easily [23–26]. However, 
heavy rainfall can flush larval habitats and reduce mosquito abundance 
[27,28]. Increasing ambient temperature results in increasing rate of 
development and abundance of mosquito populations and decreasing 
extrinsic incubation period [29–32]. These factors increase the levels of 
infection in birds and mosquitoes living close to human settlements 
[33]. In addition, weather may affect the bird migration. It has been 
shown that short-term variation in environmental conditions might 
cause a change in the bird migration route [34]. To adapt to climate 
variability, the long-distance migratory birds choose to stop earlier 
when the weather conditions are not favorable, while the short-distance 
migratory birds decide not to migrate [12]. 

Two striking events have characterized the global epidemiology of 
WNV over the last decades: the outbreak in Romania in 1996 with 393 
human cases [35] and the introduction of the virus into the Americas in 
late summer 1999 [36]. Over the last decades there have been multiple 
outbreaks in humans and equids in eastern and southern Europe where a 
substantial increase in WNV infections among humans was observed in 
particular during the period 2010–2018 [37,38]. In Greece, two major 
outbreaks of the virus occurred in the decade 2010–2019. In 2010 (year 
of first detection), a WNV outbreak caused a total of 262 human cases, 
197 of these with WNND and 35 deaths. The majority of human cases 
occurred in the Region of Central Macedonia in Northern Greece. In 
2018, 316 people were infected, 243 developed WNND and 50 died. 
Most of human cases were observed in Central Macedonia and Attica 
Region [14]. 

A wide range of both predictors and modeling approaches have been 
described in the literature for early detection, identification of spatial 
patterns and forecasting vector-borne diseases such as WNV using 
diverse techniques and relevant data including geospatial surveillance 
such as earth observation data [39,40]. Several mathematical models of 
WNV transmission have been developed to predict the transmission 
dynamics of the virus. Most of them are process-based models elabo-
rating predominantly on the temporal and spatial spread of WNV 

transmission in the mosquito-bird population zoonotic cycle [41–47]. 
Seasonality effects such as seasonal variation or the effects of specific 
climatic factors like temperature have also been addressed [17,48–50]. 
Some approaches indicate that epidemiological models forced by cli-
matic factors such as temperature can improve forecast accuracy 
including the estimation of the highest risk of infection in humans 
during the transmission seasonal periods [51,52]. Specific aspects of 
overwintering of bird communities could sustain WNV persistence [53]. 
Laperriere et al. [54] focused on seasonal cycles of WNV cases under 
consideration of environmental temperature as a guide to the extrinsic 
incubation period of mosquitoes that extends a model originally devel-
oped by Rubel et al. [55]. Kioutsioukis and Stilianakis [56] explored the 
associations between weather and WNV using a previously developed 
epidemiological model that describes the transmission dynamics of 
WNV during the transmission cycle. The original model relied on a series 
of daily temperature data estimated on the basis of monthly averages of 
temperature [54,55]. Kioutsioukis and Stilianakis [56] extend the model 
to build upon daily temperature and precipitation time series, where 
daily fluctuations are filtered out, both known to influence the trans-
mission of the virus. In addition, they test the influence of different 
functions that parameterize the mortality of mosquitos. The functions 
differ in the temperature range, thus providing the necessary adjustment 
of the mathematical model to climatically different geographical areas 
[56]. 

In this study, we describe initial steps of a spatial forecasting model 
(MIMESIS: spatial dynaMIcal Model for wESt nIle viruS) for the trans-
mission risk of WNV to humans and the investigation of its climatic 
sensitivity. We employ an epidemiological model that describes the 
transmission cycle of the WNV and couple it with the climatic factors. 
We develop the proper scaling of model and data and use retrospective 
data and simulations to create maps of human cases at the level of 
municipality such as maps with indicators of model goodness of fit and 
predictive power. These indicators could be for instance probability of 
detection, false positive and false negative incidences. As a case study, 
we used all municipalities of Greece for the period 2010–2019 and 
calibrated the model with the available epidemiological data from the 
Hellenic Centre for Disease Control and Prevention (HCDCP) and the 
environmental data from the European Union’s earth observation pro-
gram, Copernicus. We validated the model with observations from each 
municipality comparing predicted versus observed cases. We could un-
cover associations between emergence of human case and climatic 
conditions that underline the role of seasonality in WNV transmission. 

2. Data and methodology 

2.1. Investigation area and data 

The study area was Greece. According to the 2011 census [57], the 
country has a population of 10,816,286 inhabitants, and it covers an 
area of 132,028.848 km2. The country is divided into seven decentral-
ized administrations, 13 regions and 325 municipalities. 

Before we fed the modelling system with the appropriate environ-
mental data, we created a database with essential epidemiological and 
environmental data such as latitude, longitude, human population, area 
[57], wild bird populations [58], number of infected humans and week 
of first incidence in each municipality [59]. 

2.1.1. Population data 
Our study was conducted at the local (municipal) level, which is not 

covered by the spatially broader nomenclature of territorial units for 
statistics (NUTS) levels. Data on the local administrative division of the 
country, the permanent population of the residents and the area of each 
municipality were obtained from the Hellenic Statistical Authority 
(HSA). Latitude and longitude of each municipality were taken from 
Google maps. 

Data on the wild bird populations (namely Pica pica, Corvus cornix, 

A. Angelou et al.                                                                                                                                                                                                                                



One Health 13 (2021) 100330

3

Streptopelia turtur, Turdus philomelos, Anas platyrhynchos, Turdus merula, 
Cuculus canorus, Passer domesticus, Hirundo rustica) were obtained from 
the European Breeding Birds Atlas (EBBA) of the European Bird Census 
Board (EBCC) [58]. These species are competent for WNV transmission 
in the study area and are considered the most important avian reservoirs 
for the virus. The EBBA grid cells have 0.5o x 0.5o resolution. In order to 
find the total population of bird species for all municipalities in Greece, 
the size of the cell and the area of each municipality were taken into 
account. 

