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Abstract
Background and Purpose: Whole-brain atrophy is a standard outcome measure in 
multiple sclerosis (MS) clinical trials as assessed by various software tools. The effect 
of processing method on the validity of such data obtained from high-resolution 3T 
MRI is not known. We compared two commonly used methods of quantifying whole-
brain atrophy.
Methods: Three-dimensional T1-weighted and FLAIR images were obtained at 3T in 
MS (n = 61) and normal control (NC, n = 30) groups. Whole-brain atrophy was as-
sessed by two automated pipelines: (a) SPM8 to derive brain parenchymal fraction 
(BPF, proportional-based method); (b) SIENAX to derive normalized brain parenchy-
mal volume (BPV, registration method). We assessed agreement between BPF and 
BPV, as well their relationship to Expanded Disability Status Scale (EDSS) score, 
timed 25-foot walk (T25FW), cognition, and cerebral T2 (FLAIR) lesion volume 
(T2LV).
Results: Brain parenchymal fraction and BPV showed only partial agreement (r = 0.73) 
in the MS group, and r = 0.28 in NC. Both methods showed atrophy in MS versus NC 
(BPF p < 0.01, BPV p < 0.05). Within MS group comparisons, BPF (p < 0.05) but not 
BPV (p > 0.05) correlated with EDSS score. BPV (p = 0.03) but not BPF (p = 0.08) cor-
related with T25FW. Both metrics correlated with T2LV (p < 0.05) and cognitive sub-
scales. BPF (p < 0.05) but not BPV (p > 0.05) showed lower brain volume in cognitively 
impaired (n = 23) versus cognitively preserved (n = 38) patients. However, direct 
comparisons of BPF and BPV sensitivities to atrophy and clinical correlations were 
not statistically significant.
Conclusion: Whole-brain atrophy metrics may not be interchangeable between pro-
portional- and registration-based automated pipelines from 3T MRI in patients with 
MS.
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1  | BACKGROUND

Whole-brain atrophy is a commonly used research metric to quantify 
multiple sclerosis (MS) pathology (Neema, Stankiewicz, Arora, Guss, 
& Bakshi, 2007) and remains one of the strongest correlates and 
predictors of clinical status (De Stefano et al., 2014). Investigators 
have applied a myriad of published proprietary and open-source 
methods to quantify brain volume loss (Giorgio, Battaglini, Smith, & 
De Stefano, 2008), leading to heterogeneous segmentation proce-
dures across sites and studies, without any agreed-upon standard 
approach (Bermel & Bakshi, 2006). This heterogeneity is brought to 
the surface by the regular incorporation of whole-brain atrophy as 
a supportive outcome measure in Phase III MS therapeutic clinical 
trials, in which registration-based {affine-fit to an external multiple 
subject brain size atlas, e.g., normalized brain parenchymal volume 
[BPV; OPERA I/II (Hauser et al., 2017), FREEDOMS (De Stefano 
et al., 2016), ALLEGRO (Comi et al., 2012), DEFINE (Arnold et al., 
2014)]}, or proportional-based {scaled to the subject’s own intra-
cranial cavity, e.g., brain parenchymal fraction [BPF; CARE-MS I/II 
(Arnold et al., 2016), AFFIRM (Miller et al., 2007), TEMSO (O’Connor 
et al., 2011)]} methods have been employed. Moreover, this challenge 
is amplified by the observations that the analysis of the same MRI 
image sets using different segmentation pipelines can produce con-
flicting findings (O’Connor et al., 2011; Radue et al., 2017; Rovaris, 
Comi, Rocca, Wolinsky, & Filippi, 2001; Sormani et al., 2004), which 
hamper the ability to draw firm conclusions on therapeutic effects, 
and may invalidate the comparison of results across trials.

