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Abstract

Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents,
with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields
on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial
dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species
associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of
2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures
with varying levels of hydrothermal activity, and a mosaic image of .250 m2 of seafloor co-registered with temperature
measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal
zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly
dominated by a new species of anomuran crab, Kiwa n. sp. (abundance .700 individuals m22), followed by a peltospiroid
gastropod (.1,500 individuals m22), eolepadid barnacle (.1,500 individuals m22), and carnivorous actinostolid anemone
(.30 individuals m22). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa
such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing
levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase
in d34S values of primary consumers with distance from vent sources, and variation in their d13C values also indicate possible
zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of
a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal
change and investigations of processes structuring faunal assemblages at Southern Ocean vents.
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Introduction

The abundant faunal assemblages colonising deep-sea hydro-

thermal vents are fuelled predominantly by chemosynthetic

microbial primary production, typically using the oxidation of

reduced inorganic compounds such as hydrogen sulfide at the

mixing interface between hydrothermal vent fluids and seawater

[1]. Vent fauna utilise microbial primary production by direct

consumption of free-living microorganisms (either filter feeding or

grazing), through symbiotic relationships with microorganisms

(either endosymbiotic or ectosymbiotic), or through a combination

of both nutritional modes [2]. Consequently, primary consumers

often occur with extremely high population densities compared

with non-chemosynthetic deep-sea environments, generally cov-

ering all available surfaces around vent fluid exits [3,4]. A main

objective in ecological studies is to understand the factors

determining the distribution and abundance of individual popula-

tions [5], and in dynamic environments such as hydrothermal

vents, determining faunal distributions is a starting point for

developing ecological understanding [6,7,8]. Quantifying the

composition and microdistribution of faunal assemblages at vents

is also a prerequisite for understanding temporal patterns such as

succession (e.g., [9,10,11,12]), and the impact of anthropogenic

activities such as the mining of seabed massive sulfide (SMS)

deposits [13].

Within a single hydrothermal vent field, distribution patterns of

species often match gradients in physicochemical conditions over

spatial scales from a few centimetres to tens of metres or greater

[9,14]. Zonation of faunal assemblages at deep-sea hydrothermal

vents therefore occurs over similar spatial scales to those found on

rocky intertidal shores [15]. Proximity to and tolerance of vent

effluent may be a primary factor in determining the extent to

which species can exploit chemosynthetic primary production.

Consequently, physicochemical factors appear to play important
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roles in determining the distribution patterns of species at vents

[11,16,17,18,19,20]. The development of vent ecology has

therefore mirrored that of rocky intertidal ecology [21], initially

considering physical tolerance of conditions as a primary de-

terminant of zonation patterns, and subsequently investigating the

role of biological interactions (e.g., [11,22,23,24]). Unlike the

rocky intertidal environment, however, acquiring primary obser-

vational data at deep-sea vents is hampered by the relative

inaccessibility of the environment, and refinements in the use of

deep-submergence platforms are required to overcome this

limitation [25,26].

Since the first direct observations of deep-sea hydrothermal vent

fields in the late 1970 s, several biogeographic provinces have been

defined for vent fauna, which differ in the species composition of

their assemblages [27,28,29,30]. The composition and microdis-

tribution of assemblages have been studied at vent fields in these

established provinces, but with differences in effort that reflect the

history of vent exploration. In the eastern Pacific Ocean, there

have been numerous studies of faunal microdistribution at vent

fields on the East Pacific Rise and Juan de Fuca Ridge

[9,11,15,16,17,18,31,32,33,34,35,36,37,38,39,40,41,42,43,44],

but fewer studies so far on the Mid-Atlantic Ridge

[12,19,45,46,47,48,49] and in Western Pacific back-arc basins

[50,51].

