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Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which
selected patients manifest a frequent and early incidence of malignancies, mainly
lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form
of IEI with the highest proportion of malignant cases. In this review, we aimed to compare
the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to
dissect the impact of avoiding immune destruction, genome instability, and mutation,
enabling replicative immortality, tumor-promoting inflammation, resisting cell death,
sustaining proliferative signaling, evading growth suppressors, deregulating cellular
energetics, inducing angiogenesis, and activating invasion and metastasis in these
groups of patients. Moreover, some of the most promising approaches that could be
clinically tested in both PAD and IEI patients were discussed.

Keywords: inborn errors of immunity, primary immunodeficiency, predominantly antibody deficiency, hallmarks of
cancer, immune dysregulation, genome instability, chronic inflammation
INTRODUCTION

Inborn Errors of Immunity (IEI), formerly known as primary immunodeficiencies, comprise at least 450
inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies
(1–3). As the main presentation, IEI patients are prone to recurrent infections (due to bacterial, viral, and
parasitic agents) that predispose individuals to a chronic increase in inflammatory mediators,
contributing to neoplasia (e.g., reactive oxygen and nitrogen intermediates, prostaglandins, and
inflammatory cytokines). The longer the inflammation persists due to inadequate or inappropriate
treatments, the higher the risk of associated tumorigenesis and the survival advantage of a cancerous cell
(4). However, several other intrinsic and extrinsic causes of malignancies have been identified in both
IEI-associated hematologic and solid tumors (5, 6). Considering the heterogeneous pathogenesis of IEI,
different mechanisms underlying tumorigenesis in these patients would be expected. From an oncologic
point of view, the main hallmarks of cancer have recently been suggested to dissect the complexity of
neoplastic disease (7). The presented review compares oncologic hallmarks and the molecular defects
underlying primary antibody deficiencies (PADs) with other IEI-associated cancers. The current
published literature collection highlights that PAD patients have more diverse hallmarks of cancers
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compared to other IEIs (except combined immunodeficiency and
immune dysregulation) and have a higher number of cases with
heterogeneous genetic defects or unknown molecular etiologies. Of
note, several therapeutic options are currently available for these
diverse pathogeneses in PAD patients with cancer susceptibility,
which should be considered by clinical immunologists and
treating physicians.
AVOIDING IMMUNE DESTRUCTION

The ability of recognition and elimination of developing tumors in
the absence of external therapy, which is known as cancer
immunosurveillance, can be defective in certain types of IEIs (8,
9). Although the overall increased relative risk of cancer in IEI
patients is less than twofold, a skewed spectrum of cancers (mainly
lymphoid malignancies in males) can result from different gene
defects (10). Innate and adaptive cytotoxicity against pre-malignant
or malignant cells can be affected by mutations associated with
dysfunction of natural killer (NK) and CD8+ T cells (1). Therefore,
the intrinsic genetic defects affecting the development or function of
T cell (presenting with combined immunodeficiency, major
histocompatibility complex class I deficiency, or hyper IgE
syndromes) and NK cell (GATA2, MCM4, and FCGR3A
deficiencies) may lead to cancer, in particular carcinomas (11–15).
Familial hemophagocytic lymphohistiocytosis patients with
mutations in UNC13D, PRF1, STXBP2, and STX11 also present a
significant defect in cytotoxicity, causing lymphoproliferative
diseases and oncogenesis (16, 17).

Moreover, a proportion of patients with diseases of immune
dysregulation show an increased susceptibility to herpes virus
infections (mainly Epstein–Barr virus [EBV]-induced
lymphoproliferative complications and malignancies), which
resulted from defects in co-stimulatory molecules essential for
CD8+ memory T-cell formation (e.g., CD27 and CD70 deficiencies
and OX40 deficiency associated with higher risk of lymphoma and
sarcoma) (18–21). Several other genes coordinate CD8+ T-cell
activation and memory generation via various mechanisms, and
therefore, mutations in these genes can increase the risk for
developing EBV-associated lymphomas: controlling T-cell receptor-
stimulated Mg2+ influx and concentrations (magnesium transporter
1, MAGT1 gene) (22), modulating the SH2 domain-mediated
interactions in signaling lymphocyte activation molecule (SLAM)-
mediated activation (SH2 domain-containing 1A, SH2D1A gene)
(23), sustaining the proliferation of activated lymphocytes by de novo
mutations in genes associated with the pyrimidine synthesis pathway
(nucleotide cytidine 5′ triphosphate synthases1, CTPS1 gene) (24),
activation of MAP-kinase cascade via guanine-nucleotide-exchange
factors (RAS guanyl-releasing protein 1, RASGRP1 gene) (25), and
mediating critical signals from the T-cell receptor and activated
lymphocyte-specific protein tyrosine kinase (interleukin-2-inducible
T-cell kinase, ITK gene) (26). Although the mechanism of cancer
immunosurveillance has been suggested in a minority of PAD with
functional T cell defects, some EBV-associated cancer due to
monogenic IEI can affect B cell terminal development and also
present with antibody deficiency and lack of specific
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immunoglobulin production mimicking common variable
immunodeficiency (CVID)-like phenotype (27, 28).
GENOME INSTABILITY AND MUTATION

