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Abstract: Metabolomics studies have seen a steady growth due to the development and implementation
of affordable and high-quality metabolomics platforms. In large metabolite panels, measurement
values are frequently missing and, if neglected or sub-optimally imputed, can cause biased study
results. We provided a publicly available, user-friendly R script to streamline the imputation of missing
endogenous, unannotated, and xenobiotic metabolites. We evaluated the multivariate imputation
by chained equations (MICE) and k-nearest neighbors (kNN) analyses implemented in our script
by simulations using measured metabolites data from the Netherlands Epidemiology of Obesity
(NEO) study (n = 599). We simulated missing values in four unique metabolites from different
pathways with different correlation structures in three sample sizes (599, 150, 50) with three missing
percentages (15%, 30%, 60%), and using two missing mechanisms (completely at random and not at
random). Based on the simulations, we found that for MICE, larger sample size was the primary factor
decreasing bias and error. For kNN, the primary factor reducing bias and error was the metabolite
correlation with its predictor metabolites. MICE provided consistently higher performance measures
particularly for larger datasets (1 > 50). In conclusion, we presented an imputation workflow in a
publicly available R script to impute untargeted metabolomics data. Our simulations provided insight
into the effects of sample size, percentage missing, and correlation structure on the accuracy of the two
imputation methods.
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1. Introduction

Metabolomics studies have seen a steady growth due to the development and implementation of
affordable and high-quality metabolomics platforms. These platforms can be split into two categories:
targeted and untargeted metabolomics platforms based on their approach to metabolite identification [1,2].
Targeted platforms are focused on a known prespecified set of metabolites, while untargeted platforms
aim to detect as many metabolites as possible in the sample without the need for explicit prior knowledge
of their identity. The metabolite signatures detected (i.e., mass to charge ratio, m/z, or retention times) are
subsequently matched in a metabolite library to determine their identity. Currently, both targeted and
untargeted platforms can detect over 1000 metabolites in a single biological sample (e.g., blood, saliva,
and urine). A typical issue with both these platform types is missing values from the measurement.

Missing values in metabolomics data are problematic for subsequent analyses, may be neglected,
and are often mishandled or ignored. A common misconception is that missing values in metabolomics
data are exclusively due to metabolites with a very low concentration, i.e., below the limit of detection
of the instrument. Although in many circumstances the majority of missing values can be due to low
concentrations, it has been shown that missing values can also be caused by biological and/or technical
variation [3-5]. Based on the assumption that not reaching the limit of detection exclusively causes
missingness, missing values are often handled with one or more of the following procedures:

(1) For each metabolite the missing values are replaced (“imputed”) with a single value, such as
the minimum detection level or half the minimum detection level. This approach results in
overrepresentation of a single value in the population distribution. This may affect subsequent
analyses and may cause biased results, regardless of the cause of missing values [5,6]. Furthermore,
metabolites could be missing in some individuals because they are not biologically present in their
system. Therefore, imputing these missing values will cause bias in the analysis. For example,
if the metabolites for metformin are imputed, both diabetic patients who use the drug as well
as and non-diabetic individuals who do not use the drug will have values for the it. This is a
prominent issue in platforms such as Metabolon™ (Metabolon Inc., Durham, NC, USA) that
include xenobiotic metabolites (e.g., metabolites from external sources such as medications).

(2) Metabolites with a missing percentage above an arbitrary cut-off value (for example 20%) are
removed from the dataset due to “too much missingness” regardless of the metabolite identity.
By applying a cut-off above which metabolites are removed from the dataset, or, in the most
extreme case only using the complete cases, data are unnecessarily discarded, that could have been
of importance to the research question. Furthermore, this exclusion can affect further pathway
analysis, such as metabolite set enrichment analysis, that explore possible pathway connections
for the measured metabolites [7].

Several studies have evaluated imputation methods for metabolomics data. The consensus from
these studies has so far been that imputation using half the minimum value leads to more bias than
other methods and, consequently, this method is discouraged [3,8]. One alternative imputation method
that has been recommended for metabolomics is the k-nearest neighbors (kNN) imputation [6,9].
An extensive simulation was performed that evaluated and compared 31 methods of imputation in a
simulated untargeted metabolomics data provided by the Metabolon™ platform [6]. These methods
included univariate methods such as half-minimum imputation and multivariate methods such as
variations of kNN and multivariate imputation by chained equations (MICE). Two methods were
concluded to have the best performance:
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(1) kNN on observations with variable pre-selection (“kNN-obs-sel”), a two-step method that
incorporates the standard kNN algorithm with a preselection of a group of metabolites that are
most correlated with the metabolite with missing values (i.e., auxiliary metabolites). Therefore,
the neighbors selected by kNN will have similar metabolomic profiles [6].

(2) MICE using the predictive mean matching method (“MICE-pmm”). Like kNN-obs-sel, the most
correlated metabolites were used for the imputation. The imputed values are then selected from
distribution of possible values to produce multiple imputed datasets [10-12].

In this paper, we expand upon the meticulous evaluation of the imputation methods by Do et al. [6],
which was performed on an older version of the metabolomics platform that detects a smaller set of
metabolites (n = 517). Furthermore, we set out to take unannotated (i.e., unidentified metabolites in the
library) and xenobiotic metabolites into account. The recent Metabolon™ panel in use (Discovery HD4)
has increased the number of metabolites to >1000, which includes more unannotated and xenobiotic
metabolites. As more scientists are using metabolomics data in their research, it is helpful to have a
user-friendly workflow for imputation using the best available methods. We provided this imputation
workflow and a user-friendly R script to streamline the imputation of the Metabolon™ HD4 panel
using kNN-obs-sel and MICE-pmm. Furthermore, we evaluated the imputations by the script in
several scenarios with different missingness conditions by a resampling simulation analysis using
measured metabolomics data from the Netherlands Epidemiology of Obesity (NEO) study.

2. Results

2.1. Metabolomic Data Characteristics

Metabolomics measurements in 599 individuals between the ages of 45 and 65 with normal BMI
distribution from the NEO study identified 1365 metabolites. Detailed information regarding the
population are provided in the Methods section and Appendix A. Known metabolites were annotated
with their chemical name, super pathway, sub pathway, compound identifiers from various metabolite
databases, and information regarding their biochemical properties. A total of 840 metabolites were from
various endogenous pathways, 229 metabolites were characterized as xenobiotics, and 296 metabolites
were unannotated (lacking information regarding chemical name and pathway). Of the 1365 identified
metabolites, 800 (58.6%) contained missing values and the median number of missing metabolites per
observation was 228 (38%) (Table 1).

Table 1. Summary of missing data in the Netherlands Epidemiology of Obesity (NEO) study.

Metabolite Groups

Missing Data
& Endogenous (1 =840) Unannotated (1 =296)  Xenobiotics (n = 229) Total (17 = 1365)
Metabolites with
missing values, 1 (%) 367 (43.7) 236 (79.7) 197 (86.0) 800 (58.6)
Missing metabolites per 57 (23-94) 59 (31-112) 110 (79-149) 228 (152-343)

observation, median (range)

In the NEO study, 1365 metabolites were measured in 599 individuals (observations).