2.1.2. Epidemiological data 
Data of the epidemiological activity of WNF and WNND in humans in 

Greece the period 2010–2019 were obtained from the HCDCP. It is 
worth mentioning that a large part of WNV infections in humans shows 
either a few non-specific clinical symptoms or run as subclinical in-
fections (asymptomatics) and are unobserved. Thus, notification of 
human cases is usually limited to those cases of infected individuals who 
seek medical advice or severe cases that need hospitalization. The 
epidemiology of WNV in humans is based on these cases and the real 
number of WNV human cases is unknown. The undocumented fraction 
of infections has been estimated to surpass the reported number of cases 
by two orders of magnitude [59]. 

2.1.3. Environmental data 
Air temperature and precipitation were considered as critical climate 

factors and were embedded in the modeling approach. Temperature 
data from Greece were obtained from ERA 5 (fifth major global rean-
alysis from the European Centre for Medium-Range Weather Forecast) 
(ECMWF) and referred to the period 1980 to 2019 for four hours each 
day. From these data, the daily mean, maximum and minimum tem-
perature were estimated. To eliminate fluctuations, we applied a filter to 
the temperature time series. Daily precipitation data for the same area 
and period were also obtained from ERA 5 since there are indications 
that the development of pools suitable for Culex larvae to deposit eggs 
optimally require moderate precipitation [60]. 

2.2. MIMESIS description 

MIMESIS is based on the model proposed by Rubel et al. [55] and 
extended by Leperriere et al. [54] and Kioutsioukis and Stilianakis [56]. 
Kioutsioukis and Stilianakis [56] developed a regional level model for 
the Regional Unit of Thessaloniki in North Greece and the air temper-
ature as the climatic factor with which the model is powered. MIMESIS 
is a downscaled version of this model for all municipalities of Greece, 
which is forced by air temperature and precipitation. The compart-
mental model simulates the seasonal lifecycles of birds, mosquitoes and 
the inter-specific WNV infection cycle between birds and mosquitoes. 
The state “recovered” denotes those hosts that do not further contribute 
to the infection process and this state is further divided into recovered 
and dead birds and humans. Thus, MIMESIS has 14 compartments (i.e. 
health states); four states for the vector mosquito (larvae LM, susceptible 
SM, exposed EM and infectious IM); five states for amplifying host, birds 
(susceptible SB, exposed EB, infectious IB, recovered RB and dead DB), 
and five states for the dead-end host humans (susceptible SH, exposed 
EH, infectious IH, recovered RH and dead DH). The full system of equa-
tions for all compartments is provided in Appendix A. 

2.2.1. Parameter definition 
Details on MIMESIS parameters can be found in the Appendix B. 

2.2.2. Fixed parameters 
Parameters that had a fixed value included the probability of trans-

mitting the virus from a mosquito to a bird (pM), the mortality rate of 
birds (mB), the probability of transmitting the virus from a bird to a 
mosquito (pB), the removal rate of birds (aB), extrinsic-incubation period 
of birds (γB), the fraction birds dying due to the infection (νB), the 

mosquito-to-bird ratio (φB), the birth rate of humans (bH), the mortality 
rate of humans (mH), the recovery rate of humans (aH), the transition 
rate from exposed (infected but not infectious) to infected and infectious 
of humans (γH), the reproduction rate of humans (rH) and the fraction 
humans dying due to infection (νH). 

2.2.3. Parameters with geographical dependence 
The carrying capacity of birds (KB) had a different value for each 

municipality. Specifically, from the data obtained from the EBCC the 
population density of birds was determined. This density (birds/km2) 
was multiplied by the area of each municipality (km2) to estimate a 
carrying capacity adjusted to local scale. Spatially dependent parame-
ters also included the initial population of infectious mosquitoes (IM,0), 
the mosquito-to-human ratio (φH), the population of susceptible 
mosquitoes (SM,0) and the population of susceptible humans (SH,0). 

2.2.4. Biological parameters with seasonal dependence 
The birth (hatch) rate of larvae (bL) and the birth (emergence) rate of 

mosquitoes (bM) had a temperature-dependent value, like the mortality 
rate of larvae (mL), the mortality rate of mosquitoes (mM), the biting rate 
of mosquitoes (k) and the extrinsic-incubation period of mosquitoes 
(γM). Birth rate of birds (bB) was simulated as a function of the Julian 
day, while the fraction of active mosquitoes (δM) was a fraction of the 
daytime length. The carrying capacity of mosquitoes (KM) of each mu-
nicipality depends on the carrying capacity of birds (KB), the mosquito- 
to-bird ratio (φB) and the precipitation according to a specific formula 
[56]. 

2.2.5. Initialization and calibration 
MIMESIS was solved numerically in MATLAB R2019b with a time 

step of one day. It was forced by the ambient temperature via the 
temperature-dependent mosquito and bird parameters, and the precip-
itation via the carrying capacity of mosquitoes. Before we fed the system 
with temperature data, we applied a Kolmogorov-Zurbenko [61] filter to 
smooth temperature time series. 

