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Abstract
Background and Purpose: Whole- brain atrophy is a standard outcome measure in 
multiple	sclerosis	(MS)	clinical	trials	as	assessed	by	various	software	tools.	The	effect	
of processing method on the validity of such data obtained from high- resolution 3T 
MRI is not known. We compared two commonly used methods of quantifying whole- 
brain atrophy.
Methods:	Three-	dimensional	T1-	weighted	and	FLAIR	images	were	obtained	at	3T	in	
MS	 (n	=	61)	 and	normal	 control	 (NC,	n	=	30)	 groups.	Whole-	brain	 atrophy	was	as-
sessed	by	two	automated	pipelines:	(a)	SPM8	to	derive	brain	parenchymal	fraction	
(BPF,	proportional-	based	method);	(b)	SIENAX	to	derive	normalized	brain	parenchy-
mal	volume	(BPV,	registration	method).	We	assessed	agreement	between	BPF	and	
BPV,	 as	 well	 their	 relationship	 to	 Expanded	 Disability	 Status	 Scale	 (EDSS)	 score,	
timed	 25-	foot	 walk	 (T25FW),	 cognition,	 and	 cerebral	 T2	 (FLAIR)	 lesion	 volume	
(T2LV).
Results:	Brain	parenchymal	fraction	and	BPV	showed	only	partial	agreement	(r	=	0.73)	
in	the	MS	group,	and	r	=	0.28	in	NC.	Both	methods	showed	atrophy	in	MS	versus	NC	
(BPF	p	<	0.01,	BPV	p	<	0.05).	Within	MS	group	comparisons,	BPF	(p	<	0.05)	but	not	
BPV	(p	>	0.05)	correlated	with	EDSS	score.	BPV	(p	=	0.03)	but	not	BPF	(p	=	0.08)	cor-
related	with	T25FW.	Both	metrics	correlated	with	T2LV	(p	<	0.05)	and	cognitive	sub-
scales.	BPF	(p	<	0.05)	but	not	BPV	(p	>	0.05)	showed	lower	brain	volume	in	cognitively	
impaired (n	=	23)	 versus	 cognitively	 preserved	 (n	=	38)	 patients.	 However,	 direct	
comparisons	of	BPF	and	BPV	sensitivities	to	atrophy	and	clinical	correlations	were	
not statistically significant.
Conclusion: Whole- brain atrophy metrics may not be interchangeable between pro-
portional-  and registration- based automated pipelines from 3T MRI in patients with 
MS.
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1  | BACKGROUND

Whole- brain atrophy is a commonly used research metric to quantify 
multiple	sclerosis	(MS)	pathology	(Neema,	Stankiewicz,	Arora,	Guss,	
&	 Bakshi,	 2007)	 and	 remains	 one	 of	 the	 strongest	 correlates	 and	
predictors	of	 clinical	 status	 (De	Stefano	et	al.,	2014).	 Investigators	
have applied a myriad of published proprietary and open- source 
methods	to	quantify	brain	volume	loss	(Giorgio,	Battaglini,	Smith,	&	
De	Stefano,	2008),	 leading	to	heterogeneous	segmentation	proce-
dures	 across	 sites	 and	 studies,	without	 any	agreed-	upon	 standard	
approach	(Bermel	&	Bakshi,	2006).	This	heterogeneity	is	brought	to	
the surface by the regular incorporation of whole- brain atrophy as 
a	supportive	outcome	measure	 in	Phase	 III	MS	therapeutic	clinical	
trials,	in	which	registration-	based	{affine-	fit	to	an	external	multiple	
subject	brain	size	atlas,	e.g.,	normalized	brain	parenchymal	volume	
[BPV;	 OPERA	 I/II	 (Hauser	 et	al.,	 2017),	 FREEDOMS	 (De	 Stefano	
et	al.,	 2016),	 ALLEGRO	 (Comi	 et	al.,	 2012),	 DEFINE	 (Arnold	 et	al.,	
2014)]},	 or	 proportional-	based	 {scaled	 to	 the	 subject’s	 own	 intra-
cranial	 cavity,	e.g.,	brain	parenchymal	 fraction	 [BPF;	CARE-	MS	 I/II	
(Arnold	et	al.,	2016),	AFFIRM	(Miller	et	al.,	2007),	TEMSO	(O’Connor	
et	al.,	2011)]}	methods	have	been	employed.	Moreover,	this	challenge	
is amplified by the observations that the analysis of the same MRI 
image sets using different segmentation pipelines can produce con-
flicting	findings	(O’Connor	et	al.,	2011;	Radue	et	al.,	2017;	Rovaris,	
Comi,	Rocca,	Wolinsky,	&	Filippi,	2001;	Sormani	et	al.,	2004),	which	
hamper	the	ability	to	draw	firm	conclusions	on	therapeutic	effects,	
and may invalidate the comparison of results across trials.