We plotted the distribution of missing values in each metabolite group (Figure 1). The distribution
of the number of missing values of the unannotated metabolites was similar to that of the endogenous
metabolites rather than the xenobiotic metabolites. This suggests that most unannotated metabolites
are most likely from an endogenous source, similar to the annotated endogenous metabolites, and are
most likely expected to be present in all our participants.
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Figure 1. Distribution of the missing values in each metabolite group.

The Pearson’s pairwise-complete correlation matrix for the endogenous and unannotated
metabolites was calculated using all the metabolites (complete with no missing values and incomplete).
For each incomplete metabolite we selected up to 10 complete metabolites with the highest absolute
Pearson’s correlation (auxiliary metabolites). If the metabolite was not correlated with 10 metabolites
(due to high missingness), then we selected the available correlated metabolites. We then calculated
the mean value of the Pearson’s correlations for these metabolites. Figure 2 shows the distribution
of the mean of the auxiliary absolute correlations with further details in Table A1. The 82% of the
incomplete metabolites had a mean absolute Pearson’s correlation coefficient lower than 0.5 with their



Metabolites 2020, 10, 486 5o0f 22

auxiliary metabolites. Overall, the median of the median absolute Pearson’s correlation coefficient was
0.4 (0.09-0.89), indicating a generally low intercorrelation between the metabolites.

0.99 A
/ \
/ \
f
/ A
{ \
08 ’\ , “\
J / \
/ \ / \
fo=\ / \
0 £ \‘I / \\
{
L
f o / |
l'\ ﬂ’ \
Soe f : \
k] / \ { \
[ / { \
[ | )
] 0 | - T + Endogenous
| \ -
=] |I A / ® Unannotated
8 /‘ - \ \ - |
< - \
§ / - \\\ -
041 / \ P
/ \
= / R \ :
/ - “\
/ N |- /
03 |’ ) "-\ s /
\ / Newwer Soee /
1\ ! N\ . /
0.2 \ / \‘\ o/
- AN Ly ,,f
. Vo
AU/
0.11

Incomplete Complete All
Metabolites
Figure 2. Distribution of the mean absolute correlations for the complete (without missing values) and
incomplete (with missing values) endogenous and unannotated metabolites in the NEO dataset.

2.2. Availability

The imputation script [13] streamlines the workflow by calculating the correlation matrix, selecting
the auxiliary metabolites, and imputing the missing values of the metabolites using the provided
data from the user. The script requires a dataset, a list of xenobiotic and non-xenobiotic metabolites
(endogenous/unannotated), and a choice for the method of imputation (MICE-pmm or kNN-obs-sel).
The script and example files can be found at: https://github.com/tofaquih/imputation_of_untargeted_
metabolites.

2.3. Performance Evaluation

To evaluate our imputation framework, we applied it to impute metabolites with missing values
in the measured NEO dataset (1 = 599) using kNN-obs-sel and MICE-pmm. All metabolites were
imputed apart from 12 metabolites (3 endogenous, 9 unannotated) in the dataset that had >90%
missingness and were subsequently treated as xenobiotic and imputed to 0. As mentioned in the
Methods section, extremely high missingness limits the amount of data needed to impute the metabolites
and to find auxiliary metabolites. High missingness in the 3 endogenous metabolites could have been
caused by technical or biological issues, or they could represent misannotated xenobiotic metabolites.
The 9 unannotated metabolites were likely xenobiotic metabolites.

Simulations were performed to compare the performance of the imputation method (MICE-pmm
or kNN-obs-sel). As detailed in the Methods section, we generated 144 resampling simulation scenarios,
using four metabolites from independent pathways and varying mean correlations with auxiliary
metabolites (PC(32:2) (mean absolute correlation = 0.64), urate (mean absolute correlation = 0.49),
glutamate (mean absolute correlation = 0.49), succinylcarnitine (mean absolute correlation = 0.36)),
three sample sizes (50, 150, 599), three percentage of missing (15%, 30%, 60%), and two missing
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mechanisms missing mechanisms (missing completely at random (MCAR) and probabilistic limit of
detection (PLoD)). The percentage biases from the simulation are presented in Figure 3 and Table 2.
Root mean squared errors (RMSE) are shown in Figure 4, Table A5, and Table A6. The mean and
standard deviation of the estimates from the simulation are provided in Tables A3 and A4 using MCAR
and PLoD mechanisms, respectively. We used nested loop plots [14] to produce all the figures.
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Figure 3. Nested loop plot of the percentage bias of the four metabolites from the simulation. The horizontal
axis in each box represents the missing percentage and is split per sample size. Abbreviations: MCAR:
missing completely at random; PLoD: probabilistic limit of detection.
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Figure 4. Nested loop plot of the root mean squared error (RMSE) of the four metabolites from the
simulation. To simplify comparability in the plot we converted the RMSE values to a percentage
by subtracting then dividing the RMSE values by the corresponding true estimates (in sample size
n =599). The horizonal axis in each box represents the missing percentage and is split per sample size.
Abbreviations: MCAR: missing completely at random; PLoD: probabilistic limit of detection.
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Table 2. Percentage bias of the imputation methods across different parameters on different metabolites including multivariate imputation by chained equations
(MICE)-pmm with a single imputation.

Metabolites/Imputation Method

Mlssm.g Sample Size Missing PC(32:2) Succinylcarnitine Glutamate Urate
Mechanism Percentage
MICE-pmm  kNN-obs-sel MICE-pmm kNN-obs-sel MICE-pmm kNN-obs-sel MICE-pmm kNN-obs-sel

15% 2.0 2.1 0.3 6.0 2.2 0.2 49 49

n =50 30% 3.2 4.5 2.8 14.4 8.6 11 11.3 10.2

60% 139 14.5 28.9 31.3 40.2 2.0 39.9 27.6

15% 0.7 0.5 14 13.8 0.2 1.9 0.7 0.5

MCAR n =150 30% 1.9 1.8 0.4 31.9 1.1 51 0.7 13
60% 3.9 3.2 5.2 727 6.2 15.0 2.09 12.5

15% 0.3 0.8 0.1 9.3 0.2 2.6 0.6 22

n =599 30% 0.7 24 0.6 20.1 0.1 5.6 15 49

60% 1.9 7.9 3.5 50.9 0.7 15.1 2.6 15.0

15% 1.3 0.8 2.8 1.8 0.7 1.8 12.7 6.2

n =50 30% 3.5 2.2 7.7 43 42 3.6 26.3 16.5

60% 19.5 3.0 34.8 8.3 19.3 15.0 874 66.1

15% 0.2 1.6 0.7 12.8 1.3 0.8 53 6.3

PLoD n =150 30% 0.3 3.3 0.2 234 3.0 2.3 8.0 14.9
60% 42 2.6 16.2 46.1 9.4 8.6 39.8 59.7

15% 0.5 0.1 0.9 7.3 0.9 1.4 0.5 1.9

n =599 30% 1.1 1.6 2.5 16.7 2.1 2.9 0.6 3.3

60% 49 11.5 9.7 54.3 4.1 13.1 0.1 4.3

Abbreviations: MCAR: missing completely at random; PLoD: probabilistic limit of detection.
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2.3.1. Sample Size

We observed a decrease of bias and RMSE as the sample size increased (Figures 3 and 4). This trend
was consistent for MICE-pmm for each metabolite, with the percentage bias median (range): 8.2 (0.3-87.4)
in n = 50 decreasing to median (range): 0.8 (0.1-9.7) in n = 599. However, increasing sample size did not
improve imputation with KNN-obs-sel. Overall, percentage bias was median (range): 4.7 (0.2-66.1) inn = 50,
median (range): 5.7 (0.5-72.7) in n = 150, and median (range): 5.2 (0.1-54.3). Furthermore, in some scenarios,
bias and RMSE increased in larger sample sizes even with the same missing percentage and missing
mechanism; this was particularly noticeable for succinylcarnitine (mean absolute correlation = 0.36) where
the percentage bias increased in 60% missing from 8.3% in n = 50, to 46.1% in n = 150, and 54.3% in n = 599.
Finally, for sample sizes of n = 50 and 150, MICE-pmm had lower bias than kINN-obs-sel but a RMSE
higher or similar to kNN-obs-sel.

