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Abstract

The endothelial glycocalyx (EG) is the thin sugar-based lining on the apical surface of endothelial cells. It has been
linked to the physiological functioning of the microcirculation and has been found to be damaged in critical illness
and after acute care surgery. This review aims to describe the role of EG in severely injured patients undergoing
surgery, discuss specific situations (e.G. major trauma, hemorrhagic shock, trauma induced coagulopathy) as well as
specific interventions commonly applied in these patients (e.g. fluid therapy, transfusion) and specific drugs related
to perioperative medicine with regard to their impact on EG.

EG in acute care surgery is exposed to damage due to tissue trauma, inflammation, oxidative stress and inadequate

recovery in clinical medicine.

fluid therapy. Even though some interventions (transfusion of plasma, human serum albumin, hydrocortisone,
sevoflurane) are described as potentially EG protective there is still no specific treatment for EG protection and

The most important principle to be adopted in routine clinical practice at present is to acknowledge the fragile
structure of the EG and avoid further damage which is potentially related to worsened clinical outcome.
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Background

This review aims to describe changes of the EG in critic-
ally ill patients requiring acute care surgery to facilitate
clinical appreciation and translation of current evidence
into clinical practice. The impact of major trauma, acute
surgery and selected interventions commonly linked to
perioperative care (e.g. fluid therapy, transfusion and
specific drugs) on EG integrity will be evaluated. Finally,
this review discusses key principles to be adopted by cli-
nicians in order to mitigate EG injury and/or to enhance
EG recovery.
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Biochemistry

EG is a carbohydrate-rich mesh covering the apical sur-
face of endothelial cells. It is composed of sulphated glyco-
proteins connected with sialic acids (heparan sulphate,
dermatan sulphate), core proteoglycans (syndecan family,
mainly syndecan-1) and non-sulphated glycosaminogly-
cans connected directly to the cytoplasmic membrane of
the endothelial cells (CD 44) [1, 2].

Physiology

The EG does not only serve as constitutive mechanistic
component of the capillary barrier, it has been linked to
several important physiological functions of the micro-
circulation: mechano-transduction [3], blood coagulation
[4], immunity [5], antioxidation [6] and interaction with
serum proteins [7] and sodium [8].

Pathophysiology
The delicate nature of the EG makes it extremely vulner-
able to damage especially in critical illness such as septic
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shock [9], ischemia-reperfusion (IR) syndrome, and
major trauma [10]. Understanding the role of EG in
these conditions is of paramount importance as further
damage to the EG can likely play a role in clinical deteri-
oration of the patient, i.e. capillary leakage and intersti-
tial oedema, thrombosis, loss of immune-surveillance
and multiorgan failure [11]. Not surprisingly, critically ill
patients require often various surgical interventions that
may augment existing EG damage.

Visualization and assessment

EG is difficult to visualize and quantitative studies are
challenging. First successful electron microscopy of the
EG dates back in 1966 [12] although its presence was pre-
dicted even earlier [13]. Despite wide usage of transmis-
sion electron microscopy (Fig. 1), fluorescence microscopy
and intravital microscopy in experimental research [14]
these methods are not applicable in clinical patients at the
bedside. Clinically, EG can be assessed by Side-stream
Dark Field imaging (SDF), or recently Incidental Dark
Field imaging (IDF) and specialized software to calculate
the so-called Perfused Boundary Region (PBR) which
describes the lateral deviation of red blood cells from the
central columnar flow and indirectly assesses the extent of
EG damage [15]. Second most widely used method to
investigate the EG is the biochemical analysis of EG
degradation products (e.g., syndecan-1, heparan sulphate,
hyaluronan) [16, 17]. A glycocalyx can also be found on
other cells, such as red blood cells [18].

Fig. 1 Electron microscopy of endothelial glycocalyx in human
umbilical vein endothelial cells by cationized ferritin. Black and
white arrows demark the endothelial glycocalyx. The bar
represents 200 nm. Image was captured using JEOL JEM-1400Plus
transmission electron microscope at the Dept. of Histology and
Embryology, Faculty of Medicine in Hradec Kralove, Charles
University, Czech Republic. (Courtesy of Dana Cizkova M.D., Ph.D.
and Ales Bezrouk Ph.D.)
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A summary of a search of the existing literature