Significant	 technical	 challenges	 arise	 in	 the	 measurement	 of	
cross-	sectional	 and	 longitudinal	 brain	 volume	 loss,	 especially	 at	 a	
fully automated scale necessary for efficient deployment in rou-
tine clinical practice. MRI- derived volumetrics are prone to devia-
tions	throughout	the	data	pipeline,	including	at	the	acquisition	stage	
(e.g.,	 head	 motion,	 hardware	 nonuniformity	 including	 magnetic	
field	 strength,	 gradient	 distortions,	 and	 pulse	 sequence	 type	 and	
parameters;	Chu,	Hurwitz,	Tauhid,	&	Bakshi,	2017;	Papinutto	et	al.,	
2017;	Sharma	et	al.,	2004;	Shinohara	et	al.,	2017)	and	segmentation	
procedure	 (e.g.,	 preprocessing	 steps—inhomogeneity	 correction,	
method	 of	 tissue	 class	 segmentation,	 and	 normalization;	 Chard,	
Parker,	 Griffin,	 Thompson,	 &	 Miller,	 2002;	 Chu,	 Hurwitz,	 et	al.,	
2017;	Durand-	Dubief	et	al.,	2012;	Granberg	et	al.,	2016;	Kazemi	&	
Noorizadeh,	2014;	Popescu,	Schoonheim,	et	al.,	2016;	Vidal-	Jordana	
et	al.,	2017).	Furthermore,	brain	volume	may	vary	based	on	patho-
physiological	 factors,	 including	 recent	 start	 of	 immunomodulatory	
therapy,	acute	inflammation,	hydration	status,	time	of	day,	tobacco	
use,	genetics,	and	comorbid	conditions	(Rocca	et	al.,	2017).	As	MRI	
technology	evolves	and	increasingly	precise	high-	field	(e.g.,	3T)	mag-
nets	proliferate	 in	clinical	practice,	there	remains	an	ongoing	need	
for critical evaluation of the sensitivity and validity of postprocess-
ing	software	pipelines	(Chu	et	al.,	2016;	Stankiewicz	et	al.,	2011).

Previous	MRI	 research	 has	 explored	methodological	 aspects	
of	 precision	 (i.e.,	 reproducibility),	 accuracy	 (i.e.,	 relation	 to	 gold	
standard	maps),	 and	 validity	 (i.e.,	 relationship	 to	 clinical	 “truth”)	
of	 whole-	brain	 and	 regional	 tissue	 loss	 in	 MS.	 Recent	 studies	

have	examined	the	precision	of	metrics	from	1.5T	or	3T	scanners	
using	standardized	acquisition	parameters	and	software	pipelines;	
all	 concluded	 that	 intrascanner	 variance	 was	 generally	 minimal,	
whereas interscanner variability was consistently a source of sig-
nificant	bias	(Biberacher	et	al.,	2016;	Durand-	Dubief	et	al.,	2012;	
Papinutto	et	al.,	 2017;	Shinohara	et	al.,	 2017).	The	 type	of	post-
processing software pipeline was also associated with divergent 
measurements in brain volumetrics in those studies. The accuracy 
and	 validity	 of	 MRI-	derived	 metrics	 has	 also	 been	 explored	 in	
reference	to	both	clinical	and	histopathological	metrics.	A	recent	
study	by	Popescu,	Klaver,	et	al.	(2016)	correlated	postmortem,	his-
topathologically defined cortical thickness with MRI- acquired cor-
tical	gray	matter	 (GM)	measurements	at	1.5T;	 the	authors	 found	
statistically significant correlations only when using manually cor-
rected	 (but	 not	 automated)	 pipelines	 in	 SIENAX	 and	FreeSurfer.	
A	separate	study	from	the	same	group	compared	postprocessing	
pipelines	in	SIENAX,	SPM,	and	FreeSurfer	to	evaluate	the	link	be-
tween	GM	atrophy	and	cognitive	performance	in	MS;	although	the	
software	pipelines	generally	exhibited	similar	clinical	correlations	
with	cognitive	variables,	the	authors	found	significant	differences	
in	deep	GM	and	cortical	structure	measurements	based,	at	 least	
partly,	 on	 the	 choice	 of	 registration	 template/atlas	 (Popescu,	
Schoonheim,	et	al.,	2016).	The	goal	of	this	study	was	to	compare	
the validity of two freely available widely used automated post-
processing	 algorithms	 for	 the	 assessment	 of	 normalized	 whole-	
brain	 volume	 from	3T	MRI.	We	 examined	 patients	with	MS	 and	
normal	controls	(NC)	using	two	methods:	both	proportional-	based	
[SPM8	to	measure	BPF	(Dell’Oglio	et	al.,	2015)]	and	registration-	
based	(SIENAX	to	measure	BPV).