2.3.2. Percentage of Missing

In scenarios with 15% and 30% missing, MICE-pmm and kNN-obs-sel showed low bias and RMSE
across all sample sizes. At 15% missing, MICE-pmm had a percentage bias of median (range): 0.7 (0.1-12.7),
while kNN-obs-sel had a percentage bias of median (range): 1.9 (0.1-13.8). At 30% missing, MICE-pmm
had a percentage bias of median (range): 2.0 (0.1-26.2) and kNN-obs-sel had a percentage bias of
median (range): 4.4 (1.1-31.9). Finally, in 60% missing MICE-pmm had a percentage bias of median
(range): 7.8 (0.1-87.4) and kNN-obs-sel had a percentage bias of median (range): 14.7 (1.9-72.7). Overall,
MICE-pmm had lower bias in all missing percentages than kNN-obs-sel. However, the percentage bias
for KNN-obs-sel was often lower than that of MICE-pmm at 30% and 60% missing in n = 50.

2.3.3. Correlation Strength with the Auxiliary Metabolites

We compared the percentage bias and RMSE of both imputation methods for the four metabolites
to assess the influence of correlation strength of the auxiliary metabolites as shown in Tables 2 and A2
and Figures 3 and 4. We observed that availability of auxiliary metabolites with higher correlation
for the imputation greatly reduced the bias and RMSE in both methods. In PC(32:2), the metabolite
with the highest mean correlation (mean absolute correlation = 0.64), had the lowest bias overall.
Percentage bias was median (range): 1.9 (0.2-19.5) with the MICE-pmm imputation and median
(range): 2.3 (0.1-14.5) with kNN-obs-sel imputation. Glutamate (mean absolute correlation = 0.49)
had median (range): 2.1 (0.1-40.2) percentage bias with MICE-pmm imputation and median (range):
2.7 (0.2-15.1) with kNN-obs-sel. Similarly, imputation of urate (mean absolute correlation = 0.49) using
MICE-pmm had median (range): 3.8 (0.1-87.4) percentage bias and median (range): 6.2 (0.5-66.1) using
kNN-obs-sel. In contrast, the percentage bias was much higher for the metabolite with the lowest mean
correlation, Succinylcarnitine (mean absolute correlation = 0.36), with median (range): 2.6 (0.1-34.8)
percentage bias using MICE-pmm imputation and median (range): 15.5 (1.8-72.7) with kNN-obs-sel.
Moreover, the bias reached very high percentages in urate and succinylcarnitine compared to PC(32:2)
and glutamate in the n = 50 subset.

2.3.4. Missing Mechanisms

We used two mechanisms for missingness, MCAR and PLoD, in our simulations. Since PLoD
is fundamentally missing not at random (MNAR), causing lower concentrations to have a higher
likelihood of missingness, we examined how PLoD affects the performance of MICE-pmm and
kNN-obs-sel compared to MCAR scenarios. MCAR scenarios had a percentage bias median (range):
1.9 (0.1-40.2) with MICE-pmm imputation and median (range): 5.3 (0.2-72.7) with kNN-obs-sel. PLoD
scenarios had a percentage bias median (range): 3.2 (~0-87.4) with MICE-pmm imputation and median
(range): 4.3 (0.1-66.1) with kNN-obs-sel. However, the RMSE (Figure 4, Tables A5 and A6) was lower
in PLoD for MICE-pmm (median (range): 11.1 (1.8-79)) than in MCAR (median (range): 14.3 (2.0-78.0))
and similarly lower for kNN-obs-sel in PLoD scenarios (median (range): 12.1 (2.1-70.3)) than MCAR
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(median (range): 16.5 (2.6-103.9)). Overall, imputing in PLoD scenarios lead to higher bias but lower
RMSE compared to MCAR.

3. Discussion

Several simulation studies have evaluated different imputation methods for missing data in
metabolomic datasets [3,6,9,15,16]. Nevertheless, the “half the minimum” method of imputation
remains in use despite studies showing its sub-optimal performance [3,6,9,15,16]. In this study, we
followed up on previous work and provided a framework and complementary R script on GitHub [13]
that streamlines the imputation of untargeted metabolomics data. The script provides univariate
imputation of zero for missing values considered to be truly absent in xenobiotics and two options of
multivariate imputation methods for the remaining metabolites.

Owverall, for the four metabolites we used in the simulation, we observed several factors that
influenced the performance of each imputation method with different degrees. In the four metabolites
we used, MICE-pmm performed better overall across different simulated scenarios. This performance
is especially better in PLoD, which represents a missing mechanism similar to that of real metabolomics
data [6]. MICE-pmm performance decreased the most in smaller sample sizes, somewhat less by the
metabolite auxiliary correlation and the least by the missing percentage. Interestingly, the negative
effect of missing percentage diminished as the sample size increased (n = 150 and n = 599). On the
other hand, unlike MICE-pmm, kNN-obs-sel performance was decreased most by a higher percentage
of missingness and low metabolite auxiliary correlation, which was not improved by increased sample
size. A possible explanation is the nature of the kNN-obs-sel method. kNN-obs-sel focused on finding
the nearest neighbors based on the correlated metabolites. If it failed to find strongly correlated
metabolites, due to the metabolite naturally a having low correlation or due to a large amount of
missing values, it selected weak neighbors. Therefore, even at larger sample sizes (150 and 599) the
performance of the kKNN-obs-sel method remained poor if the missing percentage was large and the
metabolite had poor correlation.

3.1. Advantages and Disadvantages of MICE-pmm for Metabolomics

Unlike kNN imputations, we found few papers in the literature regarding the use of MICE imputation
for metabolomics. The MICE-pmm imputation is a more intricate method for generating the imputation
values. First, the imputation is repeated multiple times in order to assess the uncertainty of the imputation
and provide standard errors of the estimates. Second, MICE-pmm imputation is more compatible with
both normally distributed and skewed metabolites than kNN [10]. Third, MICE imputation utilizes
discrete and continues variables for imputation. Therefore, MICE-pmm can include additional biologically
relevant predictors and the outcome of the analysis of interest, improving the quality of the imputation [17].
These features explain the robustness of MICE-pmm in situations with low correlated auxiliary variables
and high missingness.

