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Background: N7-methylguanosine (m7G) is an emerging research hotspot in

the field of RNA methylation, and its role in tumor regulation is becoming

increasingly recognized. However, its role in colorectal cancer (CRC) remains

unclear. Hence, our study explored the role of m7G in CRC.

Methods: The mRNA expression data and the corresponding clinical

information of the patients with CRC were obtained from The Cancer

Genome Atlas (TCGA). A m7G-related gene pair signature was established

using the Cox and LASSO regression analyses. A series of in silico analyses

based on the signature included analysis of prognosis, correlation analysis,

immune-related analysis, and estimation of tumor mutational burden (TMB),

microsatellite instability (MSI), and response to immunotherapy. A nomogram

prediction model was then constructed.

Results: In total, 2156 m7G-related gene pairs were screened based on

152 m7G-related genes. Then, a prognostic signature of seven gene pairs

was constructed, and the patients were stratified into high- or low-risk

groups. Better overall survival (OS), left-sided tumor, early stage, immune

activity, and low proportion of MSI-low and MSI-high were all associated

with a low risk score. High-risk patients had a higher TMB, and patients with

a high TMB had a poor OS. Furthermore, the risk score was linked to immune

checkpoint expression (including PD-L1), the tumor immune dysfunction and

exclusion (TIDE) score, and chemotherapy sensitivity. We also created an

accurate nomogram to increase the clinical applicability of the risk score.

Conclusion: We identified an m7G pair-based prognostic signature associated

with prognosis, immune landscape, immunotherapy, and chemotherapy in

CRC. These findings could help us to better understand the role of m7G in

CRC, as well as pave the path for novel methods to assess prognosis and design

more effective individualized therapeutic strategies.
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Introduction

Colorectal cancer (CRC) is the third most common tumor

and the second leading cause of cancer-related deaths worldwide,

with an estimated 1.8 million new cases and approximately

915,880 deaths worldwide in 2020 (Sung et al., 2021). With

increasing incidence and high mortality rates, CRC has become a

serious threat to human health (Siegel et al., 2021). Although

colonoscopy has provided a better screening method for

diagnosing early CRC, many people cannot accept this kind of

examination because of its price, psychological pressure, and

related risks (Kanth and Inadomi, 2021). Most patients were

diagnosed in the middle and late stages of the disease. Currently,

CRC can be treated with surgery, chemotherapy, radiotherapy,

and biotherapy. However, nearly 40% of CRC patients eventually

experience tumor relapse or late metastasis, with less than 15% of

patients surviving for more than 5 years (Basak et al., 2020).

Consequently, it is important to identify new biomarkers that

effectively determine the prognosis of CRC.

RNA methylation has been reported to be associated with

various physiological processes and diseases, and abnormal

methylation can lead to disease and cancer (Zhang et al.,

2021a; Song et al., 2021). To date, more than 170 distinct

RNA modifications have been identified (Frye et al., 2018).

RNA modification plays an important role in regulating gene

expression (Frye et al., 2018). Among these, RNA methylations

such as N1-methyladenosine (m1A), N6-methyladenosine

(m6A), 5-methylcytosine (m5C), and 7-methylguanosine

(m7G) have a variety of biological properties (Shi et al., 2019;

Shi et al., 2020; Zhang et al., 2021b; Wei and He, 2021). m6A is

the most abundant mRNAmodification in eukaryotic cells and is

regulated by effector proteins, writers, readers, and erasers (Shi

et al., 2019). m6A regulators have been reported to play crucial

roles in various biological functions in vivo (He et al., 2019; An

and Duan, 2022). m7G is the most prevalent modification in the

5’ cap of mRNA and is catalyzed by the Trm8/Trm82 complex in

yeast and by the METTL1 andWDR4 complexes in humans

under the action of methyltransferases (Alexandrov et al., 2002;

Luo et al., 2022). m7G can be found not only in mRNA caps but

also in several internal sites of mRNAs, tRNAs, and rRNAs

(Pandolfini et al., 2019; Dai et al., 2021; Ma et al., 2021). Growing

evidence suggests that m7G modification can regulate mRNA

transcription, nuclear processing, tRNA stability, miRNA

biological function, and maturation of 18S rRNA and plays a

vital role in oncogenic mRNA translation and cancer

development (Luo et al., 2022). The m7G regulators have

been shown to be prognostic factors in multiple cancer types.