2  | METHODS

2.1 | Subjects

We	 prospectively	 enrolled	 61	 patients	 with	MS	 and	 30	 NC;	 part	
of the data from these subjects and the recruitment/collection 
procedures	have	been	published	previously	(Dell’Oglio	et	al.,	2015).	
In	 brief,	 inclusion	 criteria	were:	 age	 18–55,	 no	 significant	medical	
comorbidities,	 no	 changes	 in	 disease-	modifying	 therapy	 in	 the	
6	months	prior	to	examination.	MRI	was	obtained	within	3	months	
of	the	neurological	examination.	Demographic	and	clinical	data	are	
summarized	in	Table	1.	Clinical	data	were	obtained	by	MS	specialists,	
including	Expanded	Disability	Status	Scale	(EDSS)	scoring	and	timed	
25-	foot	walk	(T25FW).	This	study	was	approved	by	our	institutional	
board review board and all subjects provided written informed 
consent.

2.2 | Neuropsychological data 
acquisition and analysis

Complete neuropsychological evaluation methods are described 
previously	 (Dell’Oglio	 et	al.,	 2015).	 In	 brief,	 this	was	 based	on	 the	



     |  3 of 10HEMOND Et al.

previously	 validated	 Minimal	 Assessment	 of	 Cognitive	 Function	
in	 MS	 (MACFIMS)	 battery	 (Benedict	 et	al.,	 2006),	 which	 was	
administered by a clinical psychologist and her supervised research 
fellow.	 MACFIMS	 scores	 were	 corrected	 for	 depression	 (CES-	D)	
baseline	 scores,	 and	 compared	 to	 regression-	based	 norms	 from	 a	
NC	 sample	 (Parmenter,	 Testa,	 Schretlen,	 Weinstock-	Guttman,	 &	
Benedict,	2010).	Cognitive	impairment	was	defined	as	performance	
worse	than	the	5th	percentile	on	two	or	more	cognitive	measures;	
subjects who did not meet these criteria were defined as cognitively 
preserved.

2.3 | MRI acquisition

All	subjects	were	scanned	on	the	same	3T	MRI	unit	(Signa;	General	
Electric,	 Milwaukee,	 WI,	 USA)	 using	 an	 identical	 brain	 acquisi-
tion protocol among all subjects: coronal 3D modified driven 
equilibrium	 Fourier	 transform	 (MDEFT)	 covering	 the	 whole	
head:	 TR	=	7.9	ms,	 TE	=	3.14	ms,	 flip	 angle	=	15°,	 slice	 thick-
ness	=	1.6	mm,	pixel	size	=	0.938	×	0.938	mm;	axial	2D	T2-	weighted	
fast	 fluid-	attenuated	 inversion	 recovery	 (FLAIR):	 TR	=	9,000	ms,	
TE	=	151	ms,	TI	=	2,250	ms,	slice	thickness	=	2	mm	(no	gap),	matrix	
size	=	256	×	256,	pixel	size	=	0.976	×	0.976	mm.

2.4 | Image analysis

All	 images	were	 inspected	 for	quality,	 and	processed	 through	 two	
separate	pipelines	(Figure	1);	BPF:	as	previously	described	(Dell’Oglio	
et	al.,	2015),	raw	MDEFT	images	were	manually	de-	skulled,	aligned	to	
the	MNI152	template,	intensity	normalized	using	N3	nonparametric	
nonuniform	 parameters,	 and	 automatically	 segmented	 using	 the	
SPM8	(Statistical	Parametric	Mapping,	http://www.fil.ion.ucl.ac.uk/
spm/software/)	unified	segmentation	model	into	GM,	white	matter	
(WM),	 and	CSF	 volumes.	 Intracranial	 volume	 (ICV)	was	 calculated	
as	the	sum	of	GM	+	WM	+	CSF.	BPF	was	calculated	as	(GM	+	WM)/
ICV.	 In	 the	BPV	pipeline,	 raw	MDEFT	 images	were	 resliced	 to	 the	
axial	plane,	followed	by	removal	of	all	slices	inferior	to	the	cervico-	
medullary	 junction	 using	 JIM	 v7	 (www.xinapse.com).	 Images	 then	
underwent	 automated	 segmentation	 and	 template	 normalization	
using	 SIENAX,	 (Smith	 et	al.,	 2002)	 part	 of	 FSL	 (v5.0)	 (Smith	 et	al.,	
2004)	 using	 a	 previously	 optimized	 brain	 extraction	 tool	 (BET)	
threshold	of	0.2	(Chu	et	al.,	2016).	T2-	hyperintense	lesion	volumes	
were	 obtained	 by	 expert	 semiautomated	 segmentation	 with	 an	
edge- finding tool based on local image intensity thresholds using 
JIM	 (v5)	 as	 previously	 published	 (Dell’Oglio	 et	al.,	 2015);	 manual	
corrections	 were	 applied	 as	 needed	 (Ceccarelli	 et	al.,	 2012).	 To	
determine	 if	 manual	 versus	 default	 (automated)	 deskulling	 would	
affect	the	results	in	SIENAX,	we	analyzed	scans	from	three	subjects	
using	manually	skull-	stripped	 images	with	a	BET	threshold	of	0.01	
(for	maximal	 brain	 extraction)	 normalized	with	 the	original	 scaling	
factor	from	nonskull-	stripped	data;	however,	this	approach	provided	
similar	BPVs	(within	20	ml	versus	the	nonskull-	stripped	extraction,	
mean ± SD	=	−5.66	±	22.2,	 range:	−19	to	20	ml).	Thus,	we	chose	to	
employ	the	fully	automated	SIENAX	algorithm	to	obtain	BPV	in	this	
study.