The PubMed was searched for words: glycocalyx, acute
care, trauma, surgery, damage control, anaesthetics,
sevoflurane, desflurane, isoflurane, propofol, opioids,
fentanyl, morphine, rocuronium, vecuronium, atracur-
ium, pancuronium, catecholamines, phenylephrine,
ephedrine, noradrenaline, norepinephrine, adrenaline,
epinephrine, insulin, hydrocortisone, antibiotics, ceph-
alosporin, penicillin, quinolones, doxycycline, blood
transfusion, transfusion, fresh frozen plasma, plasma
transfusion, erythrocytes, blood products, platelets,
thrombocytopenia, cryoprecipitate, albumin, coagula-
tion factors, immunoglobulin, sepsis, septic shock. We
identified 2715 records. After duplicates removal 1089
papers were screened for relevance and 130 papers
were included into the review (Fig. 2). Inclusion criteria
were original papers and reviews, English language, topic
concerning glycocalyx in clinical and experimental re-
search, publication from 1966 till January 2019.

Endothelial glycocalyx in acute care surgery
Endothelial glycocalyx in acute trauma and trauma-
related coagulopathy

Major trauma leads to 5.8 millions of deaths worldwide
annually [19]. Within the first hours, traumatic brain in-
jury, unsurvivable body disruption and exsanguination
are the major causes of death [20] [21]. Despite of exten-
sive research in this field, optimal care of trauma pa-
tients remains a challenge. Trauma induces a systemic
inflammatory response syndrome (SIRS). SIRS-related
stress affects EG integrity by several pathways and mech-
anisms. Acute hyperglycaemia has been demonstrated by
Diebel et al. to take part in trauma-induced EG injury
[22]. EG shedding is also promoted by enzymes released
from damaged tissue and leukocytes (e.g. matrix metal-
loproteinase, hyaluronidase, heparanase). Degradation
products of EG such as syndecan-1, hyaluronan, and
heparan sulphate) have several functions. They activate
TLR-2 and TLR-4 receptors as damage associated mo-
lecular pattern (DAMP) potentiating the inflammatory
response [23] which can even lead to compensatory im-
munosuppression [24] and higher risk of nosocomial pneu-
monia in severely injured patients [25, 26]. On the contrary,
this microvascular response to trauma is of physiological
importance. EG contains nearly 1.51 of plasma which is
ready to replenish intravascular space if needed [27] and
thus EG acts as a potent and fast fluid reservoir.

Sensitivity of EG to degradation in this context repre-
sents an evolutionary advantage to counteract acute
blood loss (in conjunction with activation of sympathetic
nervous system keeping vital organs perfused).

The primary insult triggers EG shedding [28] which
has been shown to increase with severity of injury. High
levels of syndecan-1 were associated with severity of
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Fig. 2 Flow chart of literature search and selection

traumatic brain injury (TBI) [29, 30] and increased mor-
tality [16, 31]. Alteration of EG has been also shown in
experimental spine injury in rat [32]. In patients with
major burns high levels of syndecan-1 were associated
with age and fluid requirements [33]. These changes lead
to general activation of the endothelium, i.e. traumatic
endotheliopathy [34].

Secondary injury can be induced by SIRS, IR, oxidative
stress, and iatrogenic damage due to the inadequate fluid
therapy (see below) as well as inadequately performed
damage control surgery (Fig. 3). Damage control surgery
is meant to treat the “lethal triad” (metabolic acidosis,

hypothermia, coagulopathy) rather than correcting anat-
omy [35] and should be always considered as an inter-
vention aiming to stop ongoing haemorrhage and/or to
remove necrotic tissue. One of the techniques used to
prevent excessive blood loss is permissive hypotension
which has been shown to increase survival and decrease
complications [36]. On the other hand, prolonged
hypotension leads to impaired microcirculation and EG
damage [37] and perioperative lung injury [38].

Blood loss and hemorrhagic shock are closely associated
with severe trauma. Optimal fluid management in
hemorrhagic shock has been studied extensively in animal
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Fig. 3 Endothelial glycocalyx is damaged by primary and secondary injury. This figure demonstrates that secondary injury is more diverse and is
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models [39, 40] and is discussed later. Filho et al. showed
that the EG is damaged also at the venular level of the
mesenteric and skeletal muscle microcirculation [41]
which might be responsible for further pathophysiologic
changes manifesting clinically (especially intestinal failure
and spontaneous bacterial peritonitis due to impaired per-
meability of intestinal wall). Leakage of plasma proteins
and subsequent decrease in colloid osmotic pressure fur-
ther aggravates the EG damage and impaired permeability
[28]. Conversely, the degradation of EG seems to be
independent of increased permeability in rat model of
non-traumatic hemorrhagic shock [42]. Beside transfusion
therapy, which is capable of EG modulation (discussed in
detail below), valproic acid has been shown to decrease
lesion size and volume in rodent model of TBI but
increased EG shedding [43].