METTL1 andWDR4 are upregulated in various types of cancers,

which are associated with poor prognosis in patients with cancers

such as esophageal squamous cell carcinoma (Han et al., 2022),

intrahepatic cholangiocarcinoma (Dai et al., 2021), and

nasopharyngeal carcinoma (Chen et al., 2022). Currently,

most studies have only focused on the role of a single m7G

regulator. However, tumorigenesis is determined by multiple

genes, and the prognostic role of multiple m7G regulators has not

yet been elucidated.

With the development of RNA sequencing and the

establishment and improvement of large tumor databases such

as The Cancer Genome Atlas (TCGA), it is possible to

systematically study the role of m7G regulators in CRC.

Therefore, we developed a novel prognostic signature based

on seven m7G-related gene pairs. We systematically and

comprehensively investigated the potential role of the model

in the clinical outcomes and tumor microenvironment (TME) of

CRC. Our results provide additional data on prognostic

biomarkers and therapeutic targets for CRC.

Materials and methods

Data source and preprocessing

We collected the original gene expression profiling data of

571 CRC and 44 adjacent normal tissues and the clinical

characteristics of CRC cohorts from the TCGA database

(https://portal.gdc.cancer.gov/). Patients without prognostic

data were excluded from this study. In addition, data related to

562 patients were obtained from the Gene Expression

Omnibus (ID: GSE29582; http://www.ncbi.nlm. nih.gov/

geo/) databases. The TCGA dataset (training set) was

employed to develop a prognostic signature, and the

GSE39582 dataset (validation set), which contained data on

403 CRC samples, was used to validate the predictive accuracy

of the signature. Additionally, data regarding 152 m7G

regulators were obtained from a previous study (Ming and

Wang, 2022).

Construction of m7G-related gene pairs

Pairwise comparisons of the overlapping m7G-related gene

expression profiles derived from the training and validation sets

were performed. Using the R software, we examined the data

relating to m7G-related gene A and m7G-related gene B in each

CRC sample to determine a score for each pair. The algorithm

presents a scoring system in which the score of the m7G-related

gene pair is 1 if the expression level of the first m7G-related gene

is higher than that of the second m7G-related gene; otherwise, it
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is 0, resulting in the construction of a 0-or-1 matrix. An

m7G-related gene pair was deemed invalid if its proportion

was <20% or >80% of the samples in either the training or

validation sets, respectively (Heinäniemi et al., 2013). Following

the screening, the remaining pairs were used for subsequent

investigations.

Establishment and validation of the
prognostic signature based on m7G-
related gene pairs

To discover the OS-related m7G-related gene pairs, a

univariate Cox regression analysis was conducted based on

the m7G-related gene pairs in the training set. A threshold of

p-value < 0.05 was set to screen the prognostic variables. LASSO

penalized Cox proportional hazards regression was used to

further minimize the risk of over-fitting based on m7G

prognostic gene pairs. Subsequently, multivariate Cox analysis

was used to select the candidate gene pairs required to establish a

prognostic signature. Finally, a signature, termed the risk score,

was constructed using seven m7G-related gene pairs and their

correlative coefficients acquired in the training set. The risk score

for each patient was calculated as follows:

Risk score= (gene pair A coefficient × expression level) +

(gene pair B coefficient × expression level) +. . .+ (gene pair n

coefficient × expression level). Furthermore, according to the

above formula, the risk scores of patients with CRC were

calculated separately, and the patients were stratified into

low- and high-risk groups based on the median risk score.

Kaplan–Meier survival curves were plotted to estimate the OS

differences between the two subgroups. A time-dependent

ROC (ROC) curve was plotted to assess the accuracy of the

signature.

The external cohort GSE39582 was used to verify the

m7G-related prognostic model. The risk score for each

patient was calculated using the same coefficients and

normalized expression microarray data for the m7G pairs.