2.5 | Statistical analysis

Correlations	 between	 BPF	 and	 BPV	 in	 MS	 and	 NC	 populations	
were	 calculated	 using	 Pearson’s	 correlation	 coefficients.	 Group	
differences	between	MS	and	NC	were	calculated	using	t	tests,	and	
linear regression to correct for age and gender. The difference in 
the	estimated	effect	 size	 comparing	MS	and	NC	 for	 the	BPF	and	
BPV	 segmentation	 methods	 was	 calculated	 as	 the	 difference	 in	
Cohen’s	d	and	the	95%	confidence	 interval	 (CI)	 for	 the	difference	
was calculated using the percentile bootstrap method. Clinical 
correlations	were	obtained	using	Spearman’s	correlation	coefficient	
(EDSS,	 T25FW,	 disease	 duration)	 and	 Pearson’s	 correlation	
coefficient	 (age,	 gender),	 and	 partial	 correlation	 coefficients	
were	 used	 to	 correct	 for	 age	 and	 gender.	 For	 the	 comparison	
between	the	BPF	and	BPV	segmentation	methods	regarding	their	
correlations	with	EDSS	and	T2FW,	the	difference	in	the	correlation	
coefficients	was	 calculated,	 and	 the	95%	CI	was	 calculated	using	
the	percentile	bootstrap	method.	Correlations	between	BPF,	BPV,	
and	components	of	the	MACFIMS	were	estimated	using	Pearson’s	
correlation coefficients and partial correlation coefficients were 
used	 to	 adjust	 for	 age	 and	 gender.	 In	 addition,	 Meng’s	 test	 was	

TABLE  1 Subject	characteristics

Multiple sclerosis Normal controls

N 61 30

Age	(years) 41.0	±	8.6 43.9	±	6.3

Women (n,	%) 42	(69%) 21	(70%)

Disease duration (years 
since	first	symptoms)

8.3	±	7.2 –

EDSS	score 1.6	±	1.7 –

Timed	25-	foot	walk	
(seconds)

4.8	±	4.5 –

T2	(FLAIR)	hyperintense	
lesion	volume	(ml)

13.6	±	11.4 0.44	±	0.57

Clinical disease category (n,	%)

Clinically isolated 
syndrome

4	(6.6%) –

Relapsing–remitting 51	(83.6%) –

Secondary	progressive 5	(8.2%) –

Primary progressive 1	(1.6%) –

Receiving disease- 
modifying therapy (n,	
%)

49	(80.3%) –

MACFIMS-	classified	
cognitive impairment (n,	
%)

23	(37.7%) –

Notes. Data are shown as mean ± SD unless otherwise noted.
EDSS:	Expanded	Disability	Status	Scale;	FLAIR:	 fluid-	attenuated	 inver-
sion	recovery;	MACFIMS:	Minimal	Assessment	of	Cognitive	Function	in	
MS;	n:	number	of	subjects;	group	comparison:	Age,	p = 0.10 (two- sample 
t	test),	gender,	p	=	0.91	(Pearson’s	χ2).

http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.xinapse.com
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used to compare the correlated correlation coefficients between 
the	BPF	 and	BPV	measurements	 and	 the	MACFIMS	 components	
(Meng,	Rosenthal,	&	Rubin,	1992).	p-	Values	<0.05	were	considered	
statistically	 significant.	 Analyses	 were	 performed	 using	 the	 R	
software	(www.r-project.org)	with	the	pcor	(Kim,	2015)	and	cocor	
(Diedenhofen	&	Musch,	2015)	libraries.

3  | RESULTS

The	correlation	between	BPF	and	BPV	is	shown	in	Figure	2.	The	
two measures showed a moderate intercorrelation across all 
subjects (r	=	0.671,	 p	<	0.001).	 The	 correlation	 varied	 between	
groups	(MS,	r	=	0.725,	p	<	0.001;	NC,	r	=	0.278,	p	=	0.137).	Group	
differences	 in	 the	normalized	whole-	brain	 volume	measures	 are	
shown	 in	 Figure	3.	 The	 unadjusted	 comparison	 indicated	 that	
BPF	 showed	 whole-	brain	 atrophy	 in	 the	 MS	 versus	 NC	 group	
(p	=	0.002),	 which	 remained	 significant	 after	 correction	 for	 age	
and gender (p	=	0.002);	BPV	showed	whole-	brain	atrophy	 in	 the	
MS	 versus	 NC	 group	 following	 adjustment	 for	 age	 and	 gender	
(p	=	0.041),	 but	 not	 in	 the	 unadjusted	 comparison	 (p	=	0.073).	
Effect	 sizes	 for	 discriminating	MS	 and	NC	groups	 did	 not	 differ	
in	direction	comparisons	between	BPF	and	BPV	(95%	CI:	−0.643,	