Our simulation started in winter (January) and the initial population 
of mosquito larvae (LM,0) was set to zero. The initial population of sus-
ceptible mosquitoes (SM,0) was equal to the number of hibernating 
mosquitoes (NM,min). This population was estimated proportionally 
based on data from the Regional Unit of Thessaloniki in North Greece 
[56]. The initial number of susceptible people to the virus (SH,0) was 
different for each municipality and was equal to the population of 
people living in this municipality (NH,0). The initial number of suscep-
tible birds (SB,0) was equal to the carrying capacity of birds (KB). The 
values of the initial population of infectious mosquitoes (IM,0) and the 
mosquito-to-human ratio (φH) were estimated after the model calibra-
tion. The calibration of the model was done by minimizing the Root- 
Mean-Square Error (RMSE) between observed and modeled annual 
human cases. Specifically, tests were performed for values of the initial 
population of infectious mosquitoes (IM,0) between 1 and 201 with a step 
of 20 and for values of the logarithm of the mosquito-to-human ratio 
(φH) from − 5 to − 1 with a step of 1. Thus, the appropriate pair of the 
initial population of infectious mosquitoes (IM,0) and the mosquito-to- 
human ratio (φH) values was found; we assumed IM,0 to be a function 
of municipality and year while φH only depends on municipality. The 
weak constraint on φH was imposed to avoid overfitting the model, 
increasing its potential forecasting skill at a next stage. The initial values 
of exposed mosquitoes, birds and humans (ЕМ,0, ЕВ,0, ЕН,0), of infected 
birds and humans (IB,0, IH,0), of recovered birds and humans (RB,0, RH,0), 
as well as the initial values of dead birds and humans (DB,0, DH,0) were 
set to zero. 

2.3. Statistical measures for model verification 

For the purposes of model verification, we define as a “WNV event” 
the case where at least one human infection is recorded at a municipality 
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during a specific year. The validation of the model’s ability to correctly 
identify WNV events spatially and temporally is performed with the aid 
of hits (hereafter a; obs/mod T/T: number of municipalities where WNV 
events were both observed and simulated at a specific year), the false 
alarms (hereafter b; obs/mod F/T: number of municipalities where WNV 
events were simulated at a specific year but they were not observed), the 
misses (hereafter c; obs/mod T/F: number of municipalities where WNV 
events were not simulated at a specific year but they were observed) and 
the correct negatives (hereafter d; obs/mod F/F: number of municipal-
ities where WNV events were not observed nor simulated at a specific 
year). The four indices a, b, c, d allow the computation of the following 
statistical indicators for the WNV events:  

• Hit Rate or Probability of Detection (POD), Range [0, 1], Best score 1 

POD =
a

a + c    

• Miss Rate (MIS), Range [0, 1], Best score 0 

MIS = 1 − H =
c

a + c    

• False-alarm rate (FAR), Range [0, 1], Best score 0 

FAR =
b

a + b    

• Threat Score or Critical Success Index (CSI), Range [0, 1], Best score 
1 

TS = CSI =
a

a + b + c   

Apart from the validation of categorical variables (WNV events), we 
also quantify the model’s ability to replicate, at each municipality, the 
observed number of annual human infections as well as the observed 
week of the first human infection. For those assessments we employ 
qualitative plots (scatterplots, residual plots) as well as quantitative 
measures for the goodness of fit, including the mean bias (MB), the root 
mean squared error (RMSE) and the coefficient of determination (R2). 

3. Results 

The geographical distribution of the reported WNV human cases is 
given in Fig. 1. The 325 municipalities are colored according to the 
number of years in the decade 2010–2019 where at least one human 
case appeared (i.e. number of “WNV events” in the decade). One hun-
dred seventy-three (173) municipalities were WNV free (Fig. 1 in white). 
In the remaining one hundred fifty-two (152) municipalities, WNV 
human cases observed from one up to six years. Specifically, in 62 out of 
152 municipalities (41%) human cases were observed only in one year 
during the decade while in 44 municipalities (29%) human cases were 
found in two years. The municipalities where WNV incidences appeared 
in three or four years of the decade represent the 26% of the infected 
areas (40 out of 152). Last, at 4% of the infected municipalities (6 out of 
152), WNV cases were reported in five or six years of the decade. 

Following the development of the necessary spatial input databases, 
optimal values for two parameters of MIMESIS were estimated. The 
initial population of infectious mosquitoes (IM,0) has spatial and tem-
poral (annual) dependence while the mosquito-to-human ratio (φН) 
exhibits only geographical dependence. This design also allows the po-
tential use of MIMESIS in forecast fashion, provided we can only infer 
IM,0 through an independent procedure. 

In section 3.1 we present the model evaluation. Case studies are 

Fig. 1. Geographical distribution of the number of years per municipality with at least one reported WNV human case over the decade 2010–2019.  
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demonstrated in section 3.2. In section 3.3, MIMESIS was used in a 
climatic sensitivity study. 

3.1. Model evaluation (2010–2019) 

First, we investigated in 3.1.1 the skill of MIMESIS to correctly 
discriminate WNV events. Then, in 3.1.2 we quantified the MIMESIS 
skill with respect to the annual number of human cases and the timing of 
the 1st human case. 

3.1.1. Occurrence of WNV events 

3.1.1.1. Spatial analysis. We investigated the capability of MIMESIS to 
capture the spatial occurrence of WNV events in the decade 2010–2019. 
The analysis relies on the four indices presented in section 2.3. Out of 
3250 potential WNV events over the decade (325 municipalities times 
10 years), WNV events occurred 319 times (sum of the annual number of 
municipalities where human cases occurred, in the decade). MIMESIS 
identified correctly the 229 cases (hits, index a, section 2.3) and 
generated false alarm at 109 cases (index b, section 2.3). All (2822) 
correct negatives (index d, section 2.3) were excluded from the subse-
quent analysis to avoid deceptively good validation statistics. 

