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Abstract

The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny
transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host
caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms
that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp) gene, a gene likely captured from
an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion
structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA.
Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we
show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-
associated structural protein rather than as an enzyme.
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Introduction

Viruses and other parasites are known to usurp or alter the

behavior of their hosts for their own benefit. This type of behavior

modification by animal and even plant viruses is widely observed in

arthropod hosts [1,2]. One of the earliest documented examples of

such behavior modification is Wipfelkrankheit or tree-top disease of

caterpillars [3]. A hallmark of this disease is enhanced locomotory

activity (ELA) that causes the diseased caterpillars to migrate to the

upper foliage of the host plant where they die. We now know that the

causative agent of Wipfelkrankheit is a large, double-stranded DNA

virus in the family Baculoviridae. Baculoviruses form a large group of

arthropod-specific pathogens that commonly attack lepidopteran

insects [4]. The baculovirus genome is large, 80 to over 160 kbp, and

generally encodes more than 100 potential genes of which more than

10% appear to be derived from an ancestral host [5]. Baculoviruses

produce two types of progeny during their infection cycle: the

budded virus (BV) and occlusion-derived virus (ODV). BVs are

involved in spread of the virus within an infected host. ODVs on the

other hand are occluded within an occlusion body (OB) that protects

and transmits the ODV from insect-to-insect via oral infection [6,7].

At a late stage of infection, baculovirus-infected lepidopteran

larvae often display ELA [3,8,9] and climb to the top of the host

plant where they die and liquefy after death. It is believed that this

behavior results in the dispersal of progeny OBs over a larger

surface area thus improving the chance of virus transmission to

other hosts. We have previously identified a protein tyrosine

phosphatase (ptp) gene of the baculovirus, Bombyx mori nucleopoly-

hedrovirus (BmNPV) that induces wandering-like ELA in the

silkworm B. mori. This gene was identified by behavioral screening of

silkworms against a library of gene knockout mutants of BmNPV.

Interestingly, the BmNPV ptp gene appears to have been acquired

by an ancestral BmNPV from an ancestral silkworm [8]. Unlike

silkworms that are infected with wild-type BmNPV, silkworms that

are infected with a ptp-deleted BmNPV do not show ELA. The

protein encoded by ptp, PTP, shows dephosphorylation activity with

protein and RNA as substrate [10–13], however, the role that PTP

plays in the induction of ELA is still unknown. Recently, a knockout

mutant of the baculovirus Lymantria dispar nucleopolyhedrovirus

(LdMNPV) has also been shown to exhibit reduced ELA in

comparison to wild-type LdMNPV in the European gypsy moth [9].

Specifically, gypsy moths infected with an ecdysteroid UDP-glucosyl-

transferase (egt) gene deletion mutant of LdMNPV show reduced

climbing behavior. Here we surprisingly show that baculovirus PTP

induces ELA as a structural protein, and not as an enzyme.

Furthermore, we show that baculovirus infection of brain tissues

appears to be important for the induction of ELA.

Results

BmNPV-induced ELA in larval B. mori requires PTP protein
but not PTP-associated phosphatase activity

We previously reported that a ptp gene deletion mutant of

BmNPV (BmPTPD) does not induce ELA in larval B. mori at a late

PLoS Pathogens | www.plospathogens.org 1 April 2012 | Volume 8 | Issue 4 | e1002644



stage of infection [8]. This suggested that baculovirus-induced

ELA involves the dephosphorylation of an unknown protein or

RNA target by baculovirus PTP. To test this hypothesis, we

generated BmPTP-C119S (Figure 1A), a mutant virus that

expressed a PTP that was nearly deficient in phosphatase activity

(Supplementary Figure S1A). This mutagenesis was based on

previous studies showing that mutation of cysteine 119 to serine

(C119S) in the P-loop motif of the closely related PTP of Autographa

californica NPV (AcMNPV) almost completely abolishes phospha-

tase activity [10,12]. To our surprise BmPTP-C119S induced ELA

in 5th instar B. mori in a manner similar to that induced by wild-

type BmNPV (Figure 1B). This indicated that the phosphatase

activity of PTP is not required for the induction of ELA.

In order to determine whether the full-length PTP protein or

RNAs transcribed from the ptp locus is required for the induction

of ELA, we next generated BmPTP-Y9stop and BmPTP-E93stop

(Figure 1A). These BmNPV mutants each carried a ptp gene with a

point mutation in the coding region that generated a premature

stop codon. These mutations likely had little effect on the structure

of the expressed mRNAs, however, the expressed proteins were

only 9 or 93 amino acid residues in length. In a manner similar to

that observed with BmPTPD, BmPTP-Y9stop and BmPTP-

E93stop were both unable to induce ELA in larval B. mori

(Figure 1B). This indicated that the PTP protein itself is required

for the induction of ELA but not mRNAs transcribed from the ptp

gene.