0.113,	p	>	0.05).	Regarding	the	correlations	between	BPF	or	BPV	
and	neurologic	function/lesion	variables	(Table	2),	BPF	negatively	
correlated with disease duration (r	=	−0.338,	 p	=	0.008),	 EDSS	
(r	=	−0.290,	 p	=	0.023),	 and	 T2LV	 (r	=	−0.305,	 p	=	0.017)	 prior	
to correction for age and gender; following correction these 
comparisons	 remained	 significant	 except	 disease	 duration.	 By	
comparison,	 BPV	 typically	 did	 not	 attain	 statistical	 significance	
in	 these	 correlations;	 after	 correction	 for	 age	 and	 gender,	
significance	was	attained	with	T25FW	and	T2LV	measures	only.	
However,	 the	 differences	 in	 correlation	with	 disability	 between	
the segmentation methods were not statistically significant. The 
relationship	 between	 normalized	 whole-	brain	 volume	 measures	
and	cognition	is	shown	in	Tables	3	and	4.

Brain	 parenchymal	 fraction	 showed	 statistically	 significant	 dif-
ferences in whole- brain volume in cognitively impaired versus cogni-
tively preserved patients both before (p	=	0.02)	and	after	(p	=	0.03)	
age	and	gender	correction	(Table	3).	However,	there	was	only	a	trend	
toward	lower	whole-	brain	volume	as	measured	by	BPV	in	cognitively	
impaired versus cognitively preserved patients (p	=	0.073),	 which	
did not attain significance following adjustment for age and gen-
der (p	=	0.14,	Table	3).	Table	4	shows	the	correlations	between	the	
normalized	whole-	brain	volume	measures	and	cognitive	(MACFIMS)	
subsets.	Both	BPF	and	BPV	were	 significantly	 correlated	with	 the	

F IGURE  1 Comparison	of	image	processing	steps	for	the	proportional-		and	registration-	based	methods	of	determining	normalized	
whole-	brain	volume.	Both	methods	used	the	same	3D,	T1-	weighted	MDEFT	source	images	at	3T.	Brain	parenchymal	fraction	(BPF,	
left,	a	proportional-	based	method)	began	with	manual	skull-	stripping,	followed	by	automated	SPM8	registration	to	the	MNI-	152	atlas,	
nonparametric	intensity	normalization,	and	tissue	class	segmentation	with	bias	field	tool	disabled,	yielding	mutually	exclusive	maps	for	
CSF	(cerebrospinal	fluid),	gray	matter	(GM),	and	white	matter	(WM).	BPF	(bottom	left)	is	calculated	as	the	sum	of	the	gray	and	white	matter	
volumes	divided	by	the	total	intracranial	volume	represented	as	the	sum	of	GM	+	WM	+	CSF.	Normalized	brain	parenchymal	volume	(BPV,	
right,	a	registration-	based	method),	began	with	manual	neck	removal	to	the	cervico-	medullary	junction,	followed	by	automated	SIENAX-	
based	brain	extraction	with	bias	field	correction	enabled	(orange	highlight),	registration	to	the	MNI-	152	template	to	determine	the	skull-	
based	scaling	factor,	and	intensity	normalization	and	tissue	class	segmentation	using	a	Markov	random	field	model	with	the	associated	
expectation-	maximization	algorithm.	GM	and	WM	volumes	are	summated	to	yield	the	BPV,	which	is	multiplied	by	a	subject-	specific	scaling	
factor	to	yield	normalized	BPV	(red	highlight,	bottom	right)

http://www.r-project.org
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Symbol	 Digit	 Modalities	 Test	 scores	 in	 unadjusted	 comparisons	
and	 following	 adjustment	 for	 age	 and	 gender.	 In	 addition,	 both	
BPF	and	BPV	significantly	correlated	with	scores	on	the	Controlled	
Oral	 Words	 Association	 Test,	 Judgment	 of	 Line	 Orientation,	 and	
California	Verbal	Learning	Test.	The	directions	of	the	correlations	in-
dicated that whole- brain atrophy was associated with higher disease 
severity.	A	comparison	of	the	two	segmentation	methods	for	their	
correlations with cognitive test variables did not reveal any signifi-
cant differences (p	>	0.3	for	all	cognitive	tests).