Each index (POD, FAR, MIS, CSI) takes values between 0 and 1. We 
split this range into five equally sized zones with 0.2 extent each and 
calculate the number of municipalities within each zone for every index 
(Table 1). Fig. 2 shows the geographical distribution of the results shown 
in Table 1. The probability of detection exceeds 0.8 in 88 out of the 152 
municipalities. This is a promising result, especially when combined 
with the low probability (<20%) for false alarms or misses at 84 and 89 
municipalities respectively. Using the CSI, we found 62 municipalities 
exceeding 0.8 of CSI, while overall 62.5% (95/152) of the municipalities 
have CSI larger than 0.5. As expected, the CSI was lower than the cor-
responding POD as CSI utilizes not only hits but also incorporates the 
failures due to misses and false alarms. At the other tail of the indices, we 
found 36 municipalities with low POD (and high MIS) rate. An error 
analysis follows in the next paragraphs. 

In Fig. 3a the 152 municipalities which faced WNV events are clus-
tered, according to their area, into ten equal quantiles. The lower 10% of 
the municipalities have area smaller than 6.5km2, the next 10% have 
area between 6.5km2 and 16km2, and the next 10% have area between 
16km2 and 83km2. A similar clustering for the 36 municipalities with 
POD<0.2 shows that 39% (55%) of them occupy areas smaller than 16 
km2 (83 km2), rather than 20% (30%). Therefore, 20 out of the 36 
municipalities with low POD belong to municipalities with area smaller 
than 83km2; the majority (14 of 20) occupy area smaller than 16 km2 

and belonged to densely populated urban units in the area of Athens and 
Thessaloniki, where roughly half population of the country resides. The 
remaining 16, as could be identified from Figs. 1 and 2, belonged to 
municipalities where WNV events occurred only once in the last decade. 

The median POD and CSI, at each of the ten equally sized area zones 
identified in Fig. 3a, is shown in Fig. 3b. The median POD equals one for 
municipalities with area larger than 16 km2. CSI values initially oscil-
late, exceed 0.5 for municipalities with area larger than 83 km2 and 

reach 1 when the area exceeds 413 km2. Those results indicate that the 
lowest downscaling threshold is approximately 83 km2. 

3.1.1.2. Temporal analysis. To complement the spatial analysis, we 
investigated the capability of MIMESIS to capture the temporal occur-
rence of WNV events in the decade 2010–2019. The multi-annual evo-
lution of the indices is shown in Table 2. The spatially aggregated POD 
was 0.72 over the decade. The model correctly identified the location 
and year for the 72% of the observed human cases (and missed 28% of 
them). Annually, POD varied between 0.57 (2014) and 0.89 (2010). The 
aggregated decadal FAR was 0.32, ranging from 0.08 (2019) to 1 
(2015–2016). The FAR index reached particularly high values (0.67–1) 
in the period 2014–2017, when a WNV hiatus occurred. The combined 
effect of hits, misses and false alarms expressed through the CSI index 
showed an average value of 0.54. CSI varied between 0.48 and 0.73 
outside the hiatus period and took low values (0–0.27) during the hiatus. 
Those results imply a relation between the indices and the number of IH 
(or municipalities where human cases occurred), more profound for FAR 
and CSI. Indeed, the R2 in the linear fit between the annual indices and 
the annual number of infected municipalities is 0.76 in the case of CSI 
and 0.83 for FAR, both being significant at the 5% significance level (not 
shown). Detection probability and false alarms improved as WNV spread 
increase. 

3.1.2. Severity and timing of WNV events 

3.1.2.1. Number of infected humans 
3.1.2.1.1. Analysis at the decade. Simulation results for the decade, 

i.e. the scatter plot of the total number of observed and modelled 
infected human cases at each municipality for the period 2010–2019 are 
shown in Fig. 4a. The R2 is 0.88 indicating that MIMESIS accounted for 
88% of the spatial variability in decadal scale. Most of the municipalities 
in the scatter plot are distributed in a narrow band around the main 
diagonal. Indeed, within the ±25% bounds (inner black dotted lines) lie 
66 of the 152 municipalities (correct negatives excluded) while within 
±50% error there are in total 92 municipalities. Between the ±50% and 
± 99% error there are another 21 municipalities. Thirty-six municipal-
ities have 100% error (i.e. IHMOD = 0, corresponding principally to 
urban areas and municipalities facing only one WNV event, as discussed 
in 3.1.1), and last 3 municipalities have fractional error over 100%. The 
number of observed and modelled infected humans per municipality, 
split into six zones according to the observed number of human in-
fections, is shown in Table 3. It is evident that the general underesti-
mation tendency is homogeneous across the bins, supporting the 
hypothesis that there is no structural error in the model. The above 
statements are evident in Fig. 4c-4d, which is the spatial version of 
Fig. 4a and Table 3. The annual disaggregation of Fig. 4b is available in 
the supplementary data (Fig. S1-Fig. S11). 

3.1.2.1.2. Analysis at annual scale. The number of infected humans 
(amplitude of event) is analyzed together with the occurrence of a WNV 
event. Specifically, we excluded the 2822 correct negatives and 
analyzed the error in the remaining 428 cases (hits + misses + false 
alarms). The distribution of 229 hits included a range of modelled 
infected humans between 1 and 26, with most frequent (Table 4) being 
one human case (104 times), two cases (35 times) and three cases (23 
times). Regarding the 109 false alarms, the modelled number of human 
cases was either 1 (104 times) or 2 (5 times). For the 90 misses, the 
observed number of human cases was principally 1 (72 times), followed 
by 2 (11 times), 3 (4 times), 5 (2 times) and 7 (1 time). Combined all 
together, it was evident that if one human case was simulated, the actual 
probability of occurrence was 50% (104 hits and 104 false alarms). At 
the same time, at 80% of the misses (72 out of 90) the observed number 
of infected humans was one. Therefore, when the modelled number of 
human cases was larger than one, there were no false alarms, i.e. the 
event forecast uncertainty diminished. 

Table 1 
The examined indices POD, FAR, MIS and CSI decomposed into five accuracy 
zones, with the number of municipalities at each band.   