The patients were stratified into low- and high-risk groups

based on the median risk score of the training set. Kaplan-

Meier and tdROC curves were plotted to evaluate the

prognostic value of the risk model.

The prognostic value of the risk score

The associations between the risk score and

clinicopathological traits (age, sex, tumor site, stage, and

tumor status) were compared. Univariate and multivariate

analyses were performed to evaluate whether the risk scores

were independent of the other clinical variables. Moreover, we

conducted a stratified analysis to determine whether the risk

score preserved its predictive capacity in the different subgroups.

Establishment and validation of a
nomogram scoring system

Based on the independent indicators, the R software

“regplot” package was used to develop a nomogram for OS

prediction at three and 5 years. Then, tdROC analysis for 3-

and 5-year OS was performed to evaluate the prognostic

accuracy, and the calibration curves were drawn to compare

nomogram-predicted probability with actual survival.

Immune-related analysis of colorectal
cancer patients using the prognostic
signature

The fraction of immune cells in the two risk subgroups was

assessed using the CIBERSORT algorithm. Differences between

the low- and high-risk groups were detected using the Wilcoxon

rank-sum test. We also used boxplots to evaluate the differences

in the levels of expression of immunological checkpoints between

the low- and high-score groups, which were retrieved from the

literature. Moreover, we calculated the tumor immune

dysfunction and exclusion (TIDE) score to predict the

response to immunotherapy in CRC patients (Jiang et al., 2018).

Tumor mutation burden and
microsatellite instability analyses

The “maftools” R package was employed to reveal the

mutation frequency in patients with CRC belonging to

different risk subgroups. Subsequently, we analyzed the

relationship between TMB and the risk scores. Using the

Kaplan–Meier method, the OS rates derived from data

pertaining to the CRC samples from the low- and high-TMB

groups were compared. Next, we evaluated the synergistic effect

of TMB and risk score on prognostic stratification. In addition,

the association between the risk scores and MSI was explored.

Potential drugs for patients with
colorectal cancer

We explored the sensitivity of chemotherapy based on the gene

expression levels using the “pRRophetic” R package (Geeleher et al.,

2014). The chemotherapeutic response was assessed based on the

half-maximal inhibitory concentration (IC50) of each sample.

Functional enrichment analysis

The differentially expressed genes (DEGs) were

screened using the “limma” package in the R software by
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setting criteria with |log2 (fold change, FC) |> 1 and

adjusted p-value < 0.05. Subsequently, the “Clusterfiler” R

package was employed to perform the Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways.

Statistical analysis

All analyses in this study were performed using the R

software (version 4.0.3). Statistical significance was set at

p < 0.05 unless otherwise stated.

FIGURE 1
Construction and validation of the prognostic model based on m7G-related gene pairs. (A) Plot indicating the optimal λ selection by 10 cross-
validated partial likelihood deviance of the LASSO-Cox regression. 10-fold cross-validated partial likelihood deviance was plotted against log(λ). (B)
Plot of estimated coefficients from the LASSO-Cox regression against log(λ). Finally, 22 non-zero m7G pairs were selected. (C) Constructing a
stepwise Cox proportional hazards model. (D,E) The distribution of each patient’s risk score ordered from low to high in training and validation
sets. Patients are divided into two risk score level groups. Scatter diagram of the OS-time against the patients’ rank of risk score in training and testing
sets. (F,G)Overall survival curves of different risk subgroups in the training and validation sets. (H,I) AUC curves to predict the sensitivity and specificity
of 3- and 5-year survival according to the risk score in training and validation sets.

Frontiers in Genetics frontiersin.org04

Li and Wang 10.3389/fgene.2022.981392

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981392


Results

Establishment and validation of the
prognostic signature based on m7G-
related gene pairs

The m7G-related genes in the TCGA and GEO datasets

were merged into an overlapping gene set, from which

135 m7G-related genes were shared in both sets. Pairwise

comparisons were conducted using the algorithm described in

the “Methods” section to calculate the risk score for each

m7G-related gene pair for subsequent analysis. As a result,

2,156 m7G-related gene pairs were identified. We conducted a

univariate Cox regression analysis on these pairs and selected

30 meaningful m7G pairs to generate the models

(Supplementary Figure S1). Next, LASSO Cox regression

analysis yielded 22 m7G pairs (Figures 1A,B), which were

subsequently used to perform multivariate Cox regression

analysis. Based on the Akaike information criterion value,

we obtained seven m7G pairs to construct risk models,

including the NCBP2.CCNB1, DXO. RPS6KB1, YTHDF2.