PTP binds ORF 1629, a WASP-like capsid protein
Our mutagenesis experiments indicated that the phosphatase

activity of PTP is not required for the induction of ELA, thus we

next used a yeast two-hybrid (Y2H) screening system to identify

proteins that likely interact with PTP. The Y2H screening

identified 5 clones which potentially interact with PTP

(Figure 2A). Four of the clones (#12h-3, -4, -11, and -16)

contained BmNPV-derived sequences whereas one clone (#2d-2)

contained a B. mori-derived sequence of unknown function. The

protein encoded by clone #12h-3 showed the strongest

interaction with PTP (Figure 2A). This clone contained a nearly

full-length (1572 nts) open reading frame (ORF) corresponding to

ORF1629 of BmNPV (Supplementary Figure S2A). ORF1629

encodes a WASP-like protein that localizes at one end of the

nucleocapsid structure [14,15]. The deduced protein encoded by

the clone #12h-11 corresponded to the C-terminal 347 amino

acid residues (64% of full-length) of ORF1629 and exhibited a

moderately strong interaction with PTP (Supplementary Figure

S2A). Further analysis in yeast revealed that (i) the C-terminal of

ORF1629 is critical for interaction with PTP (Supplementary

Figure S2A), and (ii) the N-terminal 90 amino acid residues of

PTP do not interact with ORF1629. The inability of the N-

terminal of PTP to interact with ORF1629 is consistent with our

locomotion assay results showing that BmPTP-E93stop did not

induce ELA (Figure 1B).

In order to examine whether PTP interacts with ORF1629 in

BmNPV-infected BmN cells, we next generated BmPTPD-wt.

BmPTPD-wt is a derivative of BmPTPD that expresses FLAG-

tagged PTP under an authentic ptp promoter immediately

upstream of the polh gene (Supplementary Figure S3B–C). The

authentic promoter of ptp was identified by 59-RACE analyses

(Supplementary Figure S3A). Immunoprecipitation experiments

with anti-FLAG antibody and cell extracts from cells infected with

BmPTPD-wt clearly showed that PTP interacts strongly with

ORF1629 (Figure 2B), confirming the results of the Y2H

experiments.

PTP is a BV structural component localized in the virion
envelope

Because ORF1629 is a known structural protein, we speculated

that PTP is also a structural protein that is associated with the BV

envelope or capsid. Western blot analysis of BV-derived proteins

that were fractionated into envelope and capsid components

showed that PTP is primarily localized in the BV envelope

(Figure 3A).

In order to examine whether the loss of PTP has any effects on

the structural properties of the BV, we investigated the relative

levels of ORF1629 and GP64 in BVs that were isolated from BmN

cells infected with BmNPV, BmPTPD or BmPTPDR (a repair

virus of BmPTPD) by western blot analysis. GP64 is a major

envelope protein of BV that is essential for cell-to-cell infection

[16]. The amounts of both GP64 and ORF1629 were reduced in

the envelope and capsid, respectively, of BmPTPD BVs, in

comparison to the corresponding BV fractions of BmNPV and

BmPTPDR (Figure 3B). These findings indicated that disruption

of ptp results in the formation of abnormal BVs with potentially

reduced virus infectivity and/or replication.

Loss of PTP leads to reduced progeny production in BmN
cells and silkworm larvae

The role of PTP in the productive infection of BmNPV was

investigated in BmN cells and silkworm larvae at 3 and 4 days

postinfection (d p.i.), respectively. These time points were chosen

because the production of BV and OB of wild-type BmNPV peak

at these times. In BmN cells, BmPTPD produced about 50% fewer

BVs and OBs in comparison to wild-type BmNPV at 3 d p.i.