However, MICE-pmm has some disadvantages. First, small sample sizes negatively affected the
performance of MICE-pmm because this forces duplication and reuse of the same individuals [10].
Second, MICE imputation may require more computational run time and is somewhat more complicated
to use than kNN because multiple imputed datasets are generated that require a pooling step for the
analysis. We shortened computational time by using the latest MICE R package and by setting the
number of multiple imputations to 5, which has been shown to be a suitable number of imputations [10].
This caused the running time for the complete imputation using MICE-pmm to be equal to that of
kNN-obs-sel for the NEO dataset (1 = 599). Furthermore, to test the speed of the script, we duplicated
and stacked the NEO dataset to create larger datasets (n = 5400 and n = 20,000); MICE-pmm completed
the imputations faster than kNN-obs-sel (Table A7). Third, with MICE-pmm it is not possible to apply
further analysis such as lasso regression or random forest, which are common analysis methods used in
metabolomics [7,18,19]. This is because MICE-pmm uses multiple datasets with Rubin’s Rules to pool
the estimates of the analysis per dataset. One solution is to use the kKNN-obs-sel method, as it always
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creates a single dataset for analysis. A second alternative would be to use MICE-pmm with a single
imputation [m = 1], which can be specified in our script, and use that single dataset in the multivariate
analysis. It should be noted that MICE-pmm with m = 1 still performed better than kNN-obs-sel for
the larger sample sizes (see Tables A2 and A6 and Figures Al and A2).

3.2. Limitations

Several methodological issues should be considered. Firstly, our evaluation was done using
599 samples, limited by available metabolomics data in the NEO study. Although this number is not
particularly small, future research should be performed in larger datasets. Secondly, we assumed that
all missing xenobiotics values are truly missing and replaced them by zero. This could be explored
further by incorporating MICE-pmm or kNN-obs-sel to specifically impute xenobiotic metabolites from
the same medication sources in persons taking the medication. Furthermore, it could be possible to use
questionnaire and clinical data as imputation predictors in MICE-pmm to impute related xenobiotic
metabolites. Thirdly, we did not explore alternative methods for MICE to handle small data sizes,
such as regulation and penalization. Fourth, our simulation did not evaluate the variance estimators
such as type-I and type-II errors or confidence interval coverage. Fifth, metabolites with very large
missingness will have high bias and error in the imputation and should be interpreted with caution.
Finally, the data do not provide the explicit cause of the missing values and, therefore, we could only
assume if the values were truly missing, missing completely at random, or missing due to other reasons.
Future studies which explore the causes of missingness will also allow us to impute the missingness
more effectively.

4. Materials and Methods

4.1. Population Characteristics

The resampling simulation analyses were performed in the NEO study. This study has been
extensively described elsewhere [20] and in Appendix A. The NEO study was accepted by the Medical
Ethics committee of the Leiden University Medical Center under protocol P08.109. The study is also
registered at clinicaltrials.gov under number NL21981.058.08/P08.109. All participants gave written
informed consent [20]. Fasting state serum samples from a sub-population (n = 599) of the NEO
study were sent for untargeted metabolomics measurements at Metabolon Inc. (Durham, NC, USA)
using their Metabolon™ Discovery HD4 platform. In brief, this process involves four independent
ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS/MS) platforms [21,22].
Two platforms used positive ionization reverse phase chromatography, one used negative ionization
reverse phase chromatography, and one used hydrophilic interaction liquid chromatography (HILIC)
negative ionization [22]. In total, 1365 serum metabolites were measured which included 840 endogenous,
296 unannotated, and 229 xenobiotic metabolites.

4.2. Imputation Methods

Following our examination of the missing data distribution in the NEO study (Figure 2),
we decided the xenobiotic metabolites and non-xenobiotic metabolites (endogenous/unannotated)
with different imputations. For xenobiotic metabolites, we assumed missing values are truly missing
values. For example, when a medication metabolite concentration is missing, it is most likely that the
participant is not taking the medication. Therefore, we decided to impute xenobiotic metabolites to zero,
as imputing the values (with MICE, kNN, or half-min) would cause bias due to skewed distribution
and false positives. For the non-xenobiotic metabolites (endogenous/unannotated), the missing pattern
suggests that the unannotated metabolites are most likely endogenous. Therefore, we decided to impute
the endogenous and the unannotated metabolites as a single group using the multivariate imputation
methods of MICE-pmm and kNN-obs-sel. For these two multivariate methods, we first estimated
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a correlation matrix for all applicable/non-xenobiotic metabolites from which to select 10 auxiliary
metabolites to be used for imputation.

For non-xenobiotic metabolites, we assumed that they are metabolites with truly missing values
only if less than 90% of values were missing. This cut-off was necessary for multiple reasons: (1) it
became nearly impossible to find auxiliary metabolites for imputation, (2) unannotated metabolites
with high missing values are likely xenobiotic and therefore most likely truly missing, and (3) it became
statistically problematic to perform multivariate imputation with such high missingness—particularly
in small sample sizes [23].

In this study, we used MICE-pmm with 10 auxiliary metabolites to impute the missing values and
generated 5 imputed datasets (m = 5). In addition to the auxiliary metabolites, we included further
predictors by adding the clinical variables for the outcome (BMI) and the covariates (age and sex) used
in the analysis model for the MICE-pmm imputation. The addition of these variables is required in
MICE imputations to avoid bias in the results [23,24]. We used kNN-obs-sel only with 10 auxiliary
metabolites to impute the missing values. Details regarding the imputation methods are provided in
Appendix A. In our script, we incorporated the R package mice version 3.6.0 [10] for the MICE-pmm
imputations and the package VIM version 4.8.0 [25] in the kKNN-obs-sel imputations.

4.3. Evaluation Analysis and Missing Value Simulation

For the simulation, the analysis of interest was an ordinary least squares regression model with
body mass index (BMI) as the outcome and age, sex, and a selected metabolite as the exposures.
For the purpose of our study, BMI was used as the outcome for two reasons: (1) BMI is a variable that
was measured in all our participants, and (2) BMI is strongly associated with many metabolites and
commonly studied in metabolomics [26].

Four metabolites were used, selected based on the following criteria: (1) the metabolite had no
missing values in the original NEO dataset, (2) the metabolite must have a strong association with BMI
in our Metabolon™ data as well as in the literature using Metabolon™ [26], (3) the four metabolites must
be from different biological pathways, and (4) the metabolites must have different mean correlations
with their auxiliary metabolites. We found 6 out of 473 complete endogenous metabolites in NEO that
fulfilled these criteria. We then narrowed the selection to one metabolite per pathway. Accordingly,
we selected four metabolites: PC(32:2) (mean absolute correlation 0.64) from the lipid super pathway;
succinylcarnitine (mean absolute correlation = 0.36) from the energy super pathway, the nucleotide
urate (mean absolute correlation 0.49), and the amino acid glutamate (mean absolute correlation 0.49).
Information regarding the metabolites is provided in Table 3.

Table 3. Properties of the selected metabolites for the simulation.