XPO1, PIK3CA.NUDT7, MYC. EIF2S3, NUDT4. ATF5,

and PML. IFIT5 gene pairs (Figure 1C). The correlation

coefficients are listed in Table 1. A risk score in the

training set was assigned to each patient based on the

expression levels of the seven m7G pairs multiplied by the

regression coefficients obtained from multivariate Cox

regression analysis.

Risk score= (0.873933 × NCBP2.CCNB1 exp) + (0.974044 ×

DXO. RPS6KB1 exp) + (−1.08373 × YTHDF2. XPO1 exp) +

(0.712567 × PIK3CA.NUDT7 exp) + (−0.60472 × MYC.

EIF2S3 exp) + (−1.14792 × NUDT4. ATF5 exp) +

(0.632646 × PML. IFIT5 exp).

We calculated the risk scores of each sample in the

training set and classified the patients into two subgroups

(low- and high-risk). In both the training and validation sets,

the risk distribution plot demonstrated that survival times

increased with the risk score (Figures 1D,E). The Kaplan-

Meier curve indicated that low-risk patients had a more

favorable survival time than high-risk patients in both the

training and validation sets (Figures 1F,G). The AUC values

for three and 5 years in the training set were 0.782 and 0.774,

and the AUC values for three and 5 years in the validation set

were 0.736 and 0.734 (Figures 1H,I).

Clinical correlation analysis and
stratification analysis of the risk score

The relationship between risk score and clinicopathological

factors was explored. We found that patients with right-sided

CRC and advanced stage (stage III-IV) were associated with

high-risk scores, whereas sex and tumor status showed no

correlation with risk scores (Figures 2A,B). Further survival

analysis revealed that the risk scores could accurately predict

the prognosis of patients with all the stratified clinicopathological

variants (all p < 0.05, Figures 2C–L). Furthermore, we

incorporated the risk scores into the corresponding clinical

characteristics. Our results from univariate and multivariable

Cox regression analyses showed a strong correlation between the

risk scores and the prognosis in patients with CRC

(Figures 2M,N).

Generation and validation of a nomogram
scoring system

To generate personalized predictions for patients with CRC,

we integrated the m7G score and clinicopathological parameters

(age, tumor site, and stage) to establish a nomogram scoring

system (Figure 3A). The predictive accuracy of the nomogram

was assessed using receiver operating characteristics and

calibration curves. Figure 3B shows that the 3- and 5-year

AUC values of the nomogram were 0.845 and 0.831,

respectively. The AUC values of the nomogram at years 3 and

5 were all greater than the AUC values for the TNM stage

(Figures 3C,D). Lastly, results from the calibration curve

analyses showed that the calibration curve of prognostication

was close to the standard curve at the 3- and 5-year follow-ups,

which again confirmed the inference above (Figure 3E).

TABLE 1 Multivariate Cox regression analysis of 11 m7G pairs associated with overall survival in patients with CRC.