(Supplementary Figure S4). The reduction in BmPTPD OB

production in BmN cells was consistent with that found in Sf9 cells

infected with a ptp-deleted AcMNPV [17,18]. Similar reductions in

BV and OB production were also observed in BmN cells infected

with BmPTP-Y9stop- and BmPTP-E93stop (Supplementary

Figure S4). In contrast, BmPTP-C119S and BmPTPDR produced

wild-type levels of BV and OB in BmN cells (Supplementary

Figure S4). These results indicated that the expression of full-

Author Summary

Pathogens are known to usurp or alter the behavior of
their hosts for their own benefit. Such behavior modifica-
tion by animal and even plant viruses is widely observed in
insect hosts. One of the earliest documented examples of
such behavior modification is Wipfelkrankheit, a baculo-
virus-induced disease that causes caterpillars to migrate to
the upper foliage of food plants where they die. Two
baculovirus genes, ptp and egt, are involved in the
induction of enhanced locomotory activity (ELA) such as
climbing behavior in baculovirus-infected caterpillars. Here
we dissect the functional role that baculovirus protein
tyrosine phosphatase (PTP), the protein encoded by ptp,
plays in the induction of ELA. We surprisingly found that
PTP functions as a virus-associated structural protein and
not as an enzyme in regard to the induction of ELA. We
show that PTP plays a crucial role in virus infection of brain
tissues, and hypothesize that this infection results in
pathogen control of insect behavior. Since ptp was likely
captured from an ancestral host by horizontal gene
transfer, our findings tell an amazing story of how the
modern baculovirus uses a captured host gene in a
completely different way from how it was likely used in the
ancestral host.
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length PTP is required for the production of wild-type levels of BV

and OB in BmN cells.

We next examined if the dramatic drop in BV and OB

production that was found in BmN cells also occurred in

BmPTPD-infected silkworm larvae. The production of BV and

OB in the hemolymph of BmPTPD-infected larvae was less than

50% of that found in wild-type BmNPV-infected larvae at 4 d p.i.

(Figure 4A–B). In contrast, the production of BV and OB in larvae

infected with BmPTP-C119S or BmPTPDR was similar to that

found in BmNPV-infected larvae (Figure 4A–B). These in vivo

findings were essentially identical to those found in vitro and

suggested again that the PTP protein, but not its enzymatic

activity, is essential for normal BV and ODV production. In

addition, we did not observe significant differences in the median

lethal dose (LD50) of BmNPV, BmPTPD, BmPTPDR, and

BmPTP-C119S in 5th instar B. mori (Supplementary Table S1),

suggesting that the absence of PTP does not alter the virulence of

BmNPV.

In order to investigate why BmPTPD produced fewer progeny,

the expression profiles of a series of known baculovirus early and

late gene products were examined by western blot analysis.

Western blot analysis clearly showed that the expression of both

early (DBP, BRO, and LEF3) and late (V-CHIA) proteins was

delayed in BmPTPD-infected BmN cells (Figure 4C). These results

indicated that loss of PTP caused a delay in the infection cycle, a

delay that presumably led to the production of fewer BVs and

OBs.

In order to examine the effects of ptp deletion in larval B. mori in

greater detail, we measured the expression of viral early/late (gp64)

and very late (polh) class genes in 16 tissues that were isolated from

BmNPV- or BmPTPD-infected larvae. qRT-PCR analyses

showed that, with the exception of a few tissues (i.e., corpora

allata, prothoracic glands, and hemocytes), the relative expression

levels of gp64 and polh were much lower in BmPTPD-infected

larvae than in BmNPV-infected larvae (Figure 5A). The expression

of polh in the brain of BmPTPD-infected larvae at 4 d p.i. showed

the most dramatic (67%) reduction (Figure 5B). These findings

were consistent with the western blot analyses indicating that the

replication cycle of BmPTPD was generally delayed but went

further to show that the reduction in virus replication was most

pronounced in the larval brain.

Discussion

The manipulation of the behavior of caterpillars by baculo-

viruses has been known for over 100 years as Wipfelkrankheit.

Recent developments in molecular biological and genomic tools

have led to the identification of two baculovirus genes, ptp and egt,

that are involved in altering host behavior [8,9]. Interestingly, the

baculovirus appears to have obtained both ptp and egt from an

ancestral host. Hoover et al. [9] hypothesize that the egt gene

product (EGT), a protein that is known to inactivate 20-

hydroxyecdysone, controls the climbing behavior of NPV-infected

gypsy moth larvae by hormonal regulation. On the other hand,

the mechanistic action of how the ptp gene establishes behavioral

control of host larvae remains elusive. In this study, we attempted

to unravel this intriguing mystery by dissecting the functions of

ptp/PTP in BmNPV-infected silkworms. We surprisingly found

that the phosphatase activity of PTP appears not to be required for

the behavioral control. In addition, we found that BmNPV

induces ELA only when ptp mRNA is translated as a full-length

protein, suggesting a non-enzymatic role for PTP. Our analyses

revealed that PTP is a structural component of BV that is required

for the production of mature BVs with full infectivity. We also

found that loss of PTP dramatically reduces virus gene expression

in several host tissues, especially in the brain.