Metabolite Full Mean Absolute Super Sub Pathway Estimate Estimate Estimate
Name Correlation Pathway n=>599 n =150 n =50
PC(32:2) 0.64 Lipid Plasmalogen -418x 1077  -3.64x1077 -438x1077
Urate 0.49 Nucleotide Purine Metabolism 1.39x10%  958x107°  9.69x10~°
Glutamate 0.49 Amino Acid Glutamate Metabolism 1.83 x 1077 2.89 x 1078 1.66 x 1078
Succinylcarnitine 0.36 Energy TCA Cycle 284x107%  153x107®  4.53x107®

Abbreviations. Mean absolute correlation: mean of the 10 absolute Pearson’s correlations from the metabolite
correlation matrix. Estimate is the regression coefficient from the model BMI~age + sex + metabolite. Therefore, the
estimates are the mean increase in BMI per 1 unit increase of the metabolite.

We compared the performance of the two imputation methods by simulating missing values using
the NEO dataset (1 = 599). All simulations were performed on three datasets: the original dataset of
599 participants, and on two randomly sampled sub datasets of size n = 150 and n = 50. The distribution
of age, sex, and BMI was maintained in the sub datasets of 50 and 150 individuals. We used the same
sub datasets for the all corresponding simulation scenarios. Generating the subsets with different
random sampling did not change the estimates drastically (not shown). It should be pointed out that
the selected auxiliary metabolites differed slightly between the sub datasets. Metabolite levels were
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log transformed and standardized (mean of 0 and variance of 1). We calculated the estimates for each
metabolite in the complete datasets separately to be used later for the bias and RMSE calculations.
In the different simulation scenarios, we induced different percentages of missingness (15, 30, and 60%),
and under two different mechanisms, MCAR and PLoD. In the PLoD missing scenarios, the odds of a
value being missing increased as the concentration decreases. The total number of missing values was
divided per quantile of the metabolite as follows: 40% into the lower quantile, 50% into the middle
quantile, and 10% in the upper quantile.

The evaluation was done by (1) performing the linear regression analysis and obtaining the estimate
of the regression coefficient using the complete metabolites data in each subset (Table 3), (2) simulating
missing values, (3) imputing missing values using the two imputation methods, (4) estimating the
regression coefficient using the imputed data, and (5) evaluating the difference between the estimate of
the complete data for that subset and the estimate using the imputed methods, (6) repeating step 2 to 5
1000 times per simulation scenario. The performance of the imputation methods was evaluated using
the following measures: raw bias, which is the difference between the real estimate and the mean of
the simulations estimates, which can be a positive or a negative value; percentage bias, which is the
raw bias divided by real estimate for easier interpretation and comparison [27]; the RMSE, which is the
square root of the mean squared difference between estimated; and true value, this measure combines
the bias and variance of the simulated estimates into a single measure and represents the precision of
the method [28] (Appendix A).

Thus, in total, we used three datasets (1 = 50, 150, 599), four metabolites (PC(32:2), succinylcarnitine,
urate, glutamate), three missingness percentages (15%, 30%, 60%), two missing mechanisms
(MCAR and PLoD), and evaluation by two imputation methods (kNN-obs-sel and MICE-pmm) for
a total of 144 possible scenarios. Each of these scenarios was repeated 1000 times.

4.4. Imputation Workflow

To simplify the procedure of imputing missing data, we wrote an R script that calculates
the correlation matrix between the different metabolites, selects the auxiliary metabolites with the
largest correlation, imputes the xenobiotic metabolites with univariate imputation, and imputes the
endogenous metabolites with a multivariate imputation (either KNN-obs-sel or MICE-pmm), which can
be found on our GitHub repository [13].

5. Conclusions

In conclusion, we provided a workflow for handling missing values in untargeted metabolomics
data using univariate imputation for xenobiotics and multivariate imputation using MICE-pmm or
kNN-obs-sel for endogenous and unannotated metabolites. We further evaluated MICE-pmm and
kNN-obs-sel in different simulated scenarios. Our evaluation showed that the performance of both
methods is affected by three different factors, namely the metabolite mean correlation with auxiliary
metabolites, the sample size, and the missing percentage. For MICE-pmm, sample size was the primary
factor affecting bias and error inversely. For kNN-obs-sel, the primary factor affecting bias and RMSE
was the metabolite correlation with the predictors, which, when high, can provide low bias and
RMSE even in small sample sizes (n = 50). Since most of our metabolites had low mean correlation,
MICE-pmm provided consistently higher performance measures than kNN-obs-sel and, as a result,
we suggest using MICE-pmm imputation for untargeted metabolomics, particularly for larger datasets
(n > 50).
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Appendix A. NEO Study Design

The Netherlands Epidemiology of Obesity (NEO) study is a population-based, prospective cohort
study of individuals aged 4565 years, with an oversampling of overweight individuals or individuals
with obesity. Men and women aged between 45 and 65 years with a self-reported BMI of 27 kg/m? or
higher, living in the greater area of Leiden (in the West of the Netherlands) were eligible to participate
in the NEO study. In addition, all inhabitants aged between 45 and 65 years from one municipality
(Leiderdorp) were invited, irrespective of their BMI. Recruitment of participants started in September 2008
and was completed at the end of September 2012. In total, 6671participants were included, of whom 5217
had a BMI of 27 kg/m? or higher. The NEO study was accepted by the Medical Ethics committee of the
Leiden University Medical Center under protocol P08.109. The study is also registered at clinicaltrials.gov
under number NL21981.058.08/P08.109. All participants gave written informed consent. Participants
were invited to come to the NEO study center of the LUMC for one baseline study visit after an overnight
fast. A blood sample of 108 mL was taken from the participants after an overnight fast of at least 10 h [20].
From the Leiderdorp subpopulation (n = 1671) we selected 599 Caucasian individuals with normal BMI
distribution and sent their serum samples for metabolomics analysis using the Metabolon platform and
for examination in this paper.

Appendix A.1. Evaluation Measures

In addition to using bias and RMSE we also converted these measures to percentages. This was
necessary because the estimates of the analysis model of the metabolites in complete NEO dataset varied
in magnitude and scale. For example, in sample size n = 599, the estimate for urate was 1.39 x 1078
and for succinylcarnitine was 2.84 X 107 (full details in Table 3 of the main manuscript). Percentage
bias was calculated by dividing the bias in each sample size set by the estimate calculated for the
respective sample size. RMSE percentage was calculated by subtracting then dividing all scenarios for
each metabolite by the corresponding true coefficient in sample size n = 599 and multiplying by 100.

Appendix A.2. Imputation Methods

The first step in our workflow was creating a correlation matrix for the metabolites in the dataset.
For each metabolite with missing values (X), we selected the ten metabolites without missing values
with the strongest absolute correlation |r| to X from the correlation matrix. Our metabolomics dataset
was generated on the latest measuring platform which greatly expanded the number of metabolites
but reduced the overall intercorrelation of the data. This reduction of the intercorrelation is partly
explained by the inclusion of remote metabolites in smaller pathways.