After major trauma, hypoperfusion and vascular dam-
age cause almost immediately primary endogenous dis-
turbances in the coagulation system known as acute
traumatic coagulopathy (ATC) [44]. The cell-based
model of hemostasis [45] is the key concept for under-
standing its pathophysiology as a complex balanced sys-
tem of pro- and anticoagulant factors (distinct molecules
in plasma), various blood cells and finally blood vessels.
Fundamentally, there are four separated entities in the
pathophysiology of ATC — [1] activated protein C (APC)
pathway, [2] endothelial dysfunction (traumatic endothe-
liopathy), [3] inadequate amount of fibrinogen and [4]
platelet dysfunction. Among them, the APC pathway is
considered to play an essential role [46]. After tissue
trauma, due to increased expression of thrombomodulin
on the endothelium and massive thrombin generation
(known as “thrombin burst”) thrombin-thrombomodulin
complexes arise in large numbers [47]. These complexes
dramatically accelerate activation of protein C [48]
which in turn has pivotal role in tipping the balance of
haemostasis in favour of hypocoagulation. Through in-
activating factor Va and Vlla, the APC leads to reduced
clot formation and via antagonism of tissue-type plas-
minogen activator inhibitor (PAI-1) it amplifies clot
breakdown.

Altered tissue perfusion represents another character-
istic feature of hemorrhagic shock. Naumann et al. [37]
demonstrated in 17 trauma victims that endotheliopathy
and glycocalyx shedding are the key factors in the al-
tered microcirculatory flow after hemorrhagic shock.
Moreover, they measured significantly higher levels of
thrombomodulin after trauma versus healthy cohort. EG
disruption after trauma was consistently described [16].
Several factors including tissue trauma, inflammation,
hypoperfusion and sympathoadrenal activation may re-
sult in EG shedding, endothelial activation with expres-
sion of anticoagulant proteins on the luminal surface
and hyperpermeability. Two potential mechanisms of
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ATC induced by EG destruction have been identified re-
cently. The first one is a link between EG integrity and
APC pathway [31, 49-51] - EG disruption (measured by
serum syndecan-1) correlates with increased soluble
thrombomodulin level, reduced protein C concentration
(indirect marker of elevated APC), elevated vascular endo-
thelial growth factor and degranulation of Weibel-Palade
bodies [52] (containing tissue plasminogen activator and
angiopoietin 2). Tissue trauma releases tissue plasminogen
activator (t-PA) from endothelial cells. Under conditions
of increased adrenalin and vasopressin serum levels the t-
PA release is augmented [34] leading to hyperfibrinolysis.
Furthermore, a connection with other haemostatic sys-
tems (immune, sympathoadrenal, etc.) can be presumed,
which are linked to coagulation [53] although strong
scientific evidence remains to be discovered.

The second possible mechanism of EG-induced ATC
is auto-heparinization. EG is made up by glycosamino-
glycan macromolecules, out of which heparan sulphate
forms the majority. Rehm et al. [54] showed in major
vascular surgery patients the connection between disrup-
tion of EG and heparan sulphate release. Its heparin-like
properties leads to anticoagulation (or endogenous
heparinization), which can be detected by TEG or
ROTEM [55]. This auto-heparinization appears to be
augmented in hemorrhagic shock and can be recognized
as a continuum of EG shedding [55-57].

Acute traumatic coagulopathy as a result of endogen-
ous coagulation deficit, can be further worsened by in-
adequate resuscitation (including hypothermia and
haemodilution). It has been also termed as a trauma-
induced coagulopathy (TIC), to describe those mecha-
nisms affecting the coagulation following trauma.
Thus, trauma care providers should focus on primary
endogenous coagulopathy (ATC) as well as support
care to avoid secondary TIC. For example, crystalloid
overload may lead to transient hypervolemia [58],
which can contribute itself to EG disruption and in
fact worsen ATC/TIC [59].

Therefore, a rational approach of trauma resuscita-
tion should take not only the substance (specific fluid
composition, drugs etc.), but also its amount and other
factors (i.e. time, patient’s temperature, serum pH) into
account. This approach is crucial, since we do not have
specific EG regeneration therapies and the only way to
block EG disintegration is early reversal of tissue hypo-
perfusion and avoiding further progression of shock.
Routinely used tranexamic acid might be the sole ex-
ception: in vitro protective effect on EG has been dem-
onstrated in oxidative stress [60].