Previous biochemical studies show that baculovirus PTP has the

ability to remove phosphate groups from protein and RNA

substrates [10–13]. In this study we confirmed that BmNPV PTP

is also a functional phosphatase (Supplementary Figure S1A).

Biologically, PTP and baculovirus LEF-4 have been predicted to

play coordinated roles in 59 cap formation of baculovirus late

mRNAs [18]. A double-knockout mutant of ptp and lef-4 of

AcMNPV, however, does not show defects in mRNA cap

formation and replicates normally in cultured cells [18]. Thus,

the overall biological significance of the phosphatase activity of

baculovirus PTP is still unknown. Interestingly, the ptp gene is

conserved in Group I NPVs (e.g., BmNPV) but not in Group II

NPVs (e.g., LdMNPV). Group II NPVs, however, are also able to

induce ELA even though they lack the ability to produce PTP.

This conundrum can be explained by the presence of the egt gene,

a gene that is found in both Group I and II NPVs [4]. PTP and

EGT appear to induce different types of ELA. PTP is involved in

wandering-like ELA that is dramatically enhanced by light and

shows positive phototropism [8], whereas EGT is involved in the

induction of vertical climbing behavior [9]. Thus, the baculovirus-

induced ‘‘wandering’’ and ‘‘climbing’’ behaviors appear to be

regulated by different viral genes but appear to work in concert in

Group I NPVs to improve transmission of the virus. In addition,

Group I and Group II NPVs have unique BV envelope structures

(e.g., Group I NPVs use GP64 as an envelope fusion protein for

host cell attachment whereas in Group II NPVs use the F protein

[19]). These structural differences may lead to unique tissue

tropism and modes of ELA induction by Group I and Group II

NPVs. Additionally, there may be other baculovirus genes that are

involved in induction of ELA but their roles in ELA may be

difficult to identify if they are essential for other viral functions or if

host-derived genes can partially substitute for their functions.

Modern baculoviruses have apparently captured a number of

essential and non-essential ‘auxiliary’ genes from ancestral host

insects by horizontal gene transfer [5]. The authentic biological

function of these captured genes or their products may be

maintained, modified or lost in modern baculoviruses so that they

confer selective advantages. The viral fibroblast growth factor

Figure 1. Effect of mutation of the BmNPV ptp gene on virus-induced ELA in 5th instar B. mori. (A) Schematic representation of the ptp
gene locus of wild-type (WT) and mutant BmNPVs. The locations of PCR primers (ptpF1 and ptp_B) used in the genotyping experiments are represented
by the arrows. In BmPTPD (PTPD), nucleotides 28 to 377 of the ptp gene are replaced by a hsp70-lacZ gene cassette (3.7 kbp). BmPTPDR (DR) is a repair
mutant in which the hsp70-lacZ gene cassette of BmPTPD was replaced with the original BmNPV sequence. BmPTP-C119S (CS) contains a point mutation
within the ptp gene which results in an amino acid residue substitution (C119S) within the predicted P-loop motif that is required for phosphatase
activity. BmPTP-Y9stop (Y9) and BmPTP-E93stop (E93) contain point mutations within the ptp gene which generate stop codons at Tyr-9 and Glu-93,
respectively, but the RNA structures of the respective transcripts are likely to be unchanged. (B) Induction of ELA in 5th instar B. mori injected with wild-
type or mutant BmNPVs. Distances traveled at 90 h p.i. are shown by box-and-whisker diagrams. The boxes represent the median and 25–75 percentile
ranges of the distances traveled. The whiskers indicate the most extreme data points, which were no more than 1.5 times the interquartile range from the
boxes. The dots indicate outliers predicted by Prism software. BmPTPD did not induce any ELA during the assay period. *p,0.05, Kruskal-Wallis analysis
with Dunn’s post test in comparison to the value obtained for BmPTPD. The abbreviations of the viruses are the same as in A.
doi:10.1371/journal.ppat.1002644.g001
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(vfgf ) gene is a clear example of a captured ancestral host gene