Significant technical challenges arise in the measurement of 
cross-sectional and longitudinal brain volume loss, especially at a 
fully automated scale necessary for efficient deployment in rou-
tine clinical practice. MRI-derived volumetrics are prone to devia-
tions throughout the data pipeline, including at the acquisition stage 
(e.g., head motion, hardware nonuniformity including magnetic 
field strength, gradient distortions, and pulse sequence type and 
parameters; Chu, Hurwitz, Tauhid, & Bakshi, 2017; Papinutto et al., 
2017; Sharma et al., 2004; Shinohara et al., 2017) and segmentation 
procedure (e.g., preprocessing steps—inhomogeneity correction, 
method of tissue class segmentation, and normalization; Chard, 
Parker, Griffin, Thompson, & Miller, 2002; Chu, Hurwitz, et al., 
2017; Durand-Dubief et al., 2012; Granberg et al., 2016; Kazemi & 
Noorizadeh, 2014; Popescu, Schoonheim, et al., 2016; Vidal-Jordana 
et al., 2017). Furthermore, brain volume may vary based on patho-
physiological factors, including recent start of immunomodulatory 
therapy, acute inflammation, hydration status, time of day, tobacco 
use, genetics, and comorbid conditions (Rocca et al., 2017). As MRI 
technology evolves and increasingly precise high-field (e.g., 3T) mag-
nets proliferate in clinical practice, there remains an ongoing need 
for critical evaluation of the sensitivity and validity of postprocess-
ing software pipelines (Chu et al., 2016; Stankiewicz et al., 2011).

Previous MRI research has explored methodological aspects 
of precision (i.e., reproducibility), accuracy (i.e., relation to gold 
standard maps), and validity (i.e., relationship to clinical “truth”) 
of whole-brain and regional tissue loss in MS. Recent studies 

have examined the precision of metrics from 1.5T or 3T scanners 
using standardized acquisition parameters and software pipelines; 
all concluded that intrascanner variance was generally minimal, 
whereas interscanner variability was consistently a source of sig-
nificant bias (Biberacher et al., 2016; Durand-Dubief et al., 2012; 
Papinutto et al., 2017; Shinohara et al., 2017). The type of post-
processing software pipeline was also associated with divergent 
measurements in brain volumetrics in those studies. The accuracy 
and validity of MRI-derived metrics has also been explored in 
reference to both clinical and histopathological metrics. A recent 
study by Popescu, Klaver, et al. (2016) correlated postmortem, his-
topathologically defined cortical thickness with MRI-acquired cor-
tical gray matter (GM) measurements at 1.5T; the authors found 
statistically significant correlations only when using manually cor-
rected (but not automated) pipelines in SIENAX and FreeSurfer. 
A separate study from the same group compared postprocessing 
pipelines in SIENAX, SPM, and FreeSurfer to evaluate the link be-
tween GM atrophy and cognitive performance in MS; although the 
software pipelines generally exhibited similar clinical correlations 
with cognitive variables, the authors found significant differences 
in deep GM and cortical structure measurements based, at least 
partly, on the choice of registration template/atlas (Popescu, 
Schoonheim, et al., 2016). The goal of this study was to compare 
the validity of two freely available widely used automated post-
processing algorithms for the assessment of normalized whole-
brain volume from 3T MRI. We examined patients with MS and 
normal controls (NC) using two methods: both proportional-based 
[SPM8 to measure BPF (Dell’Oglio et al., 2015)] and registration-
based (SIENAX to measure BPV).

2  | METHODS

2.1 | Subjects

We prospectively enrolled 61 patients with MS and 30 NC; part 
of the data from these subjects and the recruitment/collection 
procedures have been published previously (Dell’Oglio et al., 2015). 
In brief, inclusion criteria were: age 18–55, no significant medical 
comorbidities, no changes in disease-modifying therapy in the 
6 months prior to examination. MRI was obtained within 3 months 
of the neurological examination. Demographic and clinical data are 
summarized in Table 1. Clinical data were obtained by MS specialists, 
including Expanded Disability Status Scale (EDSS) scoring and timed 
25-foot walk (T25FW). This study was approved by our institutional 
board review board and all subjects provided written informed 
consent.

2.2 | Neuropsychological data 
acquisition and analysis

Complete neuropsychological evaluation methods are described 
previously (Dell’Oglio et al., 2015). In brief, this was based on the 



     |  3 of 10HEMOND et al.

previously validated Minimal Assessment of Cognitive Function 
in MS (MACFIMS) battery (Benedict et al., 2006), which was 
administered by a clinical psychologist and her supervised research 
fellow. MACFIMS scores were corrected for depression (CES-D) 
baseline scores, and compared to regression-based norms from a 
NC sample (Parmenter, Testa, Schretlen, Weinstock-Guttman, & 
Benedict, 2010). Cognitive impairment was defined as performance 
worse than the 5th percentile on two or more cognitive measures; 
subjects who did not meet these criteria were defined as cognitively 
preserved.