4  | DISCUSSION

Our cross- sectional study suggests a difference in whole- brain vol-
ume measures obtained from two postprocessing pipelines from 
3T	MRI	high-	resolution	3D	T1-	weighted	images	in	people	with	MS,	
apparent	from	several	perspectives.	First,	we	have	shown	that	data	
from	 the	 two	pipelines	 are	 only	moderately	 intercorrelated	 in	MS	
and	weakly	correlated	 in	NC.	This	discrepancy	 in	correlations	was	
unexpected;	we	speculate	it	may	be	related	to	improved	algorithmic	

F IGURE  2 Scatterplot	between	
two	normalized	measures	of	whole-	
brain	volume.	In	all	subjects,	r	=	0.671,	
p < 0.001. Within individual groups: 
multiple sclerosis r	=	0.725,	p < 0.001; 
normal controls r	=	0.13,	p	=	0.137.	Results	
are	Pearson’s	correlation	r

F IGURE  3 Comparing	two	measures	of	normalized	whole-	brain	volume	between	groups.	Box-	and-	whisker	plots	shown	with	interquartile	
ranges	(box),	next	adjacent	values	(whiskers)	and	outliers	notated	as	points.	Unadjusted	p- values were determined by t tests; adjusted 
p-	values	determined	by	linear	regression	after	adjustment	for	age	and	gender.	(a)	BPF	=	brain	parenchymal	fraction,	unadjusted	means:	
BPF	(normal	control)	=	0.846	±	0.017,	BPF	(multiple	sclerosis)	=	0.830	±	0.031,	p = 0.002; adjusted p	=	0.002	(b)	BPV	=	normalized	brain	
parenchymal	volume,	unadjusted	means:	BPV	(normal	controls)	=	1,474.4	±	51.7	ml,	BPV	(multiple	sclerosis)	=	1,448.4	±	84.2	ml,	p	=	0.073,	
adjusted p	=	0.041
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selection	 of	 the	 brain–CSF	 interfaces	 in	 the	MS	 group,	who	 have	
greater	overall	 atrophy	and	 therefore	more	CSF	space	around	 the	
brain	 parenchymal	 and	 sulcal	 folds;	 similarly,	 González-	Villà	 et	al.	
(2017)	found	occasionally	improved	segmentation	results	in	MS	pa-
tients	compared	to	controls.	Second,	BPF	showed	generally	stronger	
associations as assessed by the detection of brain atrophy in pa-
tients	with	MS	versus	NC,	MRI–clinical	correlations	with	disability	
measures	in	the	MS	group,	and	the	association	of	brain	atrophy	with	
cognitive	 impairment	 in	 the	 MS	 group.	 However,	 the	 differences	
between the pipelines in their clinical associations was not robust 
and did not reach statistical significance in direct comparisons of the 
two	methods,	 perhaps	 related	 to	 the	 sample	 size.	 In	 addition,	 our	
T1-	weighted	3D	MDEFT	sequence	did	not	use	isotropic	voxel	sizes	
which	may	have	decreased	precision.	However,	 it	should	be	noted	
that	this	sequenced	showed	excellent	scan–rescan	reproducibility	in	
a	 separate	 study	of	 11	 subjects	 for	 the	 assessment	 of	 normalized	
whole- brain and regional deep gray matter volume (mean coefficient 
of	variation	<1%;	Chu,	Kim	et	al.,	2017).

Our data demonstrate that cross- sectional postprocessing meth-
ods	 require	 careful	 interpretation,	 especially	 as	 brain	 volume	 loss	
evolves	 into	 a	 potential	metric	 for	 clinical	 decision-	making	 in	MS.	
Our results are in line with several prior studies which have demon-
strated	improved	MS-	related	clinical	validity	for	a	proportion-	based	
over	 a	 registration-	based	metric	 for	 cross-	sectional	data.	Gao	and	
colleagues used a heavily T2- weighted approach at 3T to determine 

the total volume of intracranial cerebrospinal fluid and derived a 
“brain	 free	water”	 fraction	 similar	 to	 (inverse)	BPF;	 this	parameter	
outperformed	 a	T1-	weighted	 registration-	based	 approach	 (Lesion-	
TOADS)	 correlating	 with	 clinical	 variables	 including	 EDSS	 score,	
the	9-	hole	peg	test,	and	the	symbol	digit	modalities	test	(Gao,	Nair,	
Cortese,	Koretsky,	&	Reich,	2014).	A	separate	group	found	that	BPF	
derived	 from	 semiautomated	 methods	 at	 1.5T	 outperformed	 the	
automated	 registration-	based	method	 using	 SIENAX	 in	 regards	 to	
accuracy	and	clinical	validity	with	EDSS	(Zivadinov	et	al.,	2005),	al-
though this could be at least partially attributed to suboptimal brain 
extraction	with	the	latter	method.