whose authentic function has been maintained during evolution

[20,21]. The protein encoded by vfgf, vFGF, transmits its signaling

via a host FGF receptor that, when activated, causes the migration

of hemocytes to virus-infected tissues. vFGF is thus able to usurp

the host’s signaling pathway in order to recruit hemocytes which,

following infection, can disseminate the virus to other tissues and

increase systemic infection. BmNPV ptp is another example of a

Figure 2. PTP interacts with ORF1629 in BmNPV-infected cells. (A) A yeast two-hybrid screen was performed to identify interactions between
BmNPV PTP and proteins in BmNPV-infected (12 h p.i.) BmN cells or in epidermal tissues from BmNPV-infected (2 d p.i.) 5th instar B. mori. This
screening identified 5 PTP-interacting clones (12h-3, 12h-11, 12h-4, 12h-16, and 2d-2) by X-gal and 3-AT assays. Clones 12h-3, 12h-11, 12h-4, and 12h-
16 were derived from BmNPV-infected BmN cells whereas clone 2d-2 was derived from BmNPV-infected larval B. mori. A legend showing the location
of positive standards and PTP-interacting clones (streaked in triplicate) is shown to the right. (B) Interaction of PTP and ORF1629 in BmNPV-infected
BmN cells. BmN cells were inoculated with BmNPV (WT) or BmPTPD-wt (D-wt) at an MOI of 5 or mock-infected (mock). BmPTPD-wt expresses FLAG-
tagged PTP under an authentic ptp promoter. At 72 h p.i., the cells were harvested and immunoprecipitated with anti-FLAG antibody, and then
subjected to western blot analysis (left panels) with anti-ORF1629 antibody or anti-FLAG antibody. The right ‘‘Input’’ panels show western blot
analysis using whole cell extracts.
doi:10.1371/journal.ppat.1002644.g002
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captured ancestral host gene [8]. In the case of BmNPV ptp,

however, the biological importance of the PTP protein appears to

have changed over time from a protein with enzymatic

significance to one that has structural significance for establishing

infection in larval tissues that are critical for the induction of ELA.

In this study, we show that PTP binds strongly to ORF1629, a

baculovirus structural protein that is phosphorylated during the

infection cycle [22]. We hypothesize that in modern baculoviruses,

the ability of PTP to bind ORF1629 or some other target became

more important because of the role it plays in increasing virus

transmission. In contrast, the ability of PTP to dephosphorylate a

potential protein or RNA substrate appears not to be as important

or perhaps taken over by a host phosphatase or only required

when the virus has to replicate under unusual conditions.

Alternatively, the PTP protein may have a dual function as a

structural protein in the induction of ELA and as a phosphatase

enzyme perhaps during earlier stages of infection, in specific

tissues, or different host developmental stages. The ptp gene is thus

the first example of a host-derived gene whose product is utilized

by the modern baculovirus in a completely different manner from

how it was likely utilized in the ancestral host.

Wandering is a normal ELA behavior that occurs towards the

end of the last larval instar that causes caterpillars to search for an

appropriate location to undergo metamorphosis [23]. Wandering

behavior is regulated by a combination of internal (e.g., larval size,

hormones) and external (e.g., photoperiod) processes. In larval

Manduca sexta the brain exerts a net inhibitory influence that

prevents wandering behavior during the caterpillar feeding stage

[24,25]. At the hormonal level, wandering is induced by exposure

to the 20-hydroxyecdysone which causes the brain to become

excitatory during the wandering stage. We hypothesize that

baculovirus infection of caterpillar brain also leads to an excitatory

state leading to the induction of the wandering-like ELA that we

observe in BmNPV-infected silkworms. Electrophysiological

Figure 3. PTP is an envelope-associated protein required for the production of normal virions. (A) Localization of PTP in the envelope
and capsid fractions of budded virus. Western blot analysis of envelope (E) and capsid (C) fractions of budded virus (BV) of BmNPV or BmPTPD-wt
were performed with anti-FLAG, anti-GP64 or anti-ORF1629 antibodies. (B) Localization of GP64 and ORF1629 in PTP-deficient BV. Western blot
analysis of envelope (E) and capsid (C) fractions of BV of BmNPV, BmPTPD, and BmPTPDR were performed with anti-GP64 or anti-ORF1629 antibody.
doi:10.1371/journal.ppat.1002644.g003
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studies of the locomotory patterns in the brain and subesophageal