Key clinical targets to prevent further EG damage:

e Effective source control of bleeding, damage control
surgery if indicated
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e Effective resuscitative measures to restore/maintain
adequate tissue oxygenation and perfusion

e Early administration of tranexamic acid

e To avoid worsening precipitating factors of ongoing
coagulopathy, especially hypothermia and
haemodilution

Endothelial glycocalyx in acute surgery, anaesthesia and
perioperative care

Fluid therapy

Patients undergoing acute care surgery are frequently
hemodynamically unstable. Therefore, multiple inter-
ventions are needed to save their lives. Fluid therapy is
still considered the cornerstone of hemodynamic re-
suscitation [61]; in particular, in patients with hypovol-
emic/hemorrhagic and septic shock, who represent the
vast majority of the high-risk acute care surgery popu-
lation. Over the years, the number of available resusci-
tative fluids has decreased [62] because more adverse
effects of certain fluids have been discovered [63]. It
has been repeatedly demonstrated (both in animal ex-
periments [41, 64, 65] and using laboratory markers of
EG disruption in humans) [34, 57, 66] that inflammation,
sepsis, trauma, and haemorrhage all lead to EG shedding.
The SHINE acronym (shock induced endotheliopathy)
has been proposed to describe this pathology common to
sepsis, IR and/or traumatic shock states [67].

Based on our current knowledge, SHINE plays an im-
portant role in the regulation of endothelial permeability;
the so called revised Starling principle [27, 68]. In situa-
tions, when the EG is disrupted, the extravascular fluid
leak may promote oedema formation with all its conse-
quences. The nature of the disease process and severity
of the EG injury may hence play an important role and
have implications on the volume needed to regain ad-
equate circulating blood volume. In an observational
study in 175 septic shock patients in a single centre
emergency department, high levels of syndecan-1 indi-
cated patients with higher risk of intubation (odds ratio
of 2.71 (1.33-5.55 95% confidence interval)) after a
“large volume” (mean volume of 41) fluid resuscitation
[69]. The different volume effects of hydroxyethyl starch
infusion in blunt and penetrating trauma observed in
the FIRST (Fluid In Resuscitation in Severe Trauma)
trial may be hypothetically coupled with unequal EG
activation though not measured in this study [70]. In an-
other observational trial, serum hyaluronan levels were
associated with the cumulative fluid load administered
during the emergency treatment of patients with inflam-
mation, sepsis and septic shock [66]. Differences in vol-
ume kinetics observed in multiple studies (reviewed in
Hahn and Lyons) [71] might all point on our sparse
knowledge about the actual effect of fluid therapy and
poor understanding of its limits [72].
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However, the relationship between EG and fluids is
not unilateral. Recently, there has been an increasing
number of studies demonstrating that fluid administra-
tion itself may lead to EG damage. In normovolemic
human volunteers, intravascular expansion using crystal-
loids [73, 74] increased significantly the hyaluronan
serum levels pointing on EG shedding, whereas infusion
of 4% albumin and dextran seemed not to have any in-
fluence in the latter study [73]. Crystalloid bolus in term
parturient also led to increase in EG shedding markers
(heparan sulphate and syndecan-1) in another observa-
tional study [75]. Atrial natriuretic peptide (ANP) was
associated with transient hypervolemia and EG shedding
in another human study [58], but did not entirely ex-
plain the findings in parturients [75]. Recently, a Sloven-
ian group has demonstrated in patients undergoing
elective laparoscopic cholecystectomy that large volume
fluid intake (15 ml/kg/hour) led to increase of hyaluronic
acid and syndecan-1 levels as compared to restrictive
regimen (1 ml/kg/hour) [76]. In all these trials the EG
degradation molecules (syndecan-1, hyaluronan or hepa-
ran sulphate) were used to study EG shedding. In an-
other study of elective surgical patients our group has
demonstrated a transient decrease in EG thickness after
crystalloid fluid challenge using intravital real time light
reflectance video-microscopy of sublingual microcircula-
tion and PBR calculations [77]. All previous studies were
based on human volunteers or elective patients with pre-
sumably intact EG and its derangements may be attrib-
uted to transient hypervolemia induced by fluid infusion
and/or ANP release. Besides, it seems that the concen-
tration of sodium may play important role in EG stabil-
ity. Martin et al. has recently performed an in vitro
study demonstrating EG degradation (both by syndecan-
1 serum levels and by fluorescent microscopy) in hyper-
natremic conditions (160 mEq/L) further worsened by
simulated shock conditions [78]. Our group has ob-
served increased PBR thickness in rabbits after infusion
of hypertonic 10% saline though not coupled with in-
creased EG-degradation molecule levels possibly explain-
able by acute volume change in EG layer [79].