2.3 | MRI acquisition

All subjects were scanned on the same 3T MRI unit (Signa; General 
Electric, Milwaukee, WI, USA) using an identical brain acquisi-
tion protocol among all subjects: coronal 3D modified driven 
equilibrium Fourier transform (MDEFT) covering the whole 
head: TR = 7.9 ms, TE = 3.14 ms, flip angle = 15°, slice thick-
ness = 1.6 mm, pixel size = 0.938 × 0.938 mm; axial 2D T2-weighted 
fast fluid-attenuated inversion recovery (FLAIR): TR = 9,000 ms, 
TE = 151 ms, TI = 2,250 ms, slice thickness = 2 mm (no gap), matrix 
size = 256 × 256, pixel size = 0.976 × 0.976 mm.

2.4 | Image analysis

All images were inspected for quality, and processed through two 
separate pipelines (Figure 1); BPF: as previously described (Dell’Oglio 
et al., 2015), raw MDEFT images were manually de-skulled, aligned to 
the MNI152 template, intensity normalized using N3 nonparametric 
nonuniform parameters, and automatically segmented using the 
SPM8 (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/
spm/software/) unified segmentation model into GM, white matter 
(WM), and CSF volumes. Intracranial volume (ICV) was calculated 
as the sum of GM + WM + CSF. BPF was calculated as (GM + WM)/
ICV. In the BPV pipeline, raw MDEFT images were resliced to the 
axial plane, followed by removal of all slices inferior to the cervico-
medullary junction using JIM v7 (www.xinapse.com). Images then 
underwent automated segmentation and template normalization 
using SIENAX, (Smith et al., 2002) part of FSL (v5.0) (Smith et al., 
2004) using a previously optimized brain extraction tool (BET) 
threshold of 0.2 (Chu et al., 2016). T2-hyperintense lesion volumes 
were obtained by expert semiautomated segmentation with an 
edge-finding tool based on local image intensity thresholds using 
JIM (v5) as previously published (Dell’Oglio et al., 2015); manual 
corrections were applied as needed (Ceccarelli et al., 2012). To 
determine if manual versus default (automated) deskulling would 
affect the results in SIENAX, we analyzed scans from three subjects 
using manually skull-stripped images with a BET threshold of 0.01 
(for maximal brain extraction) normalized with the original scaling 
factor from nonskull-stripped data; however, this approach provided 
similar BPVs (within 20 ml versus the nonskull-stripped extraction, 
mean ± SD = −5.66 ± 22.2, range: −19 to 20 ml). Thus, we chose to 
employ the fully automated SIENAX algorithm to obtain BPV in this 
study.

2.5 | Statistical analysis

Correlations between BPF and BPV in MS and NC populations 
were calculated using Pearson’s correlation coefficients. Group 
differences between MS and NC were calculated using t tests, and 
linear regression to correct for age and gender. The difference in 
the estimated effect size comparing MS and NC for the BPF and 
BPV segmentation methods was calculated as the difference in 
Cohen’s d and the 95% confidence interval (CI) for the difference 
was calculated using the percentile bootstrap method. Clinical 
correlations were obtained using Spearman’s correlation coefficient 
(EDSS, T25FW, disease duration) and Pearson’s correlation 
coefficient (age, gender), and partial correlation coefficients 
were used to correct for age and gender. For the comparison 
between the BPF and BPV segmentation methods regarding their 
correlations with EDSS and T2FW, the difference in the correlation 
coefficients was calculated, and the 95% CI was calculated using 
the percentile bootstrap method. Correlations between BPF, BPV, 
and components of the MACFIMS were estimated using Pearson’s 
correlation coefficients and partial correlation coefficients were 
used to adjust for age and gender. In addition, Meng’s test was 

TABLE  1 Subject characteristics

Multiple sclerosis Normal controls

N 61 30

Age (years) 41.0 ± 8.6 43.9 ± 6.3

Women (n, %) 42 (69%) 21 (70%)

Disease duration (years 
since first symptoms)

8.3 ± 7.2 –

EDSS score 1.6 ± 1.7 –

Timed 25-foot walk 
(seconds)

4.8 ± 4.5 –

T2 (FLAIR) hyperintense 
lesion volume (ml)

13.6 ± 11.4 0.44 ± 0.57

Clinical disease category (n, %)