Exploration of the East Scotia Ridge (ESR), an intermediate-

rate back-arc spreading centre in the Southern Ocean [52]

(Figure 1), has recently revealed vent fields inhabited by new,

undescribed species of anomuran crab, eolepadid barnacle,

lepetodrilid and peltospiroid gastropods, actinostolid anemones,

and a stichasterid seastar, which represent a new province of vent

biogeography [53]. Here we: (i) describe the distribution of vent

structures in the newly-discovered E9 vent field on the ESR; (ii)

determine patterns of faunal zonation and species association in

the E9 vent field, using refinements in videography from a deep-

sea remotely operated vehicle (ROV); and (iii) examine relation-

ships between faunal microdistribution, vent activity, and the

trophic ecology of abundant primary consumers using carbon and

sulphur stable isotope analyses. These studies therefore provide

a first characterisation of faunal ecology in this new province of

vent biogeography.

Materials and Methods

Image Acquisition and Mosaicing
During research cruise 42 of the RRS James Cook (7th January –

24th February 2010) the Isis ROV completed 9 dives with a total

bottom time of 96 hours at the E9 vent field on the ESR (Figure 2).

These dives included systematic videographic surveys of selected

areas of the vent field. Surveys of horizontal substratum were

undertaken using a downward-looking (seabed-perpendicular) 3-

chip CCD (charge-coupled device) video camera (Insite Pacific

Atlas). Two lasers, 0.1 m apart, were mounted parallel to the focal

axis of the camera to provide scale in images. A CTD mounted to

the starboard side of the ROV recorded water temperature at an

altitude of 2 to 3 m above the seafloor during these horizontal

mosaic surveys.

Surveys of upstanding structures such as vent chimneys were

undertaken using a 1080i high-definition video camera (Insite

Pacific Mini-Zeus) on a pan-and-tilt mount. For these surveys, this

camera was configured to view horizontally forwards from the

ROV, so that its focal axis was perpendicular to the vertical plane

described by the movement of the vehicle during surveys. Once

configured, the pan and tilt module was then fixed for the duration

of the survey. Two lasers, 0.1 m apart, were mounted parallel to

the focal axis of the camera to provide scale in images. Continuous

CTD measurements of water temperature during imaging of vent

chimneys cannot be related to the surfaces surveyed, because of

the vertical advection of vent fluids.

Figure 1. Location of the E2 and E9 hydrothermal vent fields on the East Scotia Ridge (ESR) back-arc basin, Southern Ocean.
doi:10.1371/journal.pone.0048348.g001
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Several criteria constrained the selection of edifices for vertical

mosaicing surveys. As a result of ROV dive time limitations, only

three upstanding structures could be surveyed. These three

chimneys were selected to represent a range of levels of

hydrothermal activity. For inter-chimney comparisons, the west

face (approximate ROV heading 090u) was chosen, as this heading

was most amenable to complete ROV transect lines in a vertical

plane with no obstructions. Selecting the same cardinal face also

minimises possible variations between faces that may result from

the effects of background currents. These criteria resulted in the

following three structures being surveyed: ‘‘Black & White’’,

‘‘Carwash’’ and ‘‘Ivory Towers’’ (Figure 3).

The Doppler velocity log (DVL) of the Isis ROV provided

precise (,0.1 m in x, y, z directions) control of the position and

movement of the vehicle during the acquisition of video imagery

for both survey types. For surveys of horizontal surfaces, this

precise control was used to maintain an altitude of 2 to 3 m above

the seafloor. For surveys of vertical surfaces, the precision control

of the ROV was used to maintain constant heading of camera

view and maintain the position of the vehicle in a vertical plane

parallel to the face of the chimney being surveyed. In both cases,

DVL control was used to ensure survey lines with a minimum

overlap of 50% in visible frames.

Video media were then imported into a video editing software

package (QuickTime Pro Version 7.6.6) and exported as a stills

image sequence (full resolution 1080i HD images). These images

were then used to construct mosaic images by manually aligning

and superimposing frames in Adobe Photoshop CS5 extended

(version 12.0664). For mosaics of upstanding structures, where no

relevant CTD data are available, video footage was reviewed

simultaneously with the mosaicing process to identify and locate

visible vent fluid sources including black smokers, active flanges,

and areas of diffuse flow.