In acute care surgery, the situation might be much
more complex. The EG is generally damaged by the pri-
mary impact and fluids may further aggravate the injury
although in some cases restoration is possible. In a sec-
ond arm of the above-mentioned trial by our group [77]
the same crystalloid fluid challenge was performed in re-
suscitated septic shock patients; the PBR was signifi-
cantly higher (hence EG thinner) among these patients,
moreover the fluid challenge increased the PBR further
on. Unlike in the elective surgical population, in septic
patients the PBR increase lasted until the end of experi-
ment. In a small animal study of acute pancreatitis, fluid
resuscitation to pre-septic baseline vs. fully stroke
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volume maximalization led to smaller infusion volumes
and oedema formation in pancreatic tissue, but also
smaller inflammatory activation (interleukin-6) and EG
damage (measured by heparan sulphate levels) [80]. In
a set of animal experiments with non-traumatic
hemorrhagic shock in rats, Torres et al. demonstrated
that lactated Ringer, normal saline, and to lesser in-
tense iso-oncotic (5%) albumin solution and hyper-
tonic (3%) saline decrease the thickness of the EG and
increase the EG disruption molecules (snydecan-1 and
heparan sulphate) [59, 64]. Interestingly volume re-
placement with allogenic blood products did not have
such detrimental impact in both these trials. Similar
results were found in a canine model of haemorrhage
and shock [65] with the most pronounced EG injury
and inflammation activation (measured by IL-6 and IL-
8 and IL-10 release) after crystalloid resuscitation as
compared to fresh whole blood; artificial colloids (gel-
atine and hydroxyethyl starch) were somewhat less in-
jurious and almost comparable to whole blood in this
trial. It is important to note that the disruptive effect
of fluid loading in many of these experiments mea-
sured via degradation molecules and vascular perme-
ability did not match entirely [42, 64] pointing to the
fact that there may be other hidden factors involved.
For instance, spingosine-1-phosphate (a phospholipid
normally carried by albumin and produced by red
blood cells) has been identified recently as a potential
target molecule being able to stabilize the EG matrix
[81, 82]. A possible protective effect of iso-oncotic
albumin solution has been reported by Jacob et al. in
two laboratory studies with isolated heart but didn’t
seem to be clinically reproducible [83, 84].
Key clinical targets to prevent further EG damage:

e Avoiding fluid overload

e Avoiding severe hypernatremia

e No direct recommendation regarding the type of
solution as well as preference of some molecules (i.e.
gelatine, HES, albumin) could be made

Blood products

Blood products are classified as blood components
(red blood cells, platelets, fresh frozen plasma and
cryoprecipitate) or plasma derivatives (albumin, coagu-
lation factors and immunoglobulins). Blood compo-
nents and selected coagulation factors are often
administered during acute surgery due to pre-/intra-
operative blood loss and coagulation deficits, namely
in the context of the major trauma bleeding [85].
Moreover, endotheliopathy and sympathoadrenal acti-
vation may drive hypocoagulability and hyperfibrinoly-
sis in trauma patients [67, 86]. Despite the fact that it
is difficult to distinguish EG injury due to critical
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conditions (e.g. trauma) and due to the effect of a par-
ticular blood product, evaluating the effects of blood
components on EG integrity is definitely of great inter-
est for clinicians and may broaden our view on the
current transfusion practices in various subgroups of
patients.

Red blood cells transfusion There are only few clinical
studies evaluating the effect of RBC transfusion on
various markers of EG integrity as a primary endpoint,
most of them evaluate relationship between severity of
the illness/injury and various laboratory markers of
endothelial damage in different groups of patients. In
patients with hematologic diseases, RBC transfusion
was associated with reduced EG degradation as
assessed by syndecan-1 levels [87], and in severely
injured patients soluble vascular endothelial growth
factor receptor 1 and syndecan-1 levels correlated with
high early and late transfusion requirements [88]. A
prospective, observational study revealed, that the
combined highest plasma levels of adrenaline, injury
severity, shock and in-hospital transfusion were associ-
ated with excessively increased syndecan-1 levels [89].

Overall, current evidence supports the possible role of
RBC transfusion in modulating EG. However, in the
clinical setting of acute patients, effects of other parallel
interventions may play a bigger role. Therefore, to our
opinion, any scientifically based conclusion for clinical
practice cannot be drawn at this stage.