Monogenic diseases of chromosome instability and DNA repair
defects affecting steps of detection, removal, or further modification
of the damaged DNA, and resynthesis and ligation of DNA strands
can predispose both to immunodeficiency and cancer (29). T- B-
receptor rearrangements [V(D)J recombinations] require the non-
homologous end joining (NHEJ) pathway to process/repair double-
strandDNAbreaks and loss offunction in various components of the
NHEJ machinery present with T- B- severe combined
immunodeficiency (SCID) (30, 31). In patients treated with
hematopoietic stem cell transplantation, or carrying hypomorphic
mutations inNHEJ factor encoding genes, survivalmaybe associated
with the development of hematological cancers, carcinomas, and
sarcomas (5). Patients with DNA repair defects have a higher risk of
EBV infections since the encoded viral proteins are implicated in the
deregulationofDNAdamage response signalingpathways (32). EBV
infection disturbs ATM-mediated response (during the G2/M cell
cycle viaLMP1andEBNA3Cnuclear antigens) consistentwithmore
frequent detection of EBV early antigen antibodies in patients with
ataxia-telangiectasia in whom the incidence of lymphoma is
increased (33, 34). Moreover, EBV attenuates DNA-dependent
protein kinase and Artemis activities by depleting the p350/DNA-
PK catalytic subunit and interacting with EBNA2, leading to a
markedly increased incidence of EBV-induced lymphoproliferation
in patients with pathogenic mutations in the PRKDC andDCLRE1C
genes, up to 50% (34, 35).

Class switch recombination (CSR) and somatic hypermutation
in peripheral B cells have a role in increasing the diversity of
immunoglobulin classes as well as affinity maturation, which is
accomplished by a large number of proteins involved in NHEJ, base
excision repair, and mismatch repair (36). Ataxia-telangiectasia,
Nijmegen breakage syndrome, Bloom’s syndrome, and
constitutional mismatch repair deficiency (CMMRD) syndromes
are the main immunodeficiencies within this category and the
patients usually develop lymphomas (5, 37). Activation-induced
cytidine deaminase (AICDA) and uracil DNA glycosylase (UNG)
deficiencies specifically affect the CSR in B cells, presenting as a PAD
known as hyper IgM syndrome with an increased incidence of
hematologic cancers (38, 39).

Dysregulations in epigenetic modifications and chromatin
remodeling may result in genomic instability and syndromic
features mainly in the immunological and neurological systems
(40). Genes underlying immunodeficiency with centromeric
instability and facial anomalies (ICF) syndrome are responsible for
DNA methylation and critical epigenetic modification during
lymphocyte development, chromatin structure remodeling, and
physiological DNA breaks (41). ICF patients display DNA
hypomethylation mainly affecting satellite 2 and 3 repeats of
pericentromers, which is very common in cancer cells (42), in line
with the higher incidence of cancers in these patients (43). Of note,
cases with ICF syndrome due to hypomorphic mutations may
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manifest without facial and neurologic symptoms, mimicking
CVID-like phenotype with only antibody defects or recurrent
infections and they may survive longer with a higher chance for
the development of cancers (44, 45).
ENABLING REPLICATIVE IMMORTALITY