Definition and Quantification of Faunal Assemblages
Mosaic images constructed from ROV dive footage were used

to define faunal assemblage types based on dominant visible

species [10,47]. Voucher specimens of dominant species were

collected during ROV dives and identified through morphological

and molecular analyses [53]. From these specimens, tissue samples

were dissected for stable isotope analyses.

Areas occupied by different assemblage types were defined using

Photoshop to delineate their extent in mosaic images. The area of

each assemblage type was determined using the 0.1 m laser scale

visible in images. Percentage cover of each assemblage type was

then calculated for chimney surfaces as a 2D projection of the face

of the vent structure [47], using the laser scale to correct for

variation in the distance between the topography of the vent

chimney and the vertical plane followed by the ROV.

On the surfaces of upstanding structures, the abundances of

visually-identifiable species were estimated in each assemblage

type by using the 0.1 m laser scale on areas chosen to be as

perpendicular to the camera view as possible. Although the

mosaics were used to define and digitise the faunal assemblages on

each structure, all numerical data were collated from the original

stills captures extracted from the raw high-definition video footage

and reviewed on a high-resolution monitor. This removes any

error of double counting of mobile megafauna, which could be an

artefact from the mosaicing process. For some species where multi-

layered aggregations may be present, the abundances reported are

a ‘‘minimum abundance’’ based on the visible monolayer

population. Distributions of assemblage types were compared

with distances from identified visible sources of vent fluids on

upstanding structures.

Faunal assemblages types were also identified in the mosaic

images of horizontal surfaces based on dominant visible species

[50]. CTD data recorded during horizontal mosaic surveys were

interpolated and contoured using Surfer 8.0 (Golden Software

Inc). Interpolated data were co-registered with ROV position data

in ArcMap 10 to enable comparison of distributions of assemblage

types with variations in water temperature recorded by the CTD.

The ROV position data were corrected to account for an offset

between the locations of the CTD and camera on the vehicle.

Stable Isotope Analyses
Approximately 0.7 mg of powder was weighed into separate tin

capsules for carbon stable isotope analysis (SIA). For sulphur SIA,

2 mg of sample and 4 mg of the catalyst vanadium pentoxide were

weighed into each tin capsule. Stable carbon isotope ratios were

measured by continuous-flow isotope ratio mass spectrometry

using a Costech Elemental Analyser interfaced with Thermo

Finnigan Delta Plus XP (Natural Environment Research Council,

Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride,

United Kingdom). Two laboratory standards were analysed every

ten samples in each analytical sequence. These alternated between

paired alanine standards, of differing d13C, and an internal

laboratory gelatin standard. Sulphur SIA was conducted by Iso-

Analytical (Crewe, United Kingdom) using a SERCON Elemental

Analyser coupled to a Europa Scientific 20–20 Mass Spectrom-

eter. Laboratory standards barium sulphate (two sets of differing

d34S) and silver sulfide were used for calibration and drift

correction. An internal standard of whale baleen was used for

quality control (n = 28, 16.34% 6 s.d. 0.21). Stable isotope ratios

were expressed in delta (d) notation as parts per thousand/permil,

(%). All internal standards are traceable to the following

international standards: v-PDB (Pee Dee Belemnite), NBS-127

(barium sulphate), IAEA-S-1 (silver sulfide) and IAEA-SO-5

(barium sulphate). An external standard of freeze dried and

ground white fish muscle (Antimora rostrata) was also analysed (d13C,

n = 24, 218.94% 6 s.d. 0.09; d34S, n = 30, 18.20%, 6 s.d. 0.59).

Results

Distribution and Setting of Vents in the E9 Vent Field
The E9 vent field (Figure 2; main) is located north of a collapse

caldera (‘‘Devil’s Punchbowl’’, Figure 2: top-right) on the axial

high of the E9 ridge segment of the ESR, at depth ,2400 m. The

distribution of active and inactive vent chimneys (Figure 2B–2M)

within the field appears to be associated with fissures parallel to the

ridge axis, running NNW from the edge of the caldera across

a seafloor of predominantly flat sheet lavas (Figure 2, insert A;

[53]). Background seawater temperature at the E9 vent field, in

areas not influenced by hydrothermal activity, is typically 21.3uC
and is influenced by lower Weddell Sea Deep Water [54].