id Coef HR HR.95L HR.95H p-value

NCBP2.CCNB1 0.873933 2.396317 1.543864 3.719457 <0.001
DXO.RPS6KB1 0.974044 2.648634 1.439655 4.872875 0.001

YTHDF2.XPO1 −1.08373 0.338332 0.217453 0.526404 <0.001
PIK3CA.NUDT7 0.712567 2.039219 1.322867 3.143484 0.001

MYC.EIF2S3 −0.60472 0.546229 0.358296 0.832738 0.004

NUDT4.ATF5 −1.14792 0.317297 0.162668 0.618914 <0.001
PML.IFIT5 0.632646 1.882586 1.178223 3.008028 0.008
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FIGURE 2
Clinical correlation analysis and stratification analysis of the risk score. (A,B) The relationship between the risk score and tumor site and TNM
stage. (C–L) The Kaplan-Meier survival curves were stratified by different clinicopathological variants, including age, sex, tumor site, TNM stage, and
tumor status. (M) The clinicopathological traits and risk score were analyzed by univariate Cox regressionwith theOS. (N)Multivariate Cox regression
analysis revealing clinicopathological traits and risk scores related to OS.
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FIGURE 3
Generation and validation of a nomogram scoring system. (A) A nomogram for both clinicopathological traits and risk score to predict 3-year
and 5-year OS. (B) The 3- and 5-year AUC values to evaluate the performance of the nomogram. (C,D) Comparison of the AUCs of the nomogram
and TNM staging system at 3 and 5 years. (E) Calibration curve of the nomogram for predicting 3- and 5-year OS.
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Evaluation of tumor microenvironment
and immunotherapy response

Based on the CIBERSORT algorithm, we noticed a decreased

number of activated CD8 + T cells, M1 macrophages, and dendritic

cells, as well as resting dendritic cells, and an increased number of

M2 macrophages in the high-risk subgroup (Figure 4A). The

expression levels of immune checkpoint-related genes in the low-

and high-risk subgroups were investigated.We observed that PD-L1

(CD274), CD160, CD276, NRP1, HHLA2, ADORA2A, and

VTCN1 levels were increased in the high-risk subgroup

(Figure 4B). Moreover, the TIDE algorithm was employed to

predict the patient’s response to immunotherapy. As illustrated

in Figure 4C, higher TIDE scores were observed in the high-risk

group than in the low-risk group, indicating that the patients were

more prone to immune escape (Figure 4C). Taken together, the risk

score may serve as a potential biomarker for predicting the response

of patients with CRC to immunotherapy.

Relationship between risk score and
tumor mutational burden and
microsatellite instability in colorectal
cancer

As illustrated in the waterfall charts, the mutated genes in the

different risk groups were mainly APC, PIK3CA, SYNE1, KRAS,

TTN, TP53, and MUC16, but the mutation rates of these genes

were different in the high- and low-risk subgroups (Figures

5A,B). TMB was higher in the high-risk subgroup (p = 0.004;

Figure 5C), indicating that high-risk patients benefited more

from immunotherapy. The Kaplan-Meier survival curve showed

that the OS rate was higher in the low TMB group (p = 0.019;

Figure 5D). A combined analysis of TMB and risk score

demonstrated that the risk score was a prognostic factor

independent of TMB (p < 0.001; Figure 5E). Moreover, higher

proportions of MSI-H and MSI-L were observed in the high-risk

group than in the low-risk group (Figure 5F).

FIGURE 4
Evaluation of TME and immunotherapy response in different subgroups. (A) Comparison of 22 immune cells between low- and high-risk
groups. Median values and IQR for each cell subset were calculated for each patient group and compared between the two groups using the
Wilcoxon rank sum test. (B) Expression of common immune checkpoints in high- and low-risk groups. (C) The difference of stromal score, immune
score, and ESTIMATE score between high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org08

Li and Wang 10.3389/fgene.2022.981392

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981392


Exploration of chemotherapy sensitivity

To select potential drugs for patients with CRC, we

investigated the correlation between risk scores and drug

sensitivity using the “pRRophetic” R package. The IC50 values

of doxorubicin, imatinib, JNK Inhibitor VIII, nilotinib,

pazopanib, and thapsigargin in the high-risk subgroup were

lower, whereas sorafenib and metformin had lower

IC50 values in the low-risk subgroup (Figures 6A–H). Taken

together, the patients with CRC and high risk scores were more

sensitive to doxorubicin, imatinib, JNK inhibitor VIII, nilotinib,

pazopanib, and thapsigargin than low risk patients. In contrast,

the patients with CRC and low risk scores were more sensitive to

sorafenib and metformin.