ganglion from baculovirus-infected larvae will allow us to

understand what occurs in the central nervous system during

virus-induced ELA. Our current hypothesis suggests that the

baculovirus plays a direct role in the induction of ELA by infecting

the brain. However, other more subtle factors such as baculovirus-

Figure 4. BmPTPD produces fewer progeny in 5th instar B. mori and shows a delay in late gene expression in BmN cells. Production of
OBs (A) and BVs (B) in the hemolymph of larvae infected with BmNPV, BmPTPD, BmPTPDR or BmPTP-C119S at 4 d p.i. Data shown are means 6
standard deviation (SD) (N = 4). *p,0.05, one-way ANOVA with Tukey’s post test in comparison to BmPTPD. (C) Western blot analysis of the
expression of viral gene products in BmN cells infected with BmNPV, BmPTPD or BmPTPDR. The proteins were separated by SDS-PAGE, transferred to
a nitrocellulose membrane, and immunoblotted with antibodies that recognize BmNPV early-expressed (DBP, BRO, and LEF3) or late-expressed (V-
CHIA) proteins or actin. Similar results were obtained in two independent experiments. Abbreviations: WT, BmNPV; PTPD, BmPTPD; DR, BmPTPDR;
and CS, BmPTPD-C119S.
doi:10.1371/journal.ppat.1002644.g004
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Figure 5. Reduced expression of viral genes in tissues of larvae infected with a ptp-disrupted virus. (A) Heatmaps of viral gene
expression in 16 tissues of 5th instar B. mori infected with BmNPV (WT) or BmPTPD (PTPD). The tissues were dissected from virus-infected larvae at 1,
2, 3, and 4 d p.i., and the expression of the early/late and very late genes gp64 and polh, respectively, were quantified by qRT-PCR. Tissues from 5 to
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induced changes in host energy metabolism, signal transduction,

sensitivity to light or gravity, etc. may also play roles in the

induction of the various types of ELA.

In conclusion, we show here that PTP functions to induce

wandering-like ELA in baculovirus-infected caterpillars as a

structural protein and likely not as an enzyme. Notably, we found

that virus propagation was markedly reduced in brain tissues when

ptp was deleted from the BmNPV genome. These results tell an

amazing story of how the modern baculovirus has evolved to use a

captured host gene in a different way from how it was likely used

by the ancestral host. Collectively, we conclude that PTP

augments baculovirus infection of the brain and possibly other

tissues that play critical roles in the induction of ELA.

Materials and Methods

Insects, cell lines, and viruses
Larval B. mori were reared as described previously [26]. BmN

(BmN-4) cells were cultured at 27uC in TC-100 medium

supplemented with 10% fetal bovine serum [26]. The T3 strain

of BmNPV was used as the wild-type virus. The construction of

BmPTPD (a ptp deletion mutant) and BmPTPDR (a repair virus of

BmPTPD), have been reported previously [8] (see Figure 1A). The

titers of BmNPV and mutant BmNPVs were determined by

plaque assay on BmN cells [26].

Generation of BmPTP-C119S, BmPTP-Y9stop, BmPTP-
E93stop, and BmPTPD-wt

BmNPV genomic DNA containing ptp and its flanking regions

were cloned into pcDNA3.1(-) and used as a template to generate

mutations in the ptp gene. Mutagenesis was performed by

overlapping PCR [26] and confirmed by DNA sequencing. The

resultant plasmids were transfected with Bsu36I-digested BmPTPD

DNA (a Bsu36I restriction endonuclease site is uniquely found

within the lacZ gene cassette of BmPTPD) into BmN cells using

Lipofectin reagent (Invitrogen). Five days after transfection, the

medium was collected and stored at 4uC until use. Three

recombinant BmNPVs expressing PTP-C119S (BmPTP-C119S),

PTP-Y9stop (BmPTP-Y9stop), and PTP-E93stop (BmPTP-

E93stop) (Figure 1A) were isolated by the identification of plaques

that did not express b-galactosidase [26]. The presence of the

mutated ptp genes in these constructs was confirmed by

polymerase chain reaction (PCR) using primers ptpF1 and ptp_B

(Supplementary Table S2).

BmPTPD-wt, a repair mutant of BmPTPD that expresses a

FLAG-tagged PTP under an authentic ptp gene promoter (inserted

immediately upstream of the polh gene) was generated by a two

step process. Firstly, the FLAG-tagged ptp gene driven by the

authentic ptp gene promoter (identified by 59-RACE) was

amplified by PCR using BmNPV DNAs and primers ptpEPS1

and ptpEPS3 (Supplementary Table S2). The amplicon was

inserted into the transfer vector pBmEPS1 [27], and the

recombinant transfer plasmid was transfected with Bsu36I-digested

BmNPV-abb [27] genomic DNA into BmN cells using Cellfectin

reagent (Invitrogen) [28]. A recombinant BmNPV (T3-wt)