Figure 2. The E9 hydrothermal vent field. (Top-right) Ship acquired swath bathymetry of the ‘Devils Punchbowl’ collapsed caldera. Black outline
denotes the E9 vent field and area of ROV-based swath. (Main bathymetric map) High-resolution ROV-acquired mulitbeam bathymetry of the E9 vent
field. Waypoints denote areas of interest (A) Flat sheet lavas, typical background substrate of the E9 vent field (B) Most northern point of low-lying
hydrothermal activity (C) ‘‘Twin Peaks’’ (D) ‘‘Black and White’’ (E) ‘‘Carwash’’ (F) ‘‘Temple’’ (G) ‘‘Marshland’’ (H) ‘‘Marsh Towers’’; (I) ‘‘Ivory Towers’’
chimney complex (J) ‘‘Pagoda’’ chimney complex (K) ‘‘Launch Pad’’ chimney complex (L) ‘‘Needle’’ (M) ‘‘Windsor Castle’’.
doi:10.1371/journal.pone.0048348.g002
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Two active chimney structures occur in close proximity at the

northern limit of the vent field. ‘‘Black & White’’ (Figure 2D) is

a ,10 m high structure with multiple ‘‘black smoker’’ sources at

its summit, emitting fluids with a maximum measured temperature

of 380.2uC. Lower down the structure, flanges and beehives

provide additional exits for hydrothermal fluids at lower

temperatures. The ‘‘Black & White’’ structure also includes sulfide

pinnacles that do not emit visible diffuse flow. A second vent

chimney, ‘‘Carwash’’, is located less than 5 m south of ‘‘Black &

White’’. ‘‘Carwash’’ (Figure 2E) is ,10 m high and surmounted

by two chimneys that are no longer venting high-temperature

fluids from their peaks. Cooler fluids (5–19uC) and visible ‘‘white

smoke’’ emit from sources between the two chimney structures.

Towards the lower part of the chimney, flanges provide further

fluid exits.

In addition to chimney structures, the northern limit of the vent

field includes three areas of abundant faunal populations

associated with diffuse flow from fissures in sheet lavas. Two of

these areas (including ‘‘Twin Peaks’’ Figure 2C) lie within 100 m

north of ‘‘Black & White’’ and ‘‘Carwash’’.

The southern area of the vent field is characterised by active

and extinct chimneys and diffuse flow fields distributed parallel to

the ridge axis. The ‘‘Marsh Towers’’ structure (Figure 2H) consists

of two chimneys rising from a sulfide platform, which emit diffuse

flow, but no visible black-smoker venting. ‘‘Marsh Land’’

(Figure 2G), an area of diffuse flow from fissures in basalts lies

immediately to the west. ‘‘Ivory Towers’’ (Figure 2I) is located

,30 m south of ‘‘Marsh Towers’’ and is similarly formed of two

chimney complexes on a sulfide platform. One chimney complex

at ‘‘Ivory Towers’’ emits high temperature fluids (382.8uC)

through a number of exits, including clusters of beehive diffusers.

The other complex consists of five chimneys with bulbous tops that

do not emit visible high-temperature fluids. Extensive venting does

occur, however, from beehive diffusers and flanges at the sides of

these chimneys. Several less active pinnacles also surround the

main structures of ‘‘Ivory Towers’’.

Two further active structures occur in close proximity ,50 m

south of ‘‘Ivory Towers’’. At ‘‘Pagoda’’ (Figure 2J), buoyant high-

temperature vent fluid pools beneath a series of flanges. Similar

flange-trapped pools occur at ‘‘Launch Pad’’ ,10 m to the west

(Figure 2K), where there is also a single black-smoker chimney.