Number of Municipalities  

POD FAR MIS CSI 

[0% … 20%] 36 84 89 38 
(20% … 40%] 4 8 14 18 
(40% … 60%] 11 11 9 22 
(60% … 80%] 13 11 4 12 
(80% … 100%] 88 2 36 62 
SUM 152 116 152 152  
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Fig. 4b shows the bias of each case versus the number of infected 
humans, where hits (open circles) are distinguished from misses (as-
terisks) and false alarms (filled circles). The mean bias (MB) is − 0.7 
(underestimation) and the standard deviation (SD) of the residuals is 
2.7. Within the limits [MB-2SD, MB + 2SD] lied 96% of the data, sup-
porting the hypothesis the residuals were normally distributed. 

The multiannual variability of the total number of predicted and 

observed human cases at each year is presented in Fig. 4e. During the 
decade 2010–2019, four extreme years occurred; 2015 and 2016 
without any WNV human case and, 2010 and 2018 with a regional 
outbreak. The model simulations followed the year-to-year trend in the 
annual number of human cases. This occurred across the whole range of 
annual human cases, indicating the proper calibration of the model. At 
the same time, the figure shows that MIMESIS has the tendency to 

Fig. 2. Maps of categorical measures/scores split into five accuracy zones: Probability Detection (top left), False alarm Ratio (top right), Miss Rate (bottom left), 
Critical Success Index (bottom right). 

Fig. 3. (a) The cumulative percentage of the municipalities according to their area split into ten equally sized zones (blue), and the percentage of municipalities 
within each zone with POD<0.2 (red) (b) The median POD (blue) and CSI (red) at each equally sized area zone. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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underestimate the high values of infected humans, as already seen in 
Fig. 4b. 

The MB of the annual number of infected humans at each munici-
pality, calculated over the 10 years and normalized with the range of IH 
at each municipality presents a normalized estimate of MB (NMB). A 
similar normalized index can be constructed from RMSE (NRMSE). The 
NMB vs NRMSE plot (soccer diagram) shows that the majority of models 
have normalized mean biases below 30% and mostly below 15% 
(Fig. 4f). 

The main conclusions from the analysis of the simulated number of 
infected humans are:  

- The interannual variability of WNV dynamics at local scale was 
captured. MIMESIS predicted lower number of infected humans 
across all years except during the hiatus period 2014–2017, when 
overestimation occurred.  

- The most difficult situation to model was when there was only one 
human case annually per municipality. Above this threshold, the 
event simulation uncertainty diminishes.  

- MIMESIS was unbiased at low incidences (IH < 5), exhibited small 
underestimation tendency at intermediate cases (5 < IH < 10) and 
larger underestimation at local outbreaks (IH > 10). 

3.1.2.2. Week of 1st incidence. Next, we focus on the timing of the WNV 
incidences. The week of occurrence of the first human case for each 
municipality and year in 2010–2019 is presented in Fig. 5 by means of 
scatter plots between the model simulations and the official data. The 
week of the first incidences varies between 22 and 43 depending on the 
municipality and year. The corresponding modelled from MIMESIS 
range was 18–44. The municipalities are scattered around the diagonal, 
indicating an overall unbiased representation of the environmental and 
entomological parameterizations. Between the ±25% threshold lines we 
found the majority (85% - 91%) of the municipalities, with the rest 
indicating principally the false alarms (points on the y-axis) and the 
misses (points on the x-axis). The spatial version of Fig. 5 is available in 
the supplementary data (Fig. S12-Fig. S21). 

3.2. Case studies 

In this section we provide illustrative examples at selected munici-
palities where MIMESIS performed best and worst. For this purpose, 
municipalities were divided into three categories depending on the 
number of years where at least one human case was observed. Each 
category included the municipalities in which at least one human case 
was observed for 1–2, 3–4 and 5–6 years during the decade. At each 
category, the municipality with the minimum and maximum absolute 
mean bias ∣sum(IHmod) − sum(IHobs)∣ were selected to present the mul-
tiannual performance of the model. 

At 106 municipalities in which at least one human case observed for 
one or two years, there were 32 municipalities where the absolute value 

of the difference during the decade equals zero. Fig. 6a shows one such 
municipality, where the number of modelled infected humans equals the 
observed infected humans in two isolated years, 2011 and 2019. On the 
opposite side, there is one municipality where the absolute value of the 
difference during the decade equals 15. As can be seen in Fig. 6b, the 
model predicted one human case while 16 human cases were observed 
in 2012. MIMESIS correctly identified the event in the right year but 
missed its magnitude. 

At 40 municipalities in which at least one human case was observed 
for three or four years, there were four municipalities where the absolute 
value of the difference equals zero. Fig. 6c shows one of these munici-
palities, where the number of modelled infected humans equals the 
observed infected humans in the three years 2014, 2018 and 2019. In 
contrast, there was one municipality where the absolute value of the 
difference during the decade equals 16. Fig. 6d shows that in this mu-
nicipality there was high year-to-year variability. MIMESIS captures the 
occurrence in the outbreak year (2010) but not its magnitude, the model 
did very well in the other three years (2011, 2012, 2018) and demon-
strated just a few false alarms at other four years. 

Finally, from the six municipalities in which at least one human case 
was observed for five or six years, there were two municipalities where 
the absolute value of the difference during the decade equaled to two. 
One of these was presented in Fig. 6e. The bias was either zero or one in 
the outbreak years 2010 and 2018; however, the model did not capture 
the three cases in 2019. On the other side, there was one municipality in 
which the absolute value of the difference equaled to 26. Specifically, in 
this municipality the model correctly identified the years of occurrences 
and their magnitude, except for the outbreak year 2010 that penalized 
its performance. 

The case studies demonstrated that overall, MIMESIS captures well 
the dynamics and the inter-annual variability of WNV. 