expressing the FLAG-tagged PTP was plaque-purified by the

identification of plaques that were OB-positive. In the second step,

the authentic ptp gene of T3-wt was disrupted by transfection of

T3-wt genomic DNA with a plasmid carrying a lacZ gene cassette

flanked by ptp gene sequences [8] into BmN cells using Cellfectin

reagent (Invitrogen). BmPTPD-wt (Supplementary Figure S3), a

recombinant BmNPV expressing FLAG-tagged PTP under the

authentic ptp gene promoter (but not expressing authentic PTP)

was identified by the formation of plaques expressing b-

galactosidase [29] and by PCR using the primer sets

BmEPS_F1/BmEPS_R1 and ptpF2/ptpG2 (Supplementary Ta-

ble S2). Expression of FLAG-tagged PTP by BmPTPD-wt was

confirmed by western blot analysis with anti-FLAG antibody

(Sigma).

Locomotion assay
Locomotion assays were performed as reported previously with

minor modifications [30]. Briefly, 5th instar B. mori (24 larvae per

treatment) were starved for several hours, injected with 50 ml of a

viral suspension containing 16105 PFU, and returned to the

artificial diet at 27uC. Infected larvae were photographed at 3 h

intervals from 84 to 132 h postinfection (h p.i.). At each 3 h

interval, the 24 infected larvae (separated into 4 groups of 6 larvae)

were placed in the center of a piece of paper marked with

concentric circles (the radius of each circle was 5 mm greater than

the previous circle, with a maximum radius of 100 mm).

Photographs were taken with a digital camera at 1 min intervals

until 5 min after release. The coordinates of each larva, at the

midpoint of the third and fourth abdominal segments, was

determined at each time point after release using ImageJ software

(Rasband WS (2006) ImageJ. Bethesda, Maryland: U. S. National

Institutes of Health, rsb.info.nih.gov/ij/). The distance moved

during each 1 min-long interval was determined and summed up

to derive total locomotory distance in 5 min. The locomotory

distance of dead larvae was designated as zero.

Yeast two-hybrid screening
Yeast two-hybrid (Y2H) screening was performed using the

PROQUEST two-hybrid system (Gibco BRL) as described

previously [31]. The Y2H screening used a cDNA library that

was generated from BmNPV-infected BmN cells as described

previously [31], as well as a cDNA library that was constructed

using mRNAs purified from epidermal tissues from BmNPV-

infected larvae (2 d p.i.).

Western blotting and immunoprecipitation
BmN cells were infected with BmNPV, BmPTPD, or

BmPTPDR at an MOI of 5 and harvested at 48 h p.i. Biochemical

fractionation of the BmN cells was performed as described

previously [32]. Procedures for the isolation of BVs and

fractionation of BV components were reported previously [33].

SDS-PAGE and western blotting were performed using anti-

FLAG antibody, anti-GP64 antibody (Santa Cruz Biotechnology),

anti-ORF1629 antibody [14] (a gift from George F. Rohrmann),

anti-LEF3 antibody [34,35] (a gift from Eric B. Carstens), anti-

BRO antibody [36], anti-DBP antibody [37], and anti-actin

antibody (Santa Cruz Biotechnology) as described previously [20].

Immunoprecipitation experiments were performed as described

previously [20].

30 larvae were mixed and used for the preparation of cDNAs. Abbreviations: FB, fat body; TR, trachea; BR, brain; CN, central nerve; PG, prothoracic
gland; CA, corpora allata; HE, hemocyte; ASG, anterior silk gland; MSG, middle silk gland; PSG, posterior silk gland; MI, midgut; MT, Malpighian tubule;
MU, muscle; IN, integument; OV, ovary; and TE, testis. (B) Expression of polh in fat body, trachea, central nerve, and brain. Tissues were dissected from
four individual larvae at 4 d p.i. First strand cDNAs were generated from individual larvae and qRT-PCR was performed using primers that targeted
the polh gene. Data shown are means 6 SD (N = 4). *p,0.05, Student’s t-test.
doi:10.1371/journal.ppat.1002644.g005
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OB and BV production in larval B. mori
Fifth instar B. mori (4 larvae per virus) were inoculated with virus

and reared as described above. OBs that were released into the

hemolymph, at 96 h p.i., were quantified from individual larva

using a hemocytometer as described previously [26]. Hemolymph

BV titer was determined by plaque assay on BmN cells [26].