The southernmost limit of the vent field is marked by several

inactive structures, ,100 m south of ‘‘Pagoda’’: ‘‘Needle’’

(Figure 2L) and ‘‘Windsor Castle’’ (Figure 2M).

Definition of Faunal Assemblages at E9 Vent Field
Vertical mosaic images were obtained at three vent edifices: the

‘‘Black & White’’ vent chimney (east and west faces; Mosaic

Figure 3A), the ‘‘Carwash’’ vent chimney (west face; Mosaic

Figure 3B), and ‘‘Ivory Towers’’ (north, south, east and west face;

Mosaic Figure 3C). Three horizontal mosaic surveys were also

completed: one at the NW corner of the ‘‘Black & White’’ vent

chimney (resulting in a high-definition mosaic image of 17 m x

13 m of seafloor), and two in the Twin Peaks area (26 m x 7 m

and 13 m x 29 m; Figure 4).

The fauna of the E9 vent field are visually dominated by four

taxa: an undescribed species of anomuran crab of the genus Kiwa;

an undescribed species of peltospiroid gastropod; an undescribed

species of eolepadid barnacle of the genus Vulcanolepas; and

undescribed species of actinostolid anemones. Initial morpholog-

ical and molecular phylogenetic analyses are consistent with these

taxa representing new species [53], and they are therefore referred

to here as putative new species (e.g. ‘‘Kiwa n. sp.’’). Although

formal descriptions are required to confirm actual species

identities, these dominant taxa can clearly be distinguished from

each other in video imagery. Other fauna present among

aggregations of the dominant taxa include an undescribed species

of limpet of the genus Lepetodrilus, and at least three species of the

pycnogonid genus Sericosura. An undescribed seven-armed sea star

from the family Stichasteridae is also present towards the base of

chimneys and peripheral to areas of low-temperature diffuse

venting. Other common peripheral fauna include two species of

the pycnogonid genus Colessendeis, the brisingid seastar Freyella sp.,

an unidentified species of octopus, and zoarcid fish.

Video analyses define seven assemblage types at the E9 vent

field, based either on the fauna visibly dominating their biomass or

the substratum type where no fauna were present (Table 1 and

Figure 5; names of each faunal assemblage type are derived from

their dominant taxon). In areas immediately surrounding high-

temperature fluid exit, heating of seawater results in the pre-

cipitation of an anhydrite layer around the vent opening [55]. The

‘‘anhydrite assemblage’’ is typically devoid of organisms with the

exception of occasional mats of white filamentous bacteria and

occasional large individuals of Kiwa n. sp. with white filamentous

bacteria growing on the carapace (Figure 5A).

Surfaces adjacent to areas of exposed anhydrite are dominated

by Kiwa n. sp. The ‘‘Kiwa assemblage’’ can be divided into three

subtypes based on average size of individuals and proximity to

vent fluid exits. ‘‘Kiwa assemblage A’’ contains the largest individuals

(4760.8 mm mean carapace length.; Figure 5A), often with

filamentous bacteria on their carapace when in close proximity to

vent fluid sources, but individuals occur in low population densities

(minimum reported 65 individuals m22 for ‘‘Black & White’’). At

greater distance from fluid exits, but still within areas of visible

diffuse flow, ‘‘Kiwa assemblage B’’ is dominated by smaller

individuals (3060.8 mm mean carapace length; Figure 5B)

occurring at higher population densities (minimum 533 individuals

m22 for ‘‘Black & White’’). Here Kiwa n. sp. occur in multilayer

aggregations and have carapaces devoid of visible filamentous

bacteria. Adjacent to ‘‘Kiwa assemblage B’’ but at greater distance

from visible vent fluid sources, ‘‘Kiwa assemblage C’’ consists of

juvenile specimens (1260.4 mm mean carapace length) in

abundant aggregations (minimum 4017 individuals m22 for

‘‘Black & White’’). In each of these assemblages, the only other

visible faunal species is the limpet Lepetodrilus n. sp., on the

carapaces of Kiwa n. sp. (Figure 5I). The maximum number of

Lepetodrilus n. sp. recorded on the carapace of a collected specimen

was 62 individuals and was similar to the 69 individuals counted

from video imagery.