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Fresh frozen plasma Current evidence supports the
concept of plasma as a key player in protection from
endotheliopathy induced by trauma or hemorrhage
[90, 91]. The effects of plasma protein administration
on glycocalyx thickness of frog mesentery vessels was
studied even in early nineties, the total glycocalyx
thickness was twice the value seen with Ringer solution
[92]. Experimental studies suggest that plasma can re-
pair the endothelial surface by restoring EG and inhi-
biting shedding of syndecan-1 [90, 91, 93, 94]. A
clinical trial evaluating patients undergoing emergency
surgery for thoracic aorta dissection found that solvent/
detergent-treated pooled plasma reduced glycocalyx and
endothelial injury compared to standard fresh frozen
plasma (FFP) [94]. A recently published review summa-
rizes extensively the current evidence on the role of
plasma in protecting endothelium [95]. Syndecan-1 seems
to be a key mediator of possible beneficial effect of plasma
on EG integrity, where plasma enhances endothelial
syndecan-1 expression in dose dependent manner [96].
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While there is extensive preclinical evidence for the ability
of FFP in preserving the EG, suggesting a role beyond its
current indication as a source of coagulation factors, this
evidence is currently lacking for preparations of factor
concentrates that are currently marketed and recom-
mended as alternatives. There is currently insufficient
clinical evidence upon which to recommend FFP over fac-
tor concentrates in this respect, but arguably there is both
rationale and equipoise for a randomised controlled trial.

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Cryoprecipitate Searching for relevant studies evaluat-
ing cryoprecipitate administration in relation to EG re-
trieved no results.

Coagulation factor concentrates We found one ex-
perimental study evaluating the impact of coagulation
factor concentrates (CFC) on markers of endothelial
cell damage in experimental hemorrhagic shock. Rats
were resuscitated with FFP, human albumin, and
Ringer’s lactate, supplemented with fibrinogen concen-
trate or prothrombin complex concentrate. There was
no benefit of CFC co-administration on markers of EG
shedding. Resuscitation with FFP restored heparan
sulphate back to baseline levels [97]. Wu and co-
workers recently hypothesize the important role of fi-
brinogen in stabilizing syndecan-1 on the cell surface
and propose interesting pathway for protecting effect
of fibrinogen of endothelium [98]. If such barrier effect
of fibrinogen on EG confirmed and extrapolated in
clinical practice, we would have the other reason to
support the early use of fibrinogen in patients with
hemorrhagic shock and related endotheliopathy then.

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Platelets Platelet adhesion to endothelial cells is import-
ant in triggering thrombosis and inflammation. Intact
EG seems to be a prerequisite to prevent such adhesion.
Our search revealed no studies evaluating platelet trans-
fusion with relation to EG. The role of interaction be-
tween platelets transfusion and EG needs to be explored
urgently, current knowledge supports the key role of
platelets in inflammation and sepsis [99, 100].

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None
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Current evidence does not allow any clinically relevant
conclusions or recommendations with respect to com-
mon transfusion practices. It is clear that there is bio-
logical interaction between the endothelium and blood
products, as soon as they reach the intravascular com-
partment during their administration. Nevertheless, such
interaction, especially in the setting of acute care sur-
gery, will be affected by several other internal (e.g. base-
line EG status) and external factors (e.g. fluid balance,
sodium levels) which makes it difficult to predict the ef-
fects of particular blood products on EG integrity. On
the other side, the concept of plasma administration as
an intervention to attenuate endotheliopathy related to
trauma (or surgery) seems to be promising and deserves
further clinical testing.

Specific drugs

Apart from fluid resuscitation and blood products, the
most administered drugs in the perioperative setting
are anaesthetics, catecholamines, insulin, steroids and
antibiotics.