Comparisons of postprocessing pipelines are complicated by the 
sheer number of potential underlying variables that differ between 
methods,	as	well	as	a	 lack	of	a	clear	 “ground	truth”	gold	standard.	
Here we chose a pragmatic high- level approach to compare pipeline 
clinical validity; other authors have previously compared individual 
processing	steps	as	well,	yielding	insight	into	sources	of	variability	in	
healthy	populations	or	simulated	datasets.	The	SPM	and	FSL	pipe-
lines used here rely on inherently different statistical models and 
assumptions	when	performing	(a)	brain	extraction,	(b)	intensity	nor-
malization	 and	 tissue	 segmentation,	 and	 (c)	 template	 registration/
normalization.	 Thus,	 one	 potential	 limitation	 of	 our	 study	 is	 that	
we cannot specify contributions of each of these factors to over-
all	errors	in	clinical	validity.	Regarding	(a)	brain	extraction,	our	BPF	
pipeline	 employed	manually	 skull-	stripped	 data	 whereas	 our	 BPV	

TABLE  3 Two	normalized	whole-	brain	volume	measures:	relationship	to	cognitive	status	in	the	MS	group

Cognitively impaired 
(n = 23)

Cognitively preserved 
(n = 38) p- Value (unadjusted) p- Value (adjusted)

BPF 0.817	±	0.034 0.837	±	0.026 0.024* 0.033*

BPV	(ml) 1,422.3	±	91.4 1,464.2	±	76.6 0.073 0.139

Notes.	Values	are	mean	±	SD.
BPF:	brain	parenchymal	fraction;	BPV:	normalized	brain	parenchymal	volume;	n: number of subjects.
Unadjusted	p- values determined by t tests; adjusted p- values determined by linear regression after adjustment for age and gender. Cognitive impair-
ment	threshold	based	on	Minimal	Assessment	of	Cognitive	Function	in	multiple	sclerosis	scores:	*p	<	0.05.

Unadjusted Adjusted

BPF BPV BPF BPV

Age −0.322	(0.011)* −0.333	(0.009)* −0.262	(0.043)* −0.319	(0.013)*

Disease duration −0.338	(0.008)* −0.214	(0.097) −0.246	(0.060) −0.058	(0.663)

EDSS −0.289	(0.024)* −0.223	(0.083) −0.264	(0.043)* −0.188	(0.154)

T25FW −0.171	(0.187) −0.225	(0.081) −0.207	(0.116) −0.286	(0.028)*

T2LV −0.305	(0.017)* −0.274	(0.033)* −0.318	(0.014)* −0.291	(0.025)*

Notes.	Age	and	disease	duration	results	are	Pearson’s	correlation	r,	 (p-	value);	EDSS,	T25FW,	T2LV	
results	are	Spearman	correlation	r,	(p-	value).	Following	adjustment	for	age	and	gender,	the	results	
provided are partial correlations; age is corrected for gender only.
BPF:	 brain	 parenchymal	 fraction;	 BPV:	 normalized	 brain	 parenchymal	 volume;	 EDSS:	 Expanded	
Disability	Status	Scale;	T25FW:	timed	25-	foot	walk;	T2LV:	cerebral	T2	hyperintense	lesion	volume;	
n: number of subjects.
*p < 0.05.

TABLE  2 Two	normalized	whole-	brain	
volume measures correlated with clinical/
lesion	variables	in	the	MS	group	(n	=	61)
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pipeline used native images as generally required to obtain a skull- 
based	normalization	factor.	Although	manual	skull-	stripping	is	closer	
to	a	gold	standard	for	determining	ICV,	it	is	time-	consuming	and	has	
been	largely	replaced	with	automated	techniques	such	as	BET	(Smith	
et	al.,	 2002),	 SPM’s	 integrated	 tissue	 segmentation	 (Ashburner	 &	
Friston,	2005),	or	FreeSurfer	watershed	algorithm	(Dale	et	al.,	2004).	
As	prior	authors	have	noted,	the	FSL	BET	can	also	be	a	significant	
source	of	error	(Popescu	et	al.,	2012;	Zivadinov	et	al.,	2005)	and	we	
found tissue misclassification in several subjects using the default 
settings;	neck	cropping	and	changing	the	default	parameters	(−f	0.2	
and	−B	enabled)	allowed	an	optimal	solution	for	our	dataset	without	
any	significant	misclassification	errors	(Chu	et	al.,	2016).	Without	any	
visually	prominent	errors,	several	groups	have	concluded	that	brain	
extraction	methods	 are	 generally	 a	 very	 small	 source	 of	 variance	
(Clark,	 Woods,	 Rottenberg,	 Toga,	 &	 Mazziotta,	 2006;	 Klauschen,	
Goldman,	 Barra,	 Meyer-	Lindenberg,	 &	 Lundervold,	 2009)	 and	 we	
feel this preprocessing step is unlikely to be a significant source of 
variance between methods.