In standard kNN, distances are used to select closest neighbors to the observation with missing
values. In kNN-obs-sel, for each metabolite we used up to 10 auxiliary metabolites as predictors and
imputed the missing values by taking the average of the 10 nearest neighbors (K = 10) observations.
Multiple imputation using chained equations (MICE) is used for incomplete data in multiple variables
and may use discrete, categorical, and continuous variables of different units for the imputation [29].
When using the option predicted mean matching, it yields several different datasets with imputed
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values obtained from observed cases. The analysis of interest is then performed on each of the imputed
datasets separately and the results are pooled afterwards as described by White et al., (2010) [23] and
other articles [29-31]. Given that kNN-obs-sel calculates the mean from the auxiliary variables, it was
only possible to use metabolites (with the same units and scale) for the imputation. In contrast, we used
clinical variables sex and age in addition to the auxiliary metabolites as predictors. Furthermore,
the outcome, BMI, was added as well. Adding the outcome and the covariates is essential in MICE
imputations to avoid bias and underestimation in the imputation results as shown in simulation
studies [24] and discussed in several sources [17,23]. Adding the clinical variables and the outcome in
our study was an additional step that was not used in the simulation study by Do et al. [6].

Appendix B.

Table Al. Distribution of the mean correlation for the incomplete endogenous and unannotated

metabolites in NEO.

Mean 0.1-0.19,  0.2-0.29, 0.3-0.39, 0.4-0.49, 0.5-0.59, 0.6-0.69, 0.7-0.79,  0.8-0.89,
Correlation n (%) 1 (%) n (%) n (%) 1 (%) n (%) 1 (%) n (%) Total
Endogenous 32(8.79) 86 (23.63) 98 (26.92) 58 (15.93) 53 (14.56) 29 (7.97) 7 (1.92) 1(0.27) 364
Unannotated 53 (23.35) 83(36.56)  50(22.03)  22(9.69)  15(6.61)  1(0.44) 3(1.32) 0(0) 227

Combined 85(14.38) 169 (28.6) 148 (25.04) 80 (13.54) 68(1151) 30(5.08) 10(1.69)  1(0.17) 591

Approximately 80% of the metabolites have a mean correlation below 0.5 with their respective top 10 correlated
metabolites in the correlation matrix.
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Table A2. Percentage bias of the imputation methods across different parameters on different metabolites including MICE-pmm with a single imputation.

Metabolites/Imputation Method

Missing Sample Missing PC(32:2) Succinylcarnitine Glutamate Urate
Mechanism Size P
MICE-pmm kNN-obs-sel MICE-pmm [m = 1] MICE-pmm kNN-obs-sel MICE-pmm [m =1] MICE-pmm kNN-obs-sel MICE-pmm [m =1] MICE-pmm kNN-obs-sel MICE-pmm [m = 1]

MCAR n =50 15% 2.0 21 14 0.3 6.0 0.4 22 0.2 23 49 49 55
30% 3.2 4.5 3.4 2.8 14.4 2.6 8.6 1.1 8.8 11.3 10.2 10.1

60% 13.9 14.5 13.2 289 313 29.7 40.2 2.0 40.7 39.9 27.6 409

n =150 15% 0.7 0.5 0.9 14 13.8 17 0.2 19 0.3 0.7 0.5 0.5

30% 19 1.8 22 0.4 319 0.9 11 5.1 11 0.7 1.3 0.1

60% 3.9 3.2 34 52 72.7 0.6 6.2 15.0 6.0 2.09 12,5 2.1

n=>599 15% 0.3 0.8 0.3 0.1 9.3 0.2 0.2 2.6 0.3 0.6 22 0.4

30% 0.7 24 0.8 0.6 20.1 0.3 0.1 5.6 0.1 15 49 18

60% 19 7.9 17 35 50.9 4.6 0.7 15.1 0.8 26 15.0 24

PLoD n =50 15% 13 0.8 1.0 2.8 18 34 0.7 1.8 0.8 12.7 6.2 12.5
30% 35 22 2.8 7.7 4.3 7.5 4.2 3.6 41 263 16.5 255

60% 19.5 3.0 18.6 348 8.3 348 19.3 15.0 19.6 874 66.1 89.4

n =150 15% 0.2 1.6 0.2 0.7 12.8 0.7 13 0.8 14 53 6.3 54

30% 0.3 3.3 0.6 0.2 234 0.4 3.0 2.3 3.1 8.0 14.9 8.7

60% 42 2.6 4.2 16.2 46.1 17.2 9.4 8.6 9.1 39.8 59.7 38.2

n=>599 15% 0.5 0.1 0.5 0.9 7.3 1.0 0.9 14 0.9 0.5 1.9 0.5

30% 11 1.6 12 2.5 16.7 2.9 21 2.9 22 0.6 3.3 0.6

60% 4.9 115 49 9.7 543 9.2 4.1 13.1 4.4 0.1 4.3 0.6

Abbreviations: MCAR: missing completely at random; PLoD: probabilistic limit of detection; MICE-pmm [m = 1]: MICE-pmm with a single imputation.
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Table A3. Mean and standard deviation of the estimates of the imputation methods using the MCAR missing mechanism, the three sample sizes, the three missing

percentages, and four metabolites.

Missing

Metabolites/Imputation Method/Mean Estimate (SD)

Sample Size Percentage —PC(SZ:Z) kNN-obs-sel Succinylcarnitine kNN-obs-sel Glutamate kNN-obs-sel Urate kNN-obs-sel
MICE-pmm MICE-pmm MICE-pmm MICE-pmm
n=>50 0% -4.18 x 1077 2.84 x 1070 1.83 x 1077 1.39 x 1078
15% —4.46 x 1077 —4.47 x 1077 452 %1070 48x10°° 2.82x 1078 2.88 x 1078 9.11 x 10~ 1.01 x 108
(6.04 x 1078) (7.24 x 1078) (6.38 x1077) (7.38 x 1077) (1.29 x 1079) (1.69 x 1079) (329 x 1079) (3.27 x 1079)
30% —4.52 %1077 —4.57 x 1077 439 %1076 5.15x 1076 2.64 %1078 2.86 x 1078 85x 1077 1.06 x 1078
(1.04 x 1077) (1.21 x 1077) (1.02 x 107°) (1.24 x 107°) (2.61 x1079) (2.79 x 1079) (5.66 x 1079) (5.72 x 1079)
0% —-3.77 x 1077 -5.01 x 10-7 322 %1070 5.96 x 1076 1.73 x 1078 2.83x 1078 5.75 x 1072 1.22 %1078
(2.28 x 1077) (2.34 x 10-7) (1.73 x 107°) (2.58 x 107°) (6.06 x 1079) (557x107%)  (9.36x107%)  (1.13x107%)
n =150 0% -3.64 x1077 1.53 x 107° 2.89 x 1078 9.58 x 10~
15% -3.66 x 1077 -3.62 x 1077 1.54 x 107° 1.77 x 107 1.66 x 1078 1.69 x 1078 9.76 x 10~ 9.74 x 10~
(1.57 x 10~8) (1.53 x 1078) (4.09 x 1077) (4.17 x 1077) (8.24 x 10710y (8.15x 10710y (1.62x1079) (1.46 x 1079)
30% -3.71x 1077 -3.58 x 1077 1.52 x 107° 1.99 x 107° 1.64 x 1078 1.74 x 1078 9.75 x 10~ 9.82 x 107
(2.57 x 10~8) (2.29 x 1078) (6.43 x 1077) (6.94 x 1077) (1.37 x 1079) (1.21 x 1079) (2.45 x 1079) (2.29 x 1079)
0% -3.78 x 1077 -3.52 x 1077 1.48 x 107° 2.7 x107° 1.56 x 108 191 x 1078 9.89 x 10~ 1.09 x 1078
(4.87 x 1078) (4.3 x1078) (1.2 x 107%) (1.48 x 107°) (2.79 x 1079) (2.47 x 1079) (4.61 x 1079) (4.81 x 1079)
n =599 0% —4.38 x 1077 453 %1076 1.66 x 1078 9.69 x 10~2
15% -42 %1077 —4.22 x 1077 2.84 x 1076 3.1x107° 1.84 x 1078 1.88 x 1078 1.4 %1078 1.42 x 1078
(8.44 x 1077) (1.05 x 1078) (1.96 x 1077) (1.94 x 1077) (4.43 x 10710) (4.77 x 10710y (8.08 x10719)  (7.59 x 10710)
30% —4.21x 1077 —-4.28 x 1077 2.85x 1070 343 x 1076 1.84 x 1078 1.94 x 108 1.41 x 108 1.46 x 1078
(1.33 x 1078) (1.76 x 1078) (3.08 x 1077) (3.35x 1077) (7.05 x 10710) (716 x10710)  (1.27 x 1077) (1.19 x 1079)
0% —4.26 x 1077 —-4.51 %1077 2.79 x 1076 434 %1076 1.82 x 1078 211 %1078 1.43 x 1078 1.6 x 1078
(2.52 x 1078) (3.54 x 1078) (5.88 x 1077) (7.2 x1077) (1.34 x 1079) (1.27 x 1079) (2.47 x 1079) (2.55 x 1079)