Anaesthetics There are only a few publications on EG
effects of anaesthetics. First studies on the acute impact
of (local) anaesthetics on EG integrity were published al-
most 40 years ago. However, those early studies focused
on the erythrocyte EG [101, 102]. Aesthetic effects on
endothelial EG were only studied in the last decade. The
first study on the effects of volatile anaesthetics on EG
structure was published by Annecke et al. in 2010 [103].
The authors observed in isolated guinea pig heart prepa-
rations, that sevoflurane protects the endothelial EG
from IR-induced degradation. In another study in anes-
thetized pigs, the same authors found, that sevoflurane
proves to be superior to propofol in protecting the endo-
thelium from IR injury [104]. Casanova et al. confirmed
the findings in the pulmonary circulation [105]. For
desflurane or isoflurane, such studies are not available.
Unfortunately, the only clinical study in patients so far
was not able to reproduce the better protective effects of
sevoflurane on endothelial EG compared to propofol
during lung surgery (Kim, 2018) [106]. With regard to
propofol, Lin et al. reported that high doses of propofol
cause an ATP-dependent reduction of EG expression
and consequently lead to vascular hyperpermeability due
to the loss of endothelial barrier functions [107]. Opioids
and muscle relaxants are not studied yet regarding their
potential impact on EG. According to the results of our
own studies, regional anaesthesia seems to have less im-
pact on EG compared to general anaesthesia, however,
such preliminary results must be robustly confirmed by
adequately powered clinical trials before any recommen-
dation for particular anaesthesia technique to modulate
EG can be made [108].
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Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Catecholamines In acute care surgery, catecholamine
administration is often required as a consequence of
anaesthetics-induced vasodilation and/or relative or ab-
solute hypovolemia, respectively [109]. The impact of
fluid resuscitation and blood product administration on
EG was described above. Catecholamines are clinically
used to bridge critical situations and stabilize the
hemodynamics of the patients. Therefore, they are bene-
ficial to reduce detrimental effects of hypotension on EG
integrity. Catecholamines also help to reduce potential
negative side effects of fluid therapy such as hypervole-
mia, which is also known to cause shedding of the EG
[110]. Interestingly, in a recent study, Byrne et al. ob-
served a paradoxical increase in vasopressor requirement
during fluid resuscitation in experimental septic shock
compared to vasopressor only treatment [111]. Combin-
ation of fluid therapy with vasopressors did not result in
improvements in any of the microcirculatory or organ-
specific markers measured in this model. The increase in
vasopressor requirement may have been due to EG
damage secondary to ANP-mediated EG shedding. Apart
from the hemodynamic impact, some investigators stud-
ied other direct or indirect effects of catecholamines on
the EG. In vitro, Martin et al. treated human umbilical
vein endothelial cells (HUVEC) with varying concentra-
tions of norepinephrine or epinephrine [112]. Norepin-
ephrine was associated with significantly greater EG
damage and endothelial activation vs. epinephrine treat-
ment groups.

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Insulin Hyperglycaemia is a physiological stress re-
sponse. However, both acute and chronic hypergly-
caemia can cause EG damage [2]. E.g., Zuurbier et al.
showed in mice with acute hyperglycaemia (25 mmol/I)
a sustained increase in EG permeability [113]. In
humans, Nieuwdorp et al. reported almost 50% loss of
EG volume at a blood glucose level of 15 mmol/l. [114]
The same dramatic changes in EG volume can be ob-
served in patients with type I diabetes and chronic
hyperglycaemia — approximately a half of the EG vol-
ume is lost [115]. The underlying mechanism connect-
ing hyperglycaemia and glycocalyx disruption is not
fully understood yet. In a recent review article, Lemkes
et al. postulated that hyperglycaemia leads to the for-
mation of reactive oxygen species, which can cause
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direct EG damage [116]. Therefore, glycaemic control
represents not only a metabolic requirement, but also
a way to protect the EG. Accordingly, O’'Hora et al.
were able to demonstrate in anesthetized pigs, that in-
sulin was able to improve vascular reactivity. However,
in contrast to their working hypothesis, this was a EG-
independent insulin effect mediated through increased
NO synthesis [117]. At present, no clinical data regard-
ing insulin effects on endothelial EG setting are avail-
able in the acute care surgery. Given the immanent
risks of perioperative hypoglycaemia, insulin should be
carefully administered and the optimal perioperative
blood sugar range is considered to be 5 to 10 mmol/l.
[2] Interestingly, in patients with pre-existing diabetes,
insulin therapy (in contrast to oral antidiabetic ther-
apy) was shown to be related to higher levels of serum
syndecan-1, generally considered as a marker of EG
shedding, i.e. damage. However, in the presence of in-
sulin, there is an even larger increase in syndecan syn-
thesis compared to in its absence, which is actually
beneficial since syndecan-1 can decline leukocyte—
endothelial cell interactions, decrease angiogenesis,
reduce inflammatory responses and anti-coagulate,
which can protect endothelial cells from damage of
inflammation, and slower down the development of
micro and macroangiopathy [118].
Key clinical target to prevent further EG damage:

e Avoiding severe hyperglycaemia

Steroids Main indications for the administration of ste-
roids in the acute care surgery setting include anti-
oedematous (brain surgery, airway complications), im-
munosuppressive (transplant), and anti-emetic (PONV)
therapies. Furthermore, patients with long-standing, high-
dose corticosteroid treatment require usually a “stress-
dose” of hydrocortisone. Stress was experimentally in-
duced by Chappell et al. by TNF-alpha infusion into
guinea pig hearts causing severe EG destruction in the
coronary vessels. Pretreatment with hydrocortisone was
able to attenuate these changes significantly [119]. Of
similar benefit was the administration of hydrocortisone
in ischemia and reperfusion, mitigating inflammation, thus
protecting against the ‘low-reflow’ phenomenon [120].
Furthermore, hydrocortisone is recommended in the Sur-
viving Sepsis Campaign guidelines in patients with septic
shock refractory to fluids and vasopressors [121].