Clinically isolated 
syndrome

4 (6.6%) –

Relapsing–remitting 51 (83.6%) –

Secondary progressive 5 (8.2%) –

Primary progressive 1 (1.6%) –

Receiving disease-
modifying therapy (n, 
%)

49 (80.3%) –

MACFIMS-classified 
cognitive impairment (n, 
%)

23 (37.7%) –

Notes. Data are shown as mean ± SD unless otherwise noted.
EDSS: Expanded Disability Status Scale; FLAIR: fluid-attenuated inver-
sion recovery; MACFIMS: Minimal Assessment of Cognitive Function in 
MS; n: number of subjects; group comparison: Age, p = 0.10 (two-sample 
t test), gender, p = 0.91 (Pearson’s χ2).

http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.xinapse.com
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used to compare the correlated correlation coefficients between 
the BPF and BPV measurements and the MACFIMS components 
(Meng, Rosenthal, & Rubin, 1992). p-Values <0.05 were considered 
statistically significant. Analyses were performed using the R 
software (www.r-project.org) with the pcor (Kim, 2015) and cocor 
(Diedenhofen & Musch, 2015) libraries.

3  | RESULTS

The correlation between BPF and BPV is shown in Figure 2. The 
two measures showed a moderate intercorrelation across all 
subjects (r = 0.671, p < 0.001). The correlation varied between 
groups (MS, r = 0.725, p < 0.001; NC, r = 0.278, p = 0.137). Group 
differences in the normalized whole-brain volume measures are 
shown in Figure 3. The unadjusted comparison indicated that 
BPF showed whole-brain atrophy in the MS versus NC group 
(p = 0.002), which remained significant after correction for age 
and gender (p = 0.002); BPV showed whole-brain atrophy in the 
MS versus NC group following adjustment for age and gender 
(p = 0.041), but not in the unadjusted comparison (p = 0.073). 
Effect sizes for discriminating MS and NC groups did not differ 
in direction comparisons between BPF and BPV (95% CI: −0.643, 

0.113, p > 0.05). Regarding the correlations between BPF or BPV 
and neurologic function/lesion variables (Table 2), BPF negatively 
correlated with disease duration (r = −0.338, p = 0.008), EDSS 
(r = −0.290, p = 0.023), and T2LV (r = −0.305, p = 0.017) prior 
to correction for age and gender; following correction these 
comparisons remained significant except disease duration. By 
comparison, BPV typically did not attain statistical significance 
in these correlations; after correction for age and gender, 
significance was attained with T25FW and T2LV measures only. 
However, the differences in correlation with disability between 
the segmentation methods were not statistically significant. The 
relationship between normalized whole-brain volume measures 
and cognition is shown in Tables 3 and 4.

Brain parenchymal fraction showed statistically significant dif-
ferences in whole-brain volume in cognitively impaired versus cogni-
tively preserved patients both before (p = 0.02) and after (p = 0.03) 
age and gender correction (Table 3). However, there was only a trend 
toward lower whole-brain volume as measured by BPV in cognitively 
impaired versus cognitively preserved patients (p = 0.073), which 
did not attain significance following adjustment for age and gen-
der (p = 0.14, Table 3). Table 4 shows the correlations between the 
normalized whole-brain volume measures and cognitive (MACFIMS) 
subsets. Both BPF and BPV were significantly correlated with the 

F IGURE  1 Comparison of image processing steps for the proportional- and registration-based methods of determining normalized 
whole-brain volume. Both methods used the same 3D, T1-weighted MDEFT source images at 3T. Brain parenchymal fraction (BPF, 
left, a proportional-based method) began with manual skull-stripping, followed by automated SPM8 registration to the MNI-152 atlas, 
nonparametric intensity normalization, and tissue class segmentation with bias field tool disabled, yielding mutually exclusive maps for 
CSF (cerebrospinal fluid), gray matter (GM), and white matter (WM). BPF (bottom left) is calculated as the sum of the gray and white matter 
volumes divided by the total intracranial volume represented as the sum of GM + WM + CSF. Normalized brain parenchymal volume (BPV, 
right, a registration-based method), began with manual neck removal to the cervico-medullary junction, followed by automated SIENAX-
based brain extraction with bias field correction enabled (orange highlight), registration to the MNI-152 template to determine the skull-
based scaling factor, and intensity normalization and tissue class segmentation using a Markov random field model with the associated 
expectation-maximization algorithm. GM and WM volumes are summated to yield the BPV, which is multiplied by a subject-specific scaling 
factor to yield normalized BPV (red highlight, bottom right)