Regarding	 intensity	 normalization	 and	 tissue	 segmentation,	
both	SPM	and	SIENAX	use	an	integrated	approach	to	this	process	
(Ashburner	&	Friston,	2005;	Smith	et	al.,	2004;	Zhang,	Brady,	&	
Smith,	2001).	One	advantage	 to	using	whole-	brain	atrophy	as	a	
metric	 is	 its	relative	insensitivity	to	GM	and	WM	tissue	misclas-
sification,	as	 these	two	measures	are	summated	to	yield	whole-	
brain	volumes.	Tissue	misclassification	problems	are	exacerbated	
in	MS	 due	 to	 T1-	hypointense	 lesions,	 which	 are	 shown	 to	 bias	
automated measures of gray versus white matter segmentation 
(Battaglini,	 Jenkinson,	 &	 De	 Stefano,	 2012;	 Ceccarelli	 et	al.,	

2012).	Although	lesion	filling	techniques	improve	accuracy	of	tis-
sue	segmentation	 (Chard,	Jackson,	Miller,	&	Wheeler-	Kingshott,	
2010;	González-	Villà	et	al.,	2017),	they	did	not	appear	to	substan-
tially affect measures of whole- brain volume as we chose to use 
here	(Dell’Oglio	et	al.,	2015).	There	is	an	extensive	literature	re-
garding	the	optimization	of	GM	versus	WM	tissue	segmentation	
postprocessing	 techniques	 (Derakhshan	 et	al.,	 2010;	 Popescu,	
Schoonheim,	et	al.,	2016;	Rocca	et	al.,	2017),	which	is	beyond	the	
scope of this paper.

A	third	potentially	 important	difference	between	our	pipelines	
is	the	template	registration	and	normalization	process.	Whereas	the	
BPF	metric	normalizes	brain	volume	using	the	subject’s	own	intra-
cranial	volume,	BPV	normalizes	to	a	registered	template	(MNI-	152)	
of averaged healthy brains. We speculate that this difference in nor-
malization	 factor	may	help	explain	why	a	proportion-	based	metric	
may be superior to a registration- based metric regarding clinical 
validity. This topic has not received significant attention in the liter-
ature	and	would	be	worth	exploring	in	more	detail	in	future	experi-
ments with longitudinal comparisons.

5  | CONCLUSION

Determination of whole- brain atrophy on 3T MRI depends in part on 
the	choice	of	postprocessing	software	methods;	here,	a	comparison	
of automated pipelines revealed discrepant results for whole- brain 
atrophy	measures	and	clinical	correlations,	 likely	based	on	the	un-
derlying statistical assumptions for tissue segmentation and scaling 

Unadjusted Adjusted

BPF BPV BPF BPV

PASAT3 0.227	(0.079) 0.213	(0.100) 0.247	(0.059) 0.235	(0.074)

COWAT 0.129	(0.323) 0.121	(0.352) 0.305	(0.019)* 0.318	(0.014)*

BVMT	TL 0.128	(0.325) 0.034	(0.797) 0.109	(0.410) 0.005	(0.967)

BVMT	DR 0.215	(0.096) 0.126	(0.335) 0.226	(0.086) 0.131	(0.324)

JLO 0.264	(0.039)* 0.237	(0.066) 0.336	(0.009)* 0.300	(0.021)*

SDMT 0.375	(0.003)* 0.301	(0.018)* 0.363	(0.005)* 0.273	(0.036)*

CVLT	TL 0.211	(0.103) 0.203	(0.116) 0.281	(0.031)* 0.282	(0.030)*

CVLT	DR 0.262	(0.042)* 0.212	(0.101) 0.247	(0.059) 0.196	(0.136)

DKEFS	CS 0.103	(0.427) 0.082	(0.530) 0.166	(0.209) 0.154	(0.243)

DKEFS	DS 0.142	(0.274) 0.127	(0.329) 0.149	(0.260) 0.141	(0.287)

Notes.	All	data	are	Spearman	correlation	r	(unadjusted	values)	or	partial	Spearman	correlation	r (ad-
justed	for	age	and	gender),	followed	by	p-	values	in	parentheses.	For	all	cognitive	tests,	we	used	the	
T scores from the regression- based norms.
BPF:	brain	parenchymal	fraction;	BPV:	brain	parenchymal	volume;	BVMT:	Brief	Visuospatial	Memory	
Test	 (TL:	 total	 recall;	DR:	delayed	recall);	COWAT:	Controlled	Oral	Word	Association	Test;	CVLT:	
California	Verbal	Learning	Test	(TL:	5-	trial	recall,	DR:	delayed	recall);	DKEFS:	Delis–Kaplan	Executive	
Function	System	Test	(CS:	total	confirmed	correct	sorts,	DS:	total	description	score);	JLO:	Judgment	
of	Line	Orientation	test;	MACFIMS:	Minimal	Assessment	of	Cognitive	Function	in	Multiple	Sclerosis;	
n:	number	of	subjects;	PASAT3:	Paced	Auditory	Serial	Addition	Task	(3-	s	delay);	SDMT:	Symbol	Digit	
Modalities Test.
*p	<	0.05.

TABLE  4 Two	normalized	whole-	brain	
volume measures: correlation with 
cognitive	component	scores	in	the	MS	
group (n	=	61)
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methods of the software. Results obtained using these automated 
pipelines are unlikely to be interchangeable and should therefore be 
interpreted with caution.
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