GO and KEGG pathway analysis

We performed functional enrichment analyses to investigate

the latent biological processes that affect risk scores. Based on the

criteria of FC > 1.5 and adjusted p-value < 0.05, we screened

262 DEGs in the different risk groups. GO terms indicated

enrichment in the collagen-containing extracellular matrix,

extracellular matrix structural constituents, and external

encapsulating structure organization (Figure 6I). Furthermore,

the results of the KEGG pathway analysis, as shown in Figure 6J,

suggest that these DEGs were enriched in ECM-receptor

interactions, protein digestion, absorption, complement and

coagulation cascades, and focal adhesion.

Discussion

CRC is a highly heterogeneous disease, and the difference in

heterogeneity provides a complex landscape for the prognosis of

patients and their response to immunotherapy. The traditional

prognostic evaluation system based on TNM staging has not

been able to meet the requirements of precision medicine.

Exploring the molecular mechanisms underlying CRC

pathogenesis may provide key clues for identifying promising

FIGURE 5
Correlations of risk score with TMB and MSI in CRC. (A,B) The mutation rate and types of top 15 genes in low- and high-risk groups. (C) The
difference in TMB between high- and low-risk group. (D) Kaplan-Meier curve to show survival of patients in different TMB groups. (E) Kaplan-Meier
survival curves to show the survival of patients in different risk scores and TMB groups. (F) Differences in the proportion of different microsatellite
statuses between two risk groups.
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prognostic biomarkers or developing effective therapeutic

targets. A growing number of studies have established that

post-transcriptional RNA modifications play a significant role

in modulating gene expression, as well as carcinogenesis and

development, among which the most common modifications are

m6a, m5c, m1a, and m7G (Barbieri and Kouzarides, 2020;

Haruehanroengra et al., 2020). Accumulating evidence

suggests that m7G modifications actively participate in

biological and pathological processes by affecting the

metabolism of various RNA molecules. Aberrant m7G levels

facilitate tumorigenesis and its progression by regulating

multiple oncogenes and tumor suppressor genes (Luo et al.,

2022). However, to the best of our knowledge, few studies

have examined the role of m7G regulators and m7G pair-

based signatures in CRC as prognostic biomarkers and

therapeutic targets. Therefore, the construction of an m7G

pair-based signature can not only predict the survival rate of

patients but also provide deeper insights into the m7G-mediated

immune response and chemoresistance, which will provide novel

ideas andmethods for determining the pathogenesis and effective

treatment modalities for CRC.

In the present study, we developed a novel prognostic

signature based on seven m7G gene pairs in patients with

CRC using previously identified m7G-related genes with

FIGURE 6
Chemotherapy sensitivity and functional enrichment analyses. (A–H) Boxplots of the IC50 values of the Imatinib, Doxorubicin, JNK Inhibitor VIII,
Nilotinib, Pazopanib, Thapsigargin, Sorafenib, and Metformin between different risk subgroups. (I) Top enriched gene pathways/functions using GO
terms of biological process, cellular component, and molecular function. (J) KEGG pathway analysis of DEGs between two risk groups. The bigger
bubble represents more genes enriched, and the redder color means more obvious differences.
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either higher or lower expression levels. Several m7G-related

genes have been reported to be associated with CRC and other

cancers. MYC is a master transcription regulator and is one of the

most common oncoproteins associated with increased mortality

(Castell and Larsson, 2015). MYC activates or represses the

transcription of numerous genes involved in cellular processes

(Meyer and Penn, 2008). MYC dysregulation occurs in most

cancers and is often associated with aggressive disease, treatment

resistance, and poor prognosis (Castell and Larsson, 2015).

Schmidt et al. (Schmidt et al., 2019) revealed that the MYC-

GCN2-eIF2α negative feedback loop restricts protein synthesis to
prevent MYC-dependent apoptosis in CRC (Schmidt et al.,

2019). Wu et al. (2021) indicated that MYC could bind to the

promoter of the MNX1-AS1 locus and activate its transcription,

further promoting CRC progression by stabilizing YB1. XPO1 is

a nuclear export protein involved in cancer progression and

therapy. Aladhraei et al. (2019) observed that XPO1 expression

was elevated in CRC and that XPO1 overexpression was

significantly associated with moderately/poorly differentiated

tumors and advanced tumor stages. In vitro experiments

showed that KPT-330, an XPO1 inhibitor, inhibited cancer

growth in a dose- and time-dependent manner. Similarly,

XPO1 inhibition has been shown to enhance therapeutic

response in CRC (Ferreiro-Neira et al., 2016; Inoue et al.,

2021). PIK3CA, the gene encoding the alpha catalytic subunit

of PI3K, is dysregulated in multiple cancers (Voutsadakis, 2021).