This cancer hallmark is described as an independently driven
process involving the elongation of telomeres by reactivation of
telomerase reverse transcriptase and increasing the cell proliferative
capacity (46, 47). This process is regulated by the catalytic subunit of
telomerase reverse transcriptase (TERT) that connects this hallmark
to metabolic reprogramming, apoptosis, and tumor invasion (48).
Thus, TERT and its associated elements could directly connect the
various hallmarks of cancer (49). Dyskeratosis congenita (DKC) is a
complex of syndromic features caused by defects in these proteins,
which can result in a severe form of Hoyeraal–Hreidarsson
syndrome due to short telomeres and genome instability (50–52).
Recently, Coats-plus syndrome with mutations in STN1 and CTC1
have been described and linked to immunodeficiency with
abnormal telomeres. This group of genetic abrogations frequently
predisposes patients to myelodysplasia and leukemia (53, 54).
Intriguingly, several cases of dyskeratosis congenita can show
specifically with the initial presentation of antibody deficiency,
and due to misclassification, they are more prone to the
development of long-term complications like malignancies (27, 55).
TUMOR-PROMOTING INFLAMMATION

Although chronic inflammation occurs in most IEI patients with a
delayed diagnosis and poor treatment, some subgroups of patients
can develop unrestrained systemic inflammatory reactions despite
immunomodulation, whichmay lead to cancer (56, 57). This cancer
hallmark is well characterized in disturbance of immune regulation
with colitis (due to a defective IL10-STAT1 pathway) (58, 59) and
predisposition to mucocutaneous candidiasis (mainly due to a
defective IL17 pathway) (60) that can increase the susceptibility to
lymphoma and carcinoma, respectively.

Moreover, CVID, as the most common symptomatic form of
antibody deficiency, also had a higher rate of chronic inflammation
despite regular and appropriate treatment (61). Due to its high
prevalence, the majority of IEI cancer patients have a clinical
diagnosis of CVID (10). CVID is a heterogeneous disease, and
there is an ongoing debate about criteria for diagnosis that mainly
rely on the fulfillment of specific immunologic criteria. Therefore,
CVID is considered as an umbrella term constituting several
different humoral immune failures and antibody production
impairment due to unknown monogenic, polygenic, or epigenetic
defects (27, 28). However, the main suggested pathogeneses for the
cancer phenomenon in CVID patients are immune dysregulation
and chronic infection due to lack of mucosal immunity (absence of
IgA in selected CVID patients). Therefore, subsequent inflammation
might be a tumor-predisposing factor especially towards gastric
cancers in CVID cases (62–65). The same phenomenon can be
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present in other entities of PAD with low IgA levels including
congenital agammaglobulinemia and IgA deficiency (62, 66–68). Of
note, a minority of CVID patients can present chromosomal
radiosensitivity due to disruption of DNA repair machinery and
must be considered for tumorigenesis due to genome instability and
regular screening for cancer and avoidance of malignancy triggers
must be added to their routine management (69, 70).
RESISTING CELL DEATH

Autoimmune lymphoproliferative syndrome (ALPS) is the
porotype of IEI, which is associated with apoptosis defects and
malignancies (71). The most well-established activity of affected
proteins in the FAS–FAS ligand and Caspase pathway is to mediate
the apoptotic death of either virus-infected cells or cancer cells when
engaged by a cytotoxic lymphocyte (72). Although lymphoma has
been reported as themost common type of malignancy seen in these
patients, additional types of cancers in this population suggest a
broader cancer predisposition as previously observed with somatic
FASmutations (73–76). Since apoptosis has an important role in the
development, function and maintenance of the immune system, it
controls the duration of immune responses to foreign antigens and
deletion of auto-reactive T and B lymphocytes (77). Similarly,
several abnormalities in T- and B-cell apoptosis in patients with
humoral immunodeficiencies such as CVID have been reported and
suggested to be underlying the higher rate of malignancy,
particularly lymphoma, in this group of patients (78, 79).
SUSTAINING PROLIFERATIVE SIGNALING

Self-sufficiency in growth signals, bypassing various checkpoints,
may be implicated in a vast number of patients with IEI and
cancers (80). Immune system defects and dynamical
compensation in physiological circuits lead to increased
production of stimulatory factors mainly in patients with stem
cell and myeloid developmental defects (81). Congenital
neutropenias and other syndromic IEI (Wiskott-Aldrich,
Shwachman-Diamond, MonoMac and immuno-osseous
dysplasia syndromes) affecting early non-lymphoid stem cell
lineages can manifest with myelodysplasia and leukemia (82).