http://www.r-project.org
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Symbol Digit Modalities Test scores in unadjusted comparisons 
and following adjustment for age and gender. In addition, both 
BPF and BPV significantly correlated with scores on the Controlled 
Oral Words Association Test, Judgment of Line Orientation, and 
California Verbal Learning Test. The directions of the correlations in-
dicated that whole-brain atrophy was associated with higher disease 
severity. A comparison of the two segmentation methods for their 
correlations with cognitive test variables did not reveal any signifi-
cant differences (p > 0.3 for all cognitive tests).

4  | DISCUSSION

Our cross-sectional study suggests a difference in whole-brain vol-
ume measures obtained from two postprocessing pipelines from 
3T MRI high-resolution 3D T1-weighted images in people with MS, 
apparent from several perspectives. First, we have shown that data 
from the two pipelines are only moderately intercorrelated in MS 
and weakly correlated in NC. This discrepancy in correlations was 
unexpected; we speculate it may be related to improved algorithmic 

F IGURE  2 Scatterplot between 
two normalized measures of whole-
brain volume. In all subjects, r = 0.671, 
p < 0.001. Within individual groups: 
multiple sclerosis r = 0.725, p < 0.001; 
normal controls r = 0.13, p = 0.137. Results 
are Pearson’s correlation r

F IGURE  3 Comparing two measures of normalized whole-brain volume between groups. Box-and-whisker plots shown with interquartile 
ranges (box), next adjacent values (whiskers) and outliers notated as points. Unadjusted p-values were determined by t tests; adjusted 
p-values determined by linear regression after adjustment for age and gender. (a) BPF = brain parenchymal fraction, unadjusted means: 
BPF (normal control) = 0.846 ± 0.017, BPF (multiple sclerosis) = 0.830 ± 0.031, p = 0.002; adjusted p = 0.002 (b) BPV = normalized brain 
parenchymal volume, unadjusted means: BPV (normal controls) = 1,474.4 ± 51.7 ml, BPV (multiple sclerosis) = 1,448.4 ± 84.2 ml, p = 0.073, 
adjusted p = 0.041
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selection of the brain–CSF interfaces in the MS group, who have 
greater overall atrophy and therefore more CSF space around the 
brain parenchymal and sulcal folds; similarly, González-Villà et al. 
(2017) found occasionally improved segmentation results in MS pa-
tients compared to controls. Second, BPF showed generally stronger 
associations as assessed by the detection of brain atrophy in pa-
tients with MS versus NC, MRI–clinical correlations with disability 
measures in the MS group, and the association of brain atrophy with 
cognitive impairment in the MS group. However, the differences 
between the pipelines in their clinical associations was not robust 
and did not reach statistical significance in direct comparisons of the 
two methods, perhaps related to the sample size. In addition, our 
T1-weighted 3D MDEFT sequence did not use isotropic voxel sizes 
which may have decreased precision. However, it should be noted 
that this sequenced showed excellent scan–rescan reproducibility in 
a separate study of 11 subjects for the assessment of normalized 
whole-brain and regional deep gray matter volume (mean coefficient 
of variation <1%; Chu, Kim et al., 2017).

Our data demonstrate that cross-sectional postprocessing meth-
ods require careful interpretation, especially as brain volume loss 
evolves into a potential metric for clinical decision-making in MS. 
Our results are in line with several prior studies which have demon-
strated improved MS-related clinical validity for a proportion-based 
over a registration-based metric for cross-sectional data. Gao and 
colleagues used a heavily T2-weighted approach at 3T to determine 

the total volume of intracranial cerebrospinal fluid and derived a 
“brain free water” fraction similar to (inverse) BPF; this parameter 
outperformed a T1-weighted registration-based approach (Lesion-
TOADS) correlating with clinical variables including EDSS score, 
the 9-hole peg test, and the symbol digit modalities test (Gao, Nair, 
Cortese, Koretsky, & Reich, 2014). A separate group found that BPF 
derived from semiautomated methods at 1.5T outperformed the 
automated registration-based method using SIENAX in regards to 
accuracy and clinical validity with EDSS (Zivadinov et al., 2005), al-
though this could be at least partially attributed to suboptimal brain 
extraction with the latter method.