It is one of the most frequently mutated oncogenes in CRC. Its

mutations are associated with higher gene mutation rates in other

important cancer-related pathways, such as the Wnt/β-catenin
and tyrosine kinase receptor/K-Ras/BRAF/MAPK pathways

(Voutsadakis, 2021). Additionally, PIK3CA mutations have

been reported to be associated with clinicopathological

characteristics and prognosis (Mei et al., 2016; Jin et al., 2020).

Infiltrating immune cells are the primary cells in tumor tissues

and play vital roles in tumor biology (Hinshaw and Shevde, 2019;

Mao et al., 2021). This study investigated the immune status of

different risk score groups. The infiltration of immune cells, such

as activated CD8+ T cell M1 macrophages, activated dendritic cells

activated, and resting dendritic cells, in the low-risk group was

obviously lower than that of the high-risk subgroup, while the

infiltration level of M2macrophages was increased in the high-risk

score group. CD8+ T cell infiltration levels are usually associated

with favorable clinical outcomes in most solid tumors (van der

Leun et al., 2020). The low-risk group was characterized by

immune-mediated inflammatory activity, whereas the high-risk

group was characterized by immunosuppression. Based on these

findings, the worse survival outcomes in high-risk patients may

have been caused by the decreased levels of antitumor immunity.

Immunotherapy has provided a new perspective on tumor

treatment (Riley et al., 2019; Zhang and Zhang, 2020). We

assessed the response to immunotherapy in the high- and low-

risk groups using the TIDE algorithm (Jiang et al., 2018), and the

results showed that the high-risk group had higher TIDE scores,

suggesting a poorer patient response to immunotherapy.

Furthermore, we also evaluated the expression of immune

checkpoint-related genes and found that PD-L1 (CD274),

CD160, CD276, NRP1, HHLA2, ADORA2A, and

VTCN1 expression increased in the high-risk score group

compared to the low-risk score group, which means that these

patients can benefit from ICIs. TMB is a complementary

independent biomarker that can predict the efficacy of ICIs

(Xiao et al., 2021). In this study, we found that the high-risk

group had higher TMB andworseOS.Moreover, the risk score was

found to be a prognostic factor independent of TMB.MSI has been

used to classify different CRC subtypes (Chen et al., 2018). It is now

well-established that patients withMSI-H tend to bemore sensitive

to ICIs (Lizardo et al., 2020). We found that high-risk scores were

associated with MSI-H status in patients with CRC. Research on

the sensitivity to chemotherapeutic drugs has always been a hot

topic for scientists. We observed that high-risk patients were more

sensitive to doxorubicin, imatinib, nilotinib, pazopanib, and

thapsigargin, whereas low-risk patients were more sensitive to

sorafenib and metformin. Taken together, the m7G pair signature

holds promise for predicting the response to immunotherapy and

targeted therapy, and it also provides new ideas for the selection of

appropriate chemotherapeutic drugs.

Nevertheless, this study has some limitations. First, the

signature was conducted based on public databases, which

may have been influenced by inherent case selection bias.

Second, clinical tissues and CRC cell lines should be employed

to validate the expression levels of signature genes, and further

investigation and experiments are needed to explore the detailed

regulatory effects of m7G-related genes in CRC.

We established a novel m7G pair-based risk signature

based on seven m7G-related pairs in CRC. The risk score is

closely related to the clinical features and prognosis of

patients. The nomogram can serve as a counseling and

clinical decision aid for clinicians. Tumor

microenvironment analysis established a theoretical

framework for future research on the connection between

immunity and m7G-related genes in CRC.
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