Higher rates of diagnosis during recent years and detailed follow-
up of autosomal dominant gain-of-function defects in signal
transducer and activator of transcriptions (STAT) (83, 84), caspase
recruitment domain familymembers (CARD) (85, 86) andNACHT,
LRR, and PYD domain-containing proteins (NLRP) have shown an
increased incidence of both hematological and solid tumors (87). Of
note in the PAD category, several gain-of-function genetic defects in
the signaling of phosphoinositide 3-kinase (PI3K) and nuclear factor
k-enhancer of activated B cells (NF-kB) have been shown to be
involved in the dysregulation of the adaptive immune response and
continuous lymphoid tissue growth, thus increasing the susceptibility
to lymphoma (88–92). Of note, a minority of patients with NF-kB
defects also presented avoiding cellular immune destruction mainly
due to abrogated CD8 T-cell immunity (93, 94).
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EVADING GROWTH SUPPRESSORS

The diverse functions of tumor suppressors vary from proliferation
restriction to the regulation of regenerative processes in different
human cell types (95). However, these elements modulate the
proliferation and differentiation of immune cells to protect their
genomic integrity during physiologic cellular metabolic and
proliferative stress (96). The existence of multiple tumor
suppressor family members (e.g., p53, retinoblastoma, and Hippo
genes) may allow certain family members to have taken on specific
roles in the enhancement of hematopoietic stem cell regeneration,
DNA repair, chromosome remodeling, and cell-cycle checkpoint for
selecting the desired modification (97).

One of the main tumor suppressor pathways conferring
immunodeficiency and susceptibility to cancers is the
posttranslational regulation of phosphatase and tensin homolog
(PTEN) (98). PTEN is a negative regulator of PI3K signaling and is
very commonly mutated in human cancers. Since PTEN is essential
during early development, only heterozygous loss-of-function
mutants have been reported in individuals with CVID-like
phenotype with lymphoproliferation and hyperplasia (99). The
prototypical tumor suppressor gene and pathway is p53, which is
also a key pathway component affected in a majority of DNA repair
defects associated with immunodeficiency and cancers (e.g., patients
with ATM and MRE11 mutations) (100).

Dedicator of cytokinesis 8 (DOCK8) can act as a tumor
suppressor in non-hematopoietic tissues by directly affecting
apoptosis through regulation of migration, morphology, adhesion,
and growth of cells, apart from its probable role in CD8+ T cells for
tumor surveillance (101).CytotoxicT lymphocyte-associatedantigen
4 (CTLA4) is upregulated in activatednaïveT cells through theT-cell
receptor and subsequent engagement of the costimulatory receptor
CD28 (102). This suppressive molecule acts as co-inhibitory and
mutation in the autosomal dominant form impairs the function of
regulatory T cells, thus increasing the risk for autoimmunity, chronic
inflammation, and cancers (103). Patients with lipopolysaccharide-
responsive andbeige-like anchorprotein (LRBA)deficiency, a crucial
molecule for recycling of CTLA4 and the function of regulatory T
cells, present a similarCVID-like phenotypewith the development of
both hematological and solid tumors (104, 105).
DEREGULATING CELLULAR ENERGETICS

IEIs associated with sustaining proliferative signaling induce
endoplasmic reticulum stress, unfolded protein response,
destabilization of mitochondrial membrane potentials, and
disturbed energy metabolism (106, 107). Recent findings also
suggest that there may be a common pathogenic mechanism that
connects a high prevalence of cancer, metabolic disorders,
atherosclerotic cardiovascular disease, and insulin-resistant diabetes
in carriers of someDNA repair defects, in particularATMmutations
(108).Mutationsofgenes related toNHEJandIEIdisordersassociated
with chronic inflammation result in age-associated pathological
conditions due to their roles in metabolic regulation in response to
DNA damage avoiding further genomic instability (109, 110).
Frontiers in Immunology | www.frontiersin.org 4
These defects in DNA repair and uncontrolled inflammation
may induce stem cell exhaustion, cellular senescence,
immunosenescence, low-grade chronic inflammation, activation
of PI3K signaling, defective autophagy, and mitochondrial
genome instability. It has been shown that ATM-dependent stress
and dysregulation of inflammatory pathways mediate
predisposition to both the metabolic syndrome and cancer (111).
INDUCING ANGIOGENESIS