Comparisons of postprocessing pipelines are complicated by the 
sheer number of potential underlying variables that differ between 
methods, as well as a lack of a clear “ground truth” gold standard. 
Here we chose a pragmatic high-level approach to compare pipeline 
clinical validity; other authors have previously compared individual 
processing steps as well, yielding insight into sources of variability in 
healthy populations or simulated datasets. The SPM and FSL pipe-
lines used here rely on inherently different statistical models and 
assumptions when performing (a) brain extraction, (b) intensity nor-
malization and tissue segmentation, and (c) template registration/
normalization. Thus, one potential limitation of our study is that 
we cannot specify contributions of each of these factors to over-
all errors in clinical validity. Regarding (a) brain extraction, our BPF 
pipeline employed manually skull-stripped data whereas our BPV 

TABLE  3 Two normalized whole-brain volume measures: relationship to cognitive status in the MS group

Cognitively impaired 
(n = 23)

Cognitively preserved 
(n = 38) p-Value (unadjusted) p-Value (adjusted)

BPF 0.817 ± 0.034 0.837 ± 0.026 0.024* 0.033*

BPV (ml) 1,422.3 ± 91.4 1,464.2 ± 76.6 0.073 0.139

Notes. Values are mean ± SD.
BPF: brain parenchymal fraction; BPV: normalized brain parenchymal volume; n: number of subjects.
Unadjusted p-values determined by t tests; adjusted p-values determined by linear regression after adjustment for age and gender. Cognitive impair-
ment threshold based on Minimal Assessment of Cognitive Function in multiple sclerosis scores: *p < 0.05.

Unadjusted Adjusted

BPF BPV BPF BPV

Age −0.322 (0.011)* −0.333 (0.009)* −0.262 (0.043)* −0.319 (0.013)*

Disease duration −0.338 (0.008)* −0.214 (0.097) −0.246 (0.060) −0.058 (0.663)

EDSS −0.289 (0.024)* −0.223 (0.083) −0.264 (0.043)* −0.188 (0.154)

T25FW −0.171 (0.187) −0.225 (0.081) −0.207 (0.116) −0.286 (0.028)*

T2LV −0.305 (0.017)* −0.274 (0.033)* −0.318 (0.014)* −0.291 (0.025)*

Notes. Age and disease duration results are Pearson’s correlation r, (p-value); EDSS, T25FW, T2LV 
results are Spearman correlation r, (p-value). Following adjustment for age and gender, the results 
provided are partial correlations; age is corrected for gender only.
BPF: brain parenchymal fraction; BPV: normalized brain parenchymal volume; EDSS: Expanded 
Disability Status Scale; T25FW: timed 25-foot walk; T2LV: cerebral T2 hyperintense lesion volume; 
n: number of subjects.
*p < 0.05.

TABLE  2 Two normalized whole-brain 
volume measures correlated with clinical/
lesion variables in the MS group (n = 61)
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pipeline used native images as generally required to obtain a skull-
based normalization factor. Although manual skull-stripping is closer 
to a gold standard for determining ICV, it is time-consuming and has 
been largely replaced with automated techniques such as BET (Smith 
et al., 2002), SPM’s integrated tissue segmentation (Ashburner & 
Friston, 2005), or FreeSurfer watershed algorithm (Dale et al., 2004). 
As prior authors have noted, the FSL BET can also be a significant 
source of error (Popescu et al., 2012; Zivadinov et al., 2005) and we 
found tissue misclassification in several subjects using the default 
settings; neck cropping and changing the default parameters (−f 0.2 
and −B enabled) allowed an optimal solution for our dataset without 
any significant misclassification errors (Chu et al., 2016). Without any 
visually prominent errors, several groups have concluded that brain 
extraction methods are generally a very small source of variance 
(Clark, Woods, Rottenberg, Toga, & Mazziotta, 2006; Klauschen, 
Goldman, Barra, Meyer-Lindenberg, & Lundervold, 2009) and we 
feel this preprocessing step is unlikely to be a significant source of 
variance between methods.