3.3. Meteorological sensitivity 

Following the calibration of the model over the decade 2010–2019, 
we investigate the sensitivity of the model output to the meteorological 
conditions, all other inputs kept at their optimal values. A total of 298 
decadal simulations at each municipality were performed. They corre-
spond to all possible combinations of 1 ◦C perturbations in the monthly 

temperatures of up to three months 
((

12
1

)

+

(
12
2

)

+

(
12
3

))

. To avoid 

spurious results, we filtered out the simulations at municipalities 
without human cases over 2010–2019. At each of the 116 municipal-
ities, we considered the most severe meteorological situation with 
respect to the total number of infected humans. Moreover, we filtered 
out the eighteen units that are climatologically neutral (the increase in 
IH was below 1). The results for the remaining 96 municipalities are 
presented in Table 5, where only 10 (out of the 298) combinations ul-
timately appear. The same table provides median estimates for (a) the 
meteorological impact, evaluated with the increase in the total number 
of human cases and (b) the local skill, evaluated with the CSI in the 
historical simulations. The main conclusions are: 

• Single month effect (23 municipalities): at 22 of the total 96 munici-
palities (23%), the annual number of infected humans was found 
sensitive to the temperature anomaly in May, resulting in a median 
increase of 33% in the total number of cases. The corresponding 
municipalities had a median CSI of 1. 

• Bi-month effects (20 municipalities): at 19 of the total 96 municipal-
ities (20%), the annual number of infected humans was found sen-
sitive to the temperature anomaly in April-May (7%) and May-June 
(13%), resulting in a median increase in the total number of cases of 
25% and 39% respectively. In both cases, the corresponding mu-
nicipalities had a median CSI of 1. 

• Tri-month effects (53 municipalities): at 49 of the total 96 munici-
palities (51%), the annual number of infected humans was found 

Table 2 
Temporal evolution of the annual score in the examined indices POD, FAR, MIS 
and CSI.  

Year Infected municipalities 
∑

IHOBS POD FAR MIS CSI 

2010 38 (12%) 262 0.89 0.26 0.11 0.68 
2011 46 (14%) 100 0.63 0.09 0.37 0.59 
2012 42 (13%) 157 0.60 0.32 0.40 0.46 
2013 35 (11%) 85 0.74 0.42 0.26 0.48 
2014 7 (2%) 15 0.57 0.67 0.43 0.27 
2015 0 0 – 1 – 0 
2016 0 0 – 1 – 0 
2017 10 (3%) 48 0.7 0.72 0.30 0.25 
2018 85 (26%) 306 0.71 0.10 0.29 0.65 
2019 56 (17%) 223 0.79 0.08 0.21 0.73 
2010–19 319 (10%) 1196 0.72 0.32 0.28 0.54  
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Fig. 4. (a) Observed versus predicted infected human cases at each municipality for the whole decade. The inner line (black) is the main diagonal and the outer lines 
represent the ±25% (dotted black) and ± 50% (dotted red) bounds around the main diagonal (top left) (b) The residuals (modelled minus observed) versus the 
observed number of infected humans. The area between the dotted black lines represent the zone [μ-2σ, μ + 2σ]. The binned error is presented with the red line (top 
right) (c,d) Maps of observed (left) and simulated (right) infected human cases at each municipality for the whole decade (middle row) (e) Temporal evolution of the 
observed (blue) and predicted (red) annual human cases (bottom left) (f) Soccer diagram for the error (MB, RMSE) at each municipality normalized with the 
corresponding range of infected humans (bottom right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Table 3 
The number of observed and modelled infected humans per municipality 
over the decade decomposed into six zones, with the number of mu-
nicipalities at each band.  

IH OBS MOD 

1–3 71 56 
4–10 47 35 
11–20 21 15 
21–30 6 5 
31–40 4 3 
>40 3 2 
SUM 152 116  

Table 4 
The number of hits, misses and false alarms with respect to the number of 
infected humans.  

IHobs a b c a + b + c 

1 104 104 72 280 
2 35 5 11 51 
3 23 – 4 27 
≥4 67 – 3 70 
SUM 229 109 90 428  
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Fig. 5. Scatter plots of modelled versus observed timing (week) of the 1st human case at each municipality and year. The horizontal axis shows the observed data and 
the vertical axis presents the modelled data. The red line represents the main diagonal and the other two lines represent the ±25% bounds around the main diagonal. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Demonstration of extreme, with respect to RMSE observed and modelled human cases in municipalities where at least one human case was observed for (a) 
1–2 years (top), (b) 3–4 years (middle) and (c) 5–6 years (bottom). Best cases (minimum RMSE) in left column, worst cases (maximum RMSE) in right column. 
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sensitive to the temperature anomaly in April-May-June (20%) and 
May-June-July (31%), resulting in a median increase in the total 
number of cases of 33% and 61% respectively. The corresponding 
municipalities had a median CSI of 0.8 and 0.75 accordingly. 

Common ground at all critical combinations was the month of May, 
participating either solely or in duet and triplet combination with its 
neighbor months (4–5, 5–6, 4–5-6, 5–6-7). The median increase in the 
total infections arising from the 1 ◦C temperature perturbations gener-
ally depended on the participating months but in any case, it exceeded 
33%. The median CSI at the most critical combination groups was al-
ways larger than 0.75, enhancing the validity of the sensitivity outcome. 
The importance of the spring temperatures, which shape many mosquito 
parameters such as breeding and incubation periods, were also found 
important in other studies (e.g. [62]). 