Surrounding the ‘‘Kiwa assemblage’’, though still within areas of

visible diffuse flow, the undescribed peltospiroid genus dominates

the ‘‘gastropod assemblage’’ (Figure 5C), as multilayer aggregations

(minimum reported abundance 1062 individuals m22 for

‘‘Carwash’’) and occasional chains of individuals hanging from

the edges of hydrothermal structures. Other conspicuous fauna

within the ‘‘gastropod assemblage’’ include Lepetodrilus n. sp. on the

shells of the gastropods (minimum estimated abundance from

video analysis was 5900–6200 individuals m22; Figure 5J).

Figure 3. Vertical mosaic images created using sequential image captures from the 1080i video footage (A) ‘‘Black & White’’ 9.7m
edifice (260u02.568, 229u58.905). Dive 140, 2400 m depth, ROV heading 090u (B) ‘‘Carwash’’ 9.7 m edifice (260u02.572, 229u58.904). Dive 140,
2401 m depth, ROV heading 128u (C) ‘‘Ivory Towers’’ 6.7 m edifice (260u02.809, 29u58.708). Dive 142, 2395 m depth, ROV heading 090u.
doi:10.1371/journal.pone.0048348.g003
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Occasional individuals of Sericosura spp. pycnogonids and Kiwa n.

sp. were also observed moving over the surfaces of the gastropod

aggregations.

Beyond the gastropod assemblage, the fauna are visually

dominated by the eolepadid cirripede Vulcanolepas n. sp., forming

the ‘‘barnacle assemblage’’ (Figure 5D; minimum reported abun-

dance 893 individuals m22 for ‘‘Carwash’’). Although the

barnacles are not basally attached in areas of diffuse flow, their

capitula typically occur above areas of diffuse venting.

Lepetodrilus n. sp. occur at high abundance on the barnacles

(estimates of abundances from video observations: 20 172 to 56

904 individuals m22; Figure 6A), with the greatest numbers on

the capitula of barnacles that are exposed to diffuse flow

(Figure 6B). Actinostolid anemones and Kiwa n. sp. are also

occasionally present among the barnacles.

Actinostolid anemones subsequently dominate the fauna at

greater distance from fluid sources, defining an ‘‘anemone assem-

blage’’ (Figure 5E). Pacmanactis n. spp. are the most abundant

anemones in this assemblage (minimum reported abundance 34

individuals m22 for ‘‘Carwash’’), but Marianactis n. sp. may also be

present. A specimen of Pacmanactis n. sp. was observed egesting

a carapace of Kiwa n. sp. (Figure 5F).

Vent structures also include some areas of visible exposed

substratum but no obviously dominant or abundant faunal taxon,

for example occupied by patches of visible microbial mats and

sparse juvenile Vulcanolepas n. sp. These areas are defined as

‘‘substratum assemblage’’. Finally, a ‘‘peripheral assemblage’’ occurs in

areas where there is no visible influence of hydrothermal activity in

substratum type (i.e. absence of anhydrite) or fluid sources. This

assemblage includes individuals of seven-armed stichasterid

seastars (Figures 5G and 5H) and fauna not present in other

assemblages such as Colossendeis spp. pycnogonids, which were

observed feeding on peripheral actinostolids (Figure 4C). Occa-

sional small Kiwa n. sp. (carapace length ,50 mm) were also

observed in the ‘‘peripheral assemblage’’.