Regarding intensity normalization and tissue segmentation, 
both SPM and SIENAX use an integrated approach to this process 
(Ashburner & Friston, 2005; Smith et al., 2004; Zhang, Brady, & 
Smith, 2001). One advantage to using whole-brain atrophy as a 
metric is its relative insensitivity to GM and WM tissue misclas-
sification, as these two measures are summated to yield whole-
brain volumes. Tissue misclassification problems are exacerbated 
in MS due to T1-hypointense lesions, which are shown to bias 
automated measures of gray versus white matter segmentation 
(Battaglini, Jenkinson, & De Stefano, 2012; Ceccarelli et al., 

2012). Although lesion filling techniques improve accuracy of tis-
sue segmentation (Chard, Jackson, Miller, & Wheeler-Kingshott, 
2010; González-Villà et al., 2017), they did not appear to substan-
tially affect measures of whole-brain volume as we chose to use 
here (Dell’Oglio et al., 2015). There is an extensive literature re-
garding the optimization of GM versus WM tissue segmentation 
postprocessing techniques (Derakhshan et al., 2010; Popescu, 
Schoonheim, et al., 2016; Rocca et al., 2017), which is beyond the 
scope of this paper.

A third potentially important difference between our pipelines 
is the template registration and normalization process. Whereas the 
BPF metric normalizes brain volume using the subject’s own intra-
cranial volume, BPV normalizes to a registered template (MNI-152) 
of averaged healthy brains. We speculate that this difference in nor-
malization factor may help explain why a proportion-based metric 
may be superior to a registration-based metric regarding clinical 
validity. This topic has not received significant attention in the liter-
ature and would be worth exploring in more detail in future experi-
ments with longitudinal comparisons.

5  | CONCLUSION

Determination of whole-brain atrophy on 3T MRI depends in part on 
the choice of postprocessing software methods; here, a comparison 
of automated pipelines revealed discrepant results for whole-brain 
atrophy measures and clinical correlations, likely based on the un-
derlying statistical assumptions for tissue segmentation and scaling 

Unadjusted Adjusted

BPF BPV BPF BPV

PASAT3 0.227 (0.079) 0.213 (0.100) 0.247 (0.059) 0.235 (0.074)

COWAT 0.129 (0.323) 0.121 (0.352) 0.305 (0.019)* 0.318 (0.014)*

BVMT TL 0.128 (0.325) 0.034 (0.797) 0.109 (0.410) 0.005 (0.967)

BVMT DR 0.215 (0.096) 0.126 (0.335) 0.226 (0.086) 0.131 (0.324)

JLO 0.264 (0.039)* 0.237 (0.066) 0.336 (0.009)* 0.300 (0.021)*

SDMT 0.375 (0.003)* 0.301 (0.018)* 0.363 (0.005)* 0.273 (0.036)*

CVLT TL 0.211 (0.103) 0.203 (0.116) 0.281 (0.031)* 0.282 (0.030)*

CVLT DR 0.262 (0.042)* 0.212 (0.101) 0.247 (0.059) 0.196 (0.136)

DKEFS CS 0.103 (0.427) 0.082 (0.530) 0.166 (0.209) 0.154 (0.243)

DKEFS DS 0.142 (0.274) 0.127 (0.329) 0.149 (0.260) 0.141 (0.287)

Notes. All data are Spearman correlation r (unadjusted values) or partial Spearman correlation r (ad-
justed for age and gender), followed by p-values in parentheses. For all cognitive tests, we used the 
T scores from the regression-based norms.
BPF: brain parenchymal fraction; BPV: brain parenchymal volume; BVMT: Brief Visuospatial Memory 
Test (TL: total recall; DR: delayed recall); COWAT: Controlled Oral Word Association Test; CVLT: 
California Verbal Learning Test (TL: 5-trial recall, DR: delayed recall); DKEFS: Delis–Kaplan Executive 
Function System Test (CS: total confirmed correct sorts, DS: total description score); JLO: Judgment 
of Line Orientation test; MACFIMS: Minimal Assessment of Cognitive Function in Multiple Sclerosis; 
n: number of subjects; PASAT3: Paced Auditory Serial Addition Task (3-s delay); SDMT: Symbol Digit 
Modalities Test.
*p < 0.05.

TABLE  4 Two normalized whole-brain 
volume measures: correlation with 
cognitive component scores in the MS 
group (n = 61)
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methods of the software. Results obtained using these automated 
pipelines are unlikely to be interchangeable and should therefore be 
interpreted with caution.
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