Quantitative reverse transcription-PCR (qRT-PCR)
Fifth instar B. mori were inoculated and reared as described

above. Total RNA was prepared using Trizol reagent (Invitrogen)

from 16 tissues (brain, corpora allata, central nerve, prothoracic

gland, fat body, trachea, hemocyte, testis, ovary, anterior silk gland,

middle silk gland, posterior silk gland, midgut, Malpighian tubule,

integument, and muscle) that were dissected from BmNPV- or

BmPTPD-infected, 5th instar B. mori (5 to 30 larvae/tissue) at 1, 2, 3,

and 4 d p.i. For the experiments shown in Figure 5B, total RNA was

prepared using Trizol reagent from four tissues (brain, central

nerve, fat body, and trachea) that were dissected from four

individual 5th instar larvae. First-strand cDNAs were synthesized

from 0.2 mg of total RNA, and qRT-PCR was performed using

Power SYBR Green PCR master mix (Applied Biosystems) using

primers that were previously described [29]. PCR was performed

using the StepOne real-time PCR system (Applied Biosystems) [29].

Statistical analysis
Statistical analysis was performed using Prism 5 software

(Graphpad). One-way analyses of variance (ANOVA) was

performed with post hoc Tukey’s test comparing each of the

treatment group means with the mean of the control group.

Locomotion assay data were subjected to Kruskal-Wallis analysis

with post hoc Dunn’s test. Student’s t-test was used to compare

values obtained in the qRT-PCR experiments (Figure 5B).

Supporting Information

Figure S1 PTP activity and confirmation of the genotype
of the ptp gene mutants of BmNPV. (A) Phosphatase activity

of wild-type PTP (PTPwt) and C119S mutant PTP (PTPcs). PTPwt

and PTPcs were expressed in Escherichia coli, and phosphatase

activity was assessed using poly(Glu-Tyr) as the substrate. *p,0.05,

Student’s t-test. (B) Confirmation of the genotype of wild-type and

mutant BmNPVs using primers ptpF1 and ptp_B (primer sequences

are shown in Supplementary Table S2).

(PDF)

Figure S2 Analysis of the interaction between PTP and
ORF1629 using the yeast two-hybrid system. (A) Identifi-

cation of PTP-interacting domains of ORF1629. A schematic

representation of authentic ORF1629 is shown by the top bar.

The amino acid locations of the proline-rich, WASP-homology2,

and connector/acid domains of ORF1629 are shown above the

schematic representation. The results of the yeast two-hybrid X-

gal screening assay are shown to the right. The + or 2 indicates a

positive or negative interaction, respectively, between PTP and the

indicated region of ORF1629. (B) Identification of ORF1629-

interacting domains of PTP. A schematic representation of PTP is

shown by the top bar. The results of the X-gal screening assay are

shown to the right. The + or 2 indicates a positive or negative

interaction, respectively, between ORF1629 and the indicated

region of PTP.

(PDF)

Figure S3 Construction of BmPTPD-wt. (A) Determination

of the transcriptional start sites of ptp. 59-RACE analysis was

performed using cDNAs prepared from BmNPV-infected BmN

cells at 4 or 12 h p.i. The time post infection and number of

independent clones that were obtained is shown in parentheses. (B)

Schematic representation of BmPTPD-wt. The approximate

locations of two pairs of PCR primers (BmEPS_F/R and

ptpF2/G2) that were used in the genotyping experiments are

shown. (C) Confirmation of the genotype of BmNPV (WT),

BmPTPD (PTPD), and BmPTPD-wt (D-wt) by PCR with primer

pairs BmEPS_F/BmEPS_R and ptpF2/ptpG2.

(PDF)

Figure S4 BmN cells infected with ptp gene disrupted
BmNPV mutants show reduced OB and BV production.
(A) Light microscopic observations of representative virus-infected

BmN cells at 3 d p.i. (B) OB production in virus-infected BmN

cells at 3 d p.i. (C) BV production in virus-infected BmN cells at 1,

2, and 3 d p.i. as determined by plaque assay on BmN cells In A,

B, and C, the BmN cells were infected with virus at an MOI of 5.

In B and C, the data shown are mean 6 SD (N = 3). *p,0.05,

one-way ANOVA, Tukey’s post tests in comparison to BmPTPD.

Abbreviations: WT, BmNPV; PTPD, BmPTPD; DR, BmPTPDR;

CS, BmPTP-C119S; Y9, BmPTP-Y9stop; and E93, BmPTP-

E93stop.

(PDF)

Table S1 Dose-mortality of BmNPV, BmPTPD,
BmPTPDR and BmPTP-C119S in 5th instar B. mori.

(PDF)

Table S2 Primers used in this study.

(PDF)

Text S1 Materials and Methods for Supplementary
Information.

(PDF)
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