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e Consider stress dose of hydrocortisone

Antibiotics Antibiotics are an integral part of acute care
surgery — as perioperative prophylaxis or specific therapy
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Author, reference

Agent

Description

Diebel [60]

Barelli [95]

Nelson [40]
Annecke [103]
Alves [81], Zeng [82]
Astapenko [108]

Tranexamic acid

Fresh frozen plasma
Human serum albumin
Sevoflurane
Sphingosine-1-phosphate

Regional anaesthesia

Inhibition of endothelial sheddase activation in HUVEC

Restoration of endothelial barrier function

Faster plasma volume expansion in a rat model of hemorrhagic shock
Decreased transudate formation after IR in guinea pig hearts

Protecting endothelial mitochondrial integrity, inhibition of syndecan-1 shedding
Decreased raise in PBR in hip replacement surgery

Attenuation of coronary vessel damage after IR in guinea pig hearts

Chappell [119] Hydrocortisone
Lipowsky [125] Doxycycline
Carden [126] L-658758
Lennon [17] Hyaluronan
Broekhuizen [128] Sulodexide
Schmidt [129] Heparin

Inhibition of MMP in rat mesenteric microcirculation
Inhibition of elastase in isolated rat lungs after IR
Reconstitution of EG

Reconstitution of EG

Inhibition of heparanase

for infections [122]. The action of some antibiotics is
closely related to the bacterial glycocalyx [123, 124]
which composition is similar to EG. Therefore, it is sur-
prising, that almost nothing is known about the impact
of antibiotic treatment on the EG: Lipowsky et al
showed that sub-antimicrobial doses of doxycycline at-
tenuated chemoattractant induced EG shedding through
matrix metalloprotease (MMP) inhibition [125]; L-
658758, a cephalosporin-based beta lactam, was able to
reduce EG shedding by inhibition of neutrophil elastase
[126]. Last but not least, renal endothelial EG integrity
has an impact on the pharmacokinetics of many antibi-
otics, which can be important in patients with acute or
chronic kidney failure [127].

Direct translation to clinical practice except for rou-
tine practice and standard measures:

e None

Future research directions, new concepts
Current experimental and clinical evidence indicates a
clinical potential for the modulation of EG integrity by
various means [10]. Research on in vitro/in vivo models
(HUVEC, rats, guinea pig) showed promising results and
several protecting agents and interventions to modulate
dysfunctional EG have been identified (Table 1), among
them, frequently studied candidates for further research
are: sphingosine-1-phosphate [82], hyaluronan [17] and
sulodexide [128] (combination of medium long chain
heparan sulphate and dermatan sulphate). These agents
need to be investigated in properly designed and pow-
ered clinical trials to validate clinically relevant benefit
for the patients with acute care surgery.

HUVEC human umbilical vein endothelial cells, MMP
matrix metalloproteinase, PBR perfused boundary re-
gion, IR ischemia/reperfusion

Conclusions

During conditions leading to acute care surgery, EG is
damaged by the non-modifiable primary insult. How-
ever, acutely injured patients often experience secondary
injury, mostly caused by ongoing tissue trauma during
surgical preparation, related inflammatory reaction,
hypovolemia due to blood loss and other causes. EG
protecting approaches during the perioperative period
must be based on deep knowledge and understanding of
the physiology of the vascular compartment. Even
though some interventions are already known as poten-
tially EG protective (e.g. transfusion of plasma, human
serum albumin, hydrocortisone, sevoflurane) there is still
no specific treatment for EG protection and recovery in
clinical medicine to be used during acute care surgery
and anaesthesia. The general advise for clinicians seems
to be very simple, nevertheless, it is solidly physiologic-
ally based and reflecting current evidence: In order to
protect EG in perioperative setting, avoid all events that
could lead to secondary EG injury, i.e. 1) perform dam-
age control surgery to remove potential sources of sep-
sis; 2) minimizing surgical time; 3) restore and maintain
hemodynamic stability; 4) avoid fluid overload.
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