4. Discussion 

The aim of this study was to downscale a climate-dependent spatial 
epidemiological model from the regional level to the municipality level. 
Purpose of this adaptation was the development of a WNV transmission 
model for predicting the risk of transmission of WNV to humans 
considering the climate-sensitivity of pathogen and its vector. In addi-
tion, we validated the model using retrospective data. The model 
(MIMESIS) was applied for the years 2010–2019 in all municipalities of 
Greece. MIMESIS describes the transmission cycle of the virus between 
birds, mosquitoes and humans. Model parameters either had constant 
values, or their values varied with the municipality, the year, the tem-
perature, the precipitation, the daytime length and the Julian day. Two 
important parameters, the mosquito-human ratio (φН) and the initial 
population of infected mosquitoes (IM,0), were optimized during the 
calibration of the model with the available data. IM,0 characterizes the 
overwintering of the WNV and we assumed it varied spatially and 
annually; φН had only spatial dependence. 

MIMESIS successfully discriminated the WNV events at the local 
(municipal) scale. The probability of detection was 0.72, exceeding 0.80 
at 60% of the municipalities, while the false alarm ratio was 0.32, being 
below 0.20 at over 70% of the municipalities. Similarly, the critical 
success index and the number of misses were high and low respectively. 
The critical success index exhibits significant improvement as the 
number of infected humans and/or the area of the municipality in-
creases. Moreover, the model showed close agreement between 
observed and predicted number of infected humans at each municipality 
for the period 2010–2019. The model was unbiased at low incidences 
(IH < 5), exhibited small underestimation tendency at intermediate 
cases (5 < IH < 10) and larger underestimation at local outbreaks (IH >
10). The modelled week of emergence of the first human case was 
scattered around the actual week the incidence appeared, although the 
distributions were similar. The lack of bias denotes the correct 

parameterization curves for the various climate-dependent parameters, 
such as the mosquito mortality, but at the same time the scatter plot 
indicates a missing mechanism (e.g. climate-dependent parameteriza-
tion of transmission probabilities). The interannual variability of WNV 
dynamics at local scale was well captured. The MIMESIS predicted lower 
number of infected humans across all years except during the hiatus 
period 2014–2017, when overestimation occurred. 

MIMESIS replicated well the WNV dynamics at 76% of the munici-
palities where human cases occurred. At the remaining 24% of the 
municipalities, WNV infections in humans occurred but the model did 
not predict any. Roughly half of them were limited in densely populated 
urban areas around the capital city; the other half corresponds to rural or 
semi-urban municipalities with only one WNV incidence throughout the 
decade. 

To further demonstrate the potential uses of the model, it was also 
applied in a meteorological sensitivity study, where 1 ◦C perturbations 
were introduced to the monthly temperature datasets. Out of the total 
298 combinations with temperature variability in one, two or three 
months, only 10 were critical and the month of May was present in all, 
pointing the major importance of late spring temperatures in the WNV 
dynamics. 

Our results indicate that the downscaling of a climate-dependent 
epidemiological model at below NUTS3 spatial scale is doable and one 
can obtain useful insights. MIMESIS demonstrated skill in the repre-
sentation of the spatial pattern of WNV emergence, the number of 
human cases and their timing. The threshold of the downscaling 
approach was delimited to roughly 80 km2. Below this limit, corre-
sponding in our case to densely populated urban sites, the dynamics was 
beyond the model predictability and the mathematical framework re-
quires additional inputs. Limiting elements in our modelling approach 
include the assimilation of the rare field entomological data, the issue of 
population immunity giving rise to 4-year cycles, and of course any sub- 
grid (i.e. local-scale) process (e.g. stochastic representation of the WNV 
cycle considering the number of mosquito breeding sites and bird hab-
itats). Moreover, we did not consider in our study the existence, extent 
and efficiency of possible control strategies to combat larvae and 
mosquitoes. The next steps include the assimilation of field entomo-
logical data, the investigation of the model skill as an early warning tool 
and the development of a seamless prediction system with meso-scale 
dynamical models (such as MIMESIS) and local-scale data-driven 
models. 

To the best of our knowledge, this is the first approach to model WNV 
at this scale over a country and decade. 

Climate variability and change affect the spread of vector-borne 
diseases and the study of the changing transmission dynamics is 
imperative in efforts to understand them, to forecast outbreaks, to map 
risks and inform public health authorities. The One Health concept 
shows and reminds us that human health is linked to animal, environ-
mental and ecosystem health. Therefore, the incorporation of climate 
and further environmental factors in epidemiological modelling is of 
major relevance in understanding the transmission of zoonotic diseases 
such as WNV and in developing appropriate control strategies. The 
approach can be gradually expanded to incorporate non-environmental 
factors such as human and animal population movements and change to 
allow for better prediction of disease risk. Associated data obtained 
using modern technologies such as earth observation can be used to 
complement the information derived from classic surveillance of 
humans, vectors and animals involved in the transmission cycle of 
vector-borne infectious diseases. Use of new data sources and adaptation 
of the model allow for the investigation of prevention and response 
strategies in space and time. The framework of which first elements were 
presented here has the flexibility and the potential to become a useful 
tool for early warning and forecasting of vector-borne infectious dis-
eases and contribute to public health decision making. 

Table 5 
The months whose climatological conditions impact most the severity of the 
WNV cases, together with the corresponding frequency (number of municipal-
ities), median change in the number of infected humans and median CSI for the 
group.  