Zonation of Faunal Assemblages at E9 Vent Field
The faunal assemblages at the E9 vent field show a repeatable

pattern of zonation around vent fluid sources in vertical and

horizontal directions (Figure 7). The horizontal mosaic survey at

‘‘Twin Peaks’’ (Figures 4 and 8) show the ‘‘Kiwa assemblage’’ and

‘‘gastropod assemblage’’ associated with areas of highest temperature

recorded by ROV-mounted CTD (‘‘Kiwa assemblage’’: up to 3.6 m

maximum distance from peak temperature record; ‘‘gastropod

assemblage’’: up to 4.3 m maximum distance from peak tempera-

ture record). With increasing distance from these areas, faunal

composition changes into ‘‘barnacle assemblage’’ (between 0.9 m

minimum to 9.9 m maximum distance from peak temperature

record) followed by ‘‘anemone assemblage’’ (between 1.1 m minimum

to 13.2 m maximum distance from peak temperature record), with

eventual gradation into ‘‘peripheral assemblage’’ where stichasterid

seastars are prevalent (beyond 2.7 m minimum distance from peak

temperature record). Stichasterids occur as solitary individuals, but

also in small aggregations (closest proximity 0.11 m between

centres of individual disks).

On upstanding structures where mosaic images were obtained,

the same zonation is apparent with distance above, below and

lateral to vent sources where substratum is available for fauna to

occupy (Figure 7). In addition, the western faces of the three

surveyed vent structures, (‘‘Ivory Towers’’, ‘‘Black & White’’ and

‘‘Carwash’’) show differences in the number and type of visible

vent sources (Figure 9). These structures also exhibit differences in

percentage cover of assemblage types in the 2D projections of their

mosaiced faces (Figure 9; Table 2).

The western face of ‘‘Ivory Towers’’ exhibits fifteen visible

fluid flow exits across its projected mosaic area, and the highest

proportion of ‘‘anhydrite assemblage’’ (Figure 9A). The ‘‘anhydrite

assemblage’’ bordering high-temperature fluid sources covers 19%

of the projected mosaic area. Adjacent to these patches, ‘‘Kiwa

assemblages’’ account for 21% coverage (‘‘Kiwa assemblage A’’:

12%; ‘‘Kiwa assemblage B’’: 9%; ‘‘Kiwa assemblage C’’: absent;

Figure 9A). The ‘‘gastropod assemblage’’ covers 24% of the total

projected mosaic area, occurring towards the base of the

mosaiced structure at greater distance from visible fluid flow

exits. The remainder of the projected mosaic area is classified as

‘‘substratum assemblage’’ (36%). The ‘‘barnacle assemblage’’ and

‘‘anemone assemblage’’ are absent from the mosaiced area of the

‘‘Ivory Towers’’ structure.

‘‘Black & White’’ exhibits an archetypal chimney structure,

with venting occurring from eleven visible fluid flow sources at

its peak and from flanges below (Figure 9B). All assemblage

types from ‘‘Kiwa assemblage A’’ to ‘‘anemone assemblage’’ are

present in the mosaiced area of the western face of this

structure. ‘‘Kiwa assemblage’’ types account for a total of 21% of

the projected mosaic area (‘‘Kiwa assemblage A’’: 11%; ‘‘Kiwa

assemblage B’’: 8%; ‘‘Kiwa assemblage C’’: 2%; Figure 9B), while

the ‘‘gastropod assemblage’’ and ‘‘barnacle assemblage’’ cover 2% and

6% respectively. The ‘‘anemone assemblage’’ occupies 9%, occur-

ring towards the base of the chimney. The remainder (62%) of

the projected mosaic area at ‘‘Black & White’’ is represented by

‘‘substratum assemblage’’, for example below the main active

chimney where surfaces are occupied by occasional bacterial

mats and sparse small barnacles.

Eight point sources of vent fluids were visible on the western

side of ‘‘Carwash’’, and there is no visible high-temperature

venting (Figure 9C). ‘‘Kiwa assemblage B’’ covers 14% of the

projected mosaic area, and occurs largely between the two relict

pinnacles of the structure. Here fluid exits may be obscured

from visual recognition, by dispersal of diffuse flow through

dense aggregations of Kiwa n. sp. and neighbouring peltospiroid

gastropods. The ‘‘gastropod assemblage’’ accounts for 23% of the

projected mosaic area at ‘‘Carwash’’. In contrast with ‘‘Ivory

Towers’’ and ‘‘Black & White’’, the ‘‘barnacle assemblage’’

accounts for 47% of the projected mosaic area at ‘‘Carwash’