Estimates are the regression coefficient from the model BMI ~ age + sex + metabolite. Therefore, the estimates are the mean increase in BMI per 1 unit increase of the metabolite. The 0%
rows are the estimates from the real data before amputing and imputing the missing values.
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Table A4. Mean and standard deviation of the estimates of the imputation methods using the PLoD missing mechanism, the three sample sizes, the three missing

percentages, and four metabolites.

Missing

Metabolites/Imputation Method/Mean Estimate (SD)

Sample Size Percentage —PC(SZ:Z) kNN-obs-sel Succinylcarnitine kNN-obs-sel Glutamate kNN-obs-sel Urate kNN-obs-sel
MICE-pmm MICE-pmm MICE-pmm MICE-pmm
n=>50 0% -4.18 x 1077 2.84 x 1070 1.83 x 1077 1.39 x 1078
15% —4.32x 1077 —4.34 x 1077 44x10°° 462 x 1076 2.87 x 1078 294 x 1078 8.36 x 1077 8.99 x 10~
(3.91 x 10°8) (3.35 x 1078) (2.56 x 1077) (1.79 x 1077) (1.09 x 1079) (1.29 x 1079) (2.53 x 1079) (2.19 x1079)
30% —4.22 x 1077 —4.28 x 1077 415x 1076 4.72 x 1076 2.77 x 1078 2.99 x 1078 7.07 x 107° 8 x 1079
(7.47 x 1078) (5.19 x 1078) (4.4 x1077) (2.83 x 1077) (2.07 x 1079) (1.99 x 1079) (3.7 x 107%) (3.14x1079)
0% -3.52x 1077 -4.51 %1077 3.05%x 107 496 x 1076 233 %1078 3.32x1078 1.21 x 107° 3.25%x107°
(1.82 x 1077) (1.32 x 1077) (1.18 X 107°) (1.19 X 107°) (4.89 X 1079) (3.59 x 1079) (7.1 x107%) (7.47 x 1079)
n =150 0% -3.64x 1077 1.53 x 107° 2.89 x 1078 9.58 x 10~
15% —3.65 x 1077 -3.58 x 1077 1.51 x 107° 1.72 x 107 1.64 x 1078 1.67 x 1078 9.18 x 10~ 9.08 x 10~
(1.26 x 1078) (1.22 x 1078) (3.88 x 1077) (3.61 x 1077) (6.63 x 10710y (5.85x 10710y  (1.62x1079) (1.31 x 1079)
30% -3.65 x 1077 -3.52 x 1077 1.49 x 10° 1.86 x 107° 1.61 x 1078 1.7 x 1078 891 x10~° 8.25x 107
(1.96 x 1078) (1.86 x 1078) 6.11 x 1077) (5.51 x 1077) (1.07 x 1079) (8.47 x 10710y (2,14 x 1079) (1.87 x 1079)
0% -3.79 x 1077 -3.74 x 1077 1.66 x 107° 2.11x 107 15x 1078 1.8x 1078 5.83 x 1072 391 x 107
(3.83 x 1078) (3.83 x 1078) (1.05 x 107°) 9.8 x1077) (1.8 X 1079) (1.51 x 1079) (3.36 x 1079) (3.08 x 1079)
n =599 0% —4.38 x 1077 453 %1076 1.66 x 1078 9.69 x 10~
15% —42 %1077 -4.18 x 1077 2.82 x 1070 3.05x 1076 1.82 x 1078 1.86 x 1078 1.4 x 1078 1.42 x 1078
(7.17 x 1079) (8.61 x1079) (1.59 x 1077) (1.5 x 1077) (3.37 x 10710) (3.1x1071% (657 x1071%) (5,63 x 10710)
30% -423 %1077 —-4.25 x 1077 2.79 x 1076 3.34x 1070 1.8 x 1078 1.89 x 108 1.4 %1078 1.44 x 108
(1.1x1078) (1.52 x 1078) (2.52 x 1077) (2.34 x 1077) (5.37 x 10710) (4.81x10710) (958 x10710)  (8.97 x 10710)
0% —4.39 x 1077 —4.66 x 1077 2.58 x 1070 437 x 1076 1.76 x 1078 2.07 x 1078 1.39 x 10~8 1.45 x 1078
(2.02 x 1078) (3.56 x 1078) (5.62 x 1077) (6.13x1077) (9.99 x 10710) (8.04x10710)  (1.64 x1077) (1.57 x 1079)

Estimates are the regression coefficient from the model BMI ~ age + sex + metabolite. Therefore, the estimates are the mean increase in BMI per 1 unit increase of the metabolite. The 0%
rows are the estimates from the real data before amputing and imputing the missing values.
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Table A5. RMSE of the imputation methods across different parameters on different metabolites.

18 of 22

Missing

Metabolites/Imputation Method

Missing Sample Size PC(32:2) Succinylcarnitine Glutamate Urate
Mechanism Percentage

MICE-pmm kNN-obs-sel MICE-pmm kNN-obs-sel MICE-pmm kNN-obs-sel MICE-pmm kNN-obs-sel

15% 6.56 x 1078 7.48 x 1078 6.5%x 1077 7.73 x 1077 3.32 %107 33x107° 1.44 x 107 1.69 x 10~

n =50 30% 1.04 x 1077 1.22 x 1077 1.02 x 1076 1.44 x 1076 5.76 x 107? 58x 107 3.59 x 1077 2.8x107°

60% 233 %1077 249 x 1077 2.22 x107° 2.95 % 107° 1.01 x 1078 1.16 x 1078 1.31 x 1078 5.59 x 1077

15% 1.71x 1078 1.69 x 1078 397 x 1077 46x1077 1.62 x 1077 146x 10~  824x10710 875x 10710

MCAR n =150 30% 2.63x 1078 2.49 x 1078 6.48 x 1077 85x 1077 2.45x%x 1077 2.29 x 107~ 1.38 x 10~ 1.47 x 107°

60% 523 x 1078 478 x 1078 1.27 x 107 1.84 x 107 4,62 x 107 496 x 1077 297 x 1077 351 x107?