# Combination (months) Frequency δIH-50 (%) CSI-50 

1 5   22 33 1 
2 6   1 50 0 
3 4 5  7 25 1 
4 5 6  12 39 1 
5 6 7  1 50 1 
6 4 5 6 19 33 0.8 
7 4 5 8 1 25 0.25 
8 5 6 7 30 61 0.75 
9 5 6 8 2 71 0.7 
10 6 7 8 1 100 1  
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5. Conclusion 

Epidemiological models of mosquito borne diseases such as WNV 
coupled with climatic factors can be used in improving the forecast 
capability of the qualitative and quantitative occurrence of infections in 
time and space. The MIMESIS modelling approach presented here 
demonstrates that reasonable forecasting potential exist at local scales. 
Moreover, the model provides an estimate of the time window where 
cases may occur showing the relevance of seasonal effects of climatic 
factors such as temperature. The model is a precursor of a broader 
modelling approach that aspires to capture more human, animal, and 
environmental aspects to understand the dynamics and control of 
vector-borne diseases. 
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Appendix A 

The ordinary differential equations (ODES) for mosquitoes, birds and humans are:   

dLM

dt
= (bL(T)δMNM − mL(T)LM )

(

1 −
LM

KM

)

− bM(T)LM  

dSM

dt
= − λBM(T)SM + bM(T)LM − mM(T)SM  

dEM

dt
= λBM(T)SM − γM(T)EM − mM(T)EM  

dIM
dt

= γM(T)EM − mM(T)IM  

dSB

dt
=

(

bB − (bB − mB)
NB

KB

)

NB − λMB(T)SB − mBSB  

dEB

dt
= λMB(T)SB − γBEB − mBEB  

dIB
dt

= γBEB − αBIB − mBIB  

dRB

dt
= (1 − νB)αBIB − mBRB  

dDB

dt
= νBαBIB  

dSH

dt
= rHNH − λMH(T)SH  

dEH

dt
= λMH(T)SH − γHEH  

dIH
dt

= γHEH − αHIH  

dRH

dt
= (1 − νH)αHIH  

dDB

dt
= νHαHIH  

where λBM(T) = δMk(T)pB
IB
KB

, λMB(T) = δMk(T)pMφB
IM
KM

, λMH(T) = δMk(T)pMφH
IM
KM

. 

Appendix B  

Parameter Value Interpretation Reference 

bL bL(T) =
0.7988

1 + 1.231*e− 0.187(T− 20) Birth rate, larvae [55] 

mL mL(T) = 0.0025 * T2 − 0.094 * T + 1.0257 Mortality rate, larvae [55] 

bM bM(T) =
bL(T)

10  Birth rate, mosquitoes [55] 

mM mM(T) =
mL(T)

10  Mortality rate, mosquitoes [55] 

γМ 
γM(T) = 0.0093 * T − 0.1352, T > 15o C 
γM(T) = 0,T ≤ 15o C Rate with 1/γM extrinsic-incubation period [55] 

δМ δM(D) = 1 −
1

1 + 1775.7*e1.559(D− 18.177) Fraction mosquitoes non- diapausing [55] 

k k(T) =
0.344

1 + 1.231*e0.184(T− 20) Mosquito biting rate [55] 

bB 
bB(d) =

(
d
β

)α− 1
*e

−
d
β

βΓ(α)
Birth rate, birds [55] 

pM 0.90 WN transmission probability (mosquito to bird) [42] 
mB 0.00034 Mortality rate, birds [54] 
pB 0.125 WN transmission probability (bird to mosquito) [42,54] 

(continued on next page) 
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(continued ) 

αB 0.4 Removal rate, birds [54] 
γB 1.0 Rate with 1/γB intrinsic incubation period [54] 
νВ 0.7 Fraction birds dying due to infection [54] 
φВ 30 Mosquito to bird ratio [54] 
bH 0.000033 Birth rate, humans [57] 
mH 0.000034 Mortality rate, humans [57] 
rH rH = bH − mH Reproduction rate, humans [57] 
αH 0.5 Removal rate, humans [54] 
γН 0.25 Transition rate from exposed to infected, humans [54] 
vH 0.004 Fraction humans dying due to infection [54] 
φН φН (municipality) Mosquito to human ratio After calibration 
ІМ,0 ІМ,0 (municipality, year) Infectious mosquitoes After calibration 

NМ,min NМ,min (municipality) Susceptible mosquitoes [54] 
[57] 

ΚВ ΚВ (municipality) Carrying capacity, birds [58] 
KM ΚM(municipality,RCUM) = ΚВ (municipality) * φВ * (0.75 + 0.25 * RCUM) Carrying capacity, mosquitoes [56] 
NН,0 NН,0 (municipality) Susceptible humans [57] 

Parameter definition of the WNV model. In the formulas, T is the air temperature, D is daytime length in hours, d is the Julian day of the year, Γ is the Gamma 
distribution with α = 86.4 and β = 1.4 and RCUM is the accumulated precipitation over the previous two weeks, normalized in [0,1] by dividing with the maximum 
value reached throughout the year. The subscript 0 denotes initial condition. 

Appendix C  

Abbreviation Description 

WNV West Nile Virus 
WNF West Nile Fever 
WNND West Nile neuro-invasive disease 
MIMESIS spatial dynaMIcal Model for wESt nIle viruS 
HCDCP Hellenic Center for Disease Control and Prevention 
EBBA European Breeding Birds Atlas 
EBCC European Bird Census Board 
ECMWF European Centre for Medium Weather Forecast 
LM Larvae Mosquitoes 
SM Susceptible Mosquitoes 
EM Exposed Mosquitoes 
IM Infectious Mosquitoes 
SB Susceptible Birds 
EB Exposed Birds 
IB Infectious Birds 
RB Recovered Birds 
DB Dead Birds 
SH Susceptible Humans 
EH Exposed Humans 
IH Infectious Humans 
RH Recovered Humans 
DH Dead Humans 
RMSE Root-Sean-Square Error 
POD Probability of Detection 
MIS Miss Rate 
FAR False-alarm rate 
CSI Critical Success Index 
MB Mean Bias 
IH Infected Humans (annual aggregation at each municipality) 
IHMOD Modelled IH 
IHOBS Observed IH 
SD Standard Deviation 
NMB Normalized Mean Bias 
NRMSE Normalized Root-Sean-Square Error  

Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.onehlt.2021.100330. 
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