A series of well-orchestrated cellular adaptations occur to stimulate
angiogenesis and enhance the survival of tumors in hypoxic
conditions (112). Gain-of-function somatic mutations in RAS-
associated genes (KRAS and NRAS) can result in RAS-associated
autoimmune leukoproliferative disease (RALD) with lymphocytosis
and lymphoproliferation, a phenocopy of ALPS (113, 114). The
affected proteins are GTPases that serve as a signaling switch
molecule, coupling receptor activation by specific growth factors
with downstream effector pathways. After cancer-related hypoxia
responses, in patients with RALD, the production of vascular
endothelial growth factor (VEGF) is enhanced (115). Therefore,
the over-activation of RAS signaling significantly stimulates
angiogenesis and blocks apoptosis in hypoxic conditions (116).

Furthermore, in cancers associated with defective innate or
adaptive immune responses, the balance between pro- and anti-
angiogenic factors is perturbed by dysregulated cytokine production
by innate immune cells (117). Increased inflammatory mediators as
a consequence of antibody deficiency, diseases of immune
dysregulation, and autoinflammatory diseases contribute to
neoplasia by stimulation of angiogenesis, where a change confers
a survival advantage to a tumor cell (56, 118). Therefore, the
promotion of angiogenesis in the IEI tumors accelerates the
migration of endothelial cells and formation of new blood vessels,
and distorted and enlarged vascular architecture with increased
permeability and irregular blood flow (119).
ACTIVATING INVASION AND METASTASIS

A selected group of IEIs faces aggressive oncogenic risks due to an
increased susceptibility for viral replication and persistence (120).
Among those, transforming viral infections with a distant invasion
have been reported by human papillomavirus (HPV infection in
Epidermodysplasia verruciformis andWHIM syndrome) (121, 122)
and herpes viruses family (particularly EBV susceptibility in
immune dysregulation diseases). Of note, both groups of patients
with HPV (mainly WHIM syndrome) and EBV infection
susceptibility can mimic the phenotype of CVID-like due to their
predominance of humoral immunodeficiency. Although both HPV
and EBV oncoviruses have undertaken different powerful anti-
apoptotic and proliferative programs, they can directly induce
metastasis in infected tumor cells. In HPV-associated IEIs, E6 and
E7 proteins can contribute to tumor invasion by impacting
epithelial-to-mesenchymal transition (123, 124), while in EBV
infection, the LMP2A protein can promote differentiation,
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survival, and cell growth by activating the PI3K pathway and
pathways mediating cell mobility and invasion (125).
FUTURE DIRECTIONS AND CONCLUDING
REMARKS

The evaluation of the hallmarks of cancer in IEI patients helps to
explain the multistep nature of oncogenesis in different forms of
immunedefects/dysfunction (Figure1).This outlines the complexity
Frontiers in Immunology | www.frontiersin.org 5
of the development of cancer in each entity of IEIs, requiring the
progressive acquisition of different necessary cellular hallmarks that
constitute a malignant phenotype. The distribution of distinct types
of cancers in patients with specific genetic defects highlights the cell-
specific predisposition to an intrinsic cause or extrinsic exposure in
the context of the genetic background of the host and the selective
pressures imposed by the tissuemicroenvironment. The analysis of a
cancer hallmarkmodel would also facilitate understanding about the
process of IEI carcinogenesis to relevant treatment. Recently, cancer
hallmarks have been reorganized into seven updated compact
parameters (126). It has been suggested to consider altered stress
FIGURE 1 | Cancer hallmark activation in different types of monogenic inborn errors of immunity (IEI) according to the International Union of Immunological Societies
classification (1, 3).
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response favoring overall survival by combining defects of genome
instability and mutation, enabling replicative immortality, tumor-
promoting inflammation, and resisting cell death hallmarks (126).
Moreover, a new hallmark for abetting microenvironment has been
offered to cover cancer etiologies related to communication between
the dynamic microenvironment of the affected organ and stromal
cells (5, 126). IEI genes underlying each hallmark might help to
investigate whether these newly proposed revisions are functionally
and molecularly relevant.