15% 8.64 x 1072 1.08 x 1078 2,00 x 1077 335%x1077 812x10710  817x10710  445%x10710 6.71x 10710

n =599 30% 1.28 x 1078 1.95x 1078 3.08 x 1077 6.6 x1077 1.28 x 1079 1361077  7.05x10710 124 x107°

60% 2.63x 1078 5.04 x 1078 591 x 1077 1.61 x 107 2.5% 107 3.29 x 1077 1.35 x 1079 3.04 x 1077

15% 3.99 x 1078 323 x 1078 298 x 1077 2,00 x 1077 2.81x 107 2.26 x 1077 1.11 x 107 1.38 x 10~

n =50 30% 7.36 x 1078 5.36 x 1078 5.66 x 1077 348 x 1077 447 x 107? 351 x 1077 24 %107 2.24 x 1077

60% 1.87 x 1077 1.25 x 1077 2,00 x 107° 1.27 x 1076 1.1x 1078 9.79 x 1077 7.42 x 1077 5.62 x 1077

15% 1.33x 1078 1.36 x 1078 3.62x 1077 3.8%x1077 1.7 x 1077 145x 10~  697x10710 599 x 10710

PLoD n =150 30% 1.96 x 1078 2.15x 1078 597 x 1077 6.46 x 1077 2.27 x 107° 2.36 x 1077 1.18x 10~ 927 x 10710

60% 442 x 1078 3.98 x 1078 1.07 x 1076 123 x 107 511 x 107 6.55 x 1077 239 x 107 2.07 x 107

15% 7.54 x 1077 8.52 x 107° 1.67 x 1077 2.56 x 1077 6.6 x 10710 6.22x10710  377%x10710  4.03x 10710

n =599 30% 1.17 x 1078 1.64 x 1078 2.64 x 1077 532x1077  9.61x 10710 1.01x10™°  6.55x 10710 7.2 x 10710

60% 2.96 x 1078 5.82x 1078 6.4x1077 1.65 x 107° 1.64 x 1079 1.68 x 1079 1.25 x 1079 253 x 1077

Abbreviations: MCAR: missing completely at random; PLoD: probabilistic limit of detection; MICE-pmm [m = 1]: MICE-pmm with a single imputation.
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Table A6. Percentage RMSE of the imputation methods across different parameters on different metabolites including MICE-pmm with a single imputation.

Metabolites/Imputation Method

Mlss"fg Sample Size Missing PC(32:2) Succinylcarnitine Glutamate Urate
Mechanism Percentage
MICE-pmm  kNN-obs-sel MICE;pmm MICE-pmm  kNN-obs-sel MICE;pmm MICE-pmm  kNN-obs-sel MICE;pmm MICE-pmm  kNN-obs-sel MICE;pmm
[m=1] [m=1] [m=1] [m=1]

MCAR n =50 15% 14.6 17.4 18.3 229 27.2 29.0 79 9.2 10.9 239 237 29.7
30% 25.1 29.4 31.3 35.9 50.7 45.1 19.6 15.3 24.6 414 417 50.6

60% 56.2 57.9 71.2 78.2 103.9 96.1 71.4 30.5 78.0 72.5 83.3 89.1

n =150 15% 3.8 37 5.0 14.0 16.2 17.1 4.5 4.8 5.9 11.6 10.5 14.1

30% 6.4 5.7 8.2 228 29.9 27.7 75 8.0 9.8 17.6 16.5 21.1

60% 12.1 10.7 15.6 447 64.8 51.8 16.2 19.1 20.0 332 35.6 39.3

n=>599 15% 2.0 2.6 2.7 7.0 11.8 8.9 24 37 3.2 58 59 7.0

30% 33 48 4.0 10.8 232 13.3 38 6.8 47 9.2 9.8 11.6

60% 6.3 11.6 8.0 20.8 56.7 27.1 7.4 16.6 8.8 18.0 23.6 21.4

PLoD n=>50 15% 9.4 8.1 125 10.5 7.0 155 6.1 7.5 8.3 20.2 16.2 239
30% 182 12,6 23.3 19.9 123 25.5 13.1 122 17.0 32.1 25.2 37.2

60% 48.1 31.8 61.0 70.4 447 81.0 40.4 30.6 48.9 79.0 70.3 90.5

n =150 15% 3.0 3.2 41 12.7 13.4 15.7 3.8 3.3 4.9 122 104 137

30% 4.7 53 6.2 21.0 22.7 25.2 6.4 51 79 16.3 17.0 19.2

60% 9.9 9.4 13.4 37.7 433 493 13.0 113 16.7 36.7 47.1 425

n =599 15% 1.8 21 24 59 9.0 7.7 21 22 2.6 47 45 6.0

30% 28 3.9 37 9.3 187 12.6 3.6 3.9 44 6.9 7.3 8.6

60% 6.9 143 8.3 22.5 58.1 274 6.8 13.8 8.1 11.8 121 15.2

We converted the RMSE values to a percentage by subtracting then dividing the RMSE values by the corresponding true estimates (in sample size n = 599). Abbreviations: MCAR: missing
completely at random; PLoD: probabilistic limit of detection; MICE-pmm [m = 1]: MICE-pmm with a single imputation.
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Table A7. Runtime for MICE-pmm and kNN-obs-sel imputations using different datasets.

Dataset Sizes

Imputation Method
n=599 n=5400 n=20,000
MICE-pmm (minutes) 1.9 13.4 138.9
kNN-obs-sel (minutes) 0.7 16.2 210.7

Imputation was applied to the actual NEO dataset (n = 599; 58% metabolites contain missing values) and two
oversampled datasets generated from the NEO data. With n = 599, kNN-obs-sel was slightly faster. However,
MICE-pmm imputation took a shorter time to complete the imputations in larger datasets.
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Figure A1. Nested loop plot of the percentage bias of the four metabolites from the simulation including
MICE-pmm with a single imputation. The X axis in each box represents the missing percentage and is
split per sample size. Abbreviations: MCAR: missing completely at random; PLoD: probabilistic limit
of detection; MICE-pmm [m = 1]: MICE-pmm with a single imputation.
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Figure A2. Nested loop plot of the percentage RMSE of the four metabolites from the simulation
including MICE-pmm with a single imputation. To simplify comparability in the plot we converted the
RMSE values to a percentage by subtracting then dividing the RMSE values by the corresponding true
estimates (in sample size n = 599). The horizonal axis in each box represents the missing percentage
and is split per sample size. Abbreviations: MCAR: missing completely at random; PLoD: probabilistic
limit of detection; MICE-pmm [m = 1]: MICE-pmm with a single imputation.
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