Based on several lines of evidence, PAD patients constitute the
highest proportion of IEI cases affected by malignancies. Moreover,
several monogenic defects with different involved cancer hallmarks
can mimic the clinical and immunologic phenotypes of PAD
patients, mainly CVID. The abovementioned overview about IEI-
induced and PAD-induced cancers indicated that these
malignancies are amenable to immune prophylaxis by vaccines,
prophylactic radiation limitation, and, most recently, targeted
therapy. However, future clinical efforts in preventing or treating
gene-specific-associated malignancies represent a combination of
antiviral therapies, agents that induce cytotoxicity events, agents that
improve DNA repair machinery, and agents that are used to
successfully treat cancers with antagonists and agonists for IEI
tumor stimulators and repressors. Table 1 illustrates some of the
most promising approaches that could be clinically tested in both
Frontiers in Immunology | www.frontiersin.org 6
PAD and IEI patients. Of note, other monogenic IEIs mainly with
combined immunodeficiency and immune dysregulation also have
diverse cancer hallmarks as PAD patients; however, they are more
likely to be transplanted due to the risk of cancer, whereas most
PADs may not be transplanted. The treatment of cancers in the
context of immune defects, however, remains challenging and a
detailed molecular investigation and multi-omics analysis of both
germline and somatic (tumor) genome may increase the number of
potential therapeutic targets and also further provide clues of
potential resistance to therapy.
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TABLE 1 | Therapeutic and preventive approaches successfully used or potentially can be implemented to prevent primary immunodeficiency-associated cancer hallmarks.

Hallmark or Process Agent or Vause Drug or Modality

Avoiding immune
destruction

EBV infection** EBV-specific cytotoxic T lymphocytes

Costimulatory agonist Anti-GITR, anti-ICOS, anti-OX40, and anti-CD27
Regulatory T cells** Anti-CD25

Deregulating cellular
energetics

Immunometabolism IDO1 inhibitors, A2AR antagonists, Arginase inhibitors, and Glutaminase inhibitors

Evading growth
suppressors

Dual checkpoint blockade* Anti-CTLA-4 (Ipilimumab), anti-PD1 (Nivolumab), anti-PDL1 (Atezolizumab), anti-TIM3, anti-
LAG3, anti-TIGIT, and anti-VISTA

Genome instability and
mutation

DNA repair defect* Decrease radiation exposure

Epigenetic changes* DNMT inhibitors and HDAC inhibitors
Inducing angiogenesis RAS-associated autoimmune leuko-

proliferative disease
Cetuximab, Pantitumumab, and Bevacizumab

Sustaining proliferative
signaling

EBV infection** Butyrate and Ganciclovir

HPV infection* L1 virus-like particles vaccine
BTK activation* Ibrutinib and Acalabrutinib
PI3K activation** Rifampicin, Buparlisib, Alpelisib, Nemiralisib, and Idelalisib
PI3K or NFKB activation** Rituximab, Ibritumomab Tiuxetan, and Tositumomab
mTOR activation** Everolimus
MAPK/ERK activation** Trametinib
Stem cell and myeloid development
defects

Bone marrow transplantation, CSF1R inhibitor, and HDAC inhibitors class IIa

Cytokines JAK inhibitors, TGF inhibitors, and MET inhibitors
Tumor-promoting
inflammation

H. pylori infection* Standard triple therapy consisting of proton pump inhibitor, clarithromycin, and amoxicillin

Chronic inflammation* Nonsteroidal anti-inflammatory drugs
EBV, Epstein–Barr virus; GITR, glucocorticoid-induced TNFR-related protein; ICOS, Inducible T-cell COStimulator; IDO1, Indoleamine 2;3-dioxygenase 1; A2AR, Adenosine 2A receptor;
CTLA4, Cytotoxic T-lymphocyte protein 4 precursors; TIM3, T-cell immunoglobulin and mucin domain 3; LAG3, Lymphocyte-activation protein 3; TIGIT, T-cell Immunoreceptor With Ig
And ITIM Domains; VISTA, V-domain Ig suppressor of T-cell activation; DNMT, DNA Methyltransferase; HDAC, Histone deacetylase; HPV, human papillomavirus; PI3K, Phosphoinositide
3-kinase; CSF1R, Colony-stimulating factor 1 receptor; NFKB, nuclear factor kappa B; JAK, Janus kinase; TGF, Transforming growth factor.
**Genes/pathways very important in the pathogenesis of antibody deficiencies.
*Genes/pathways important in the pathogenesis of antibody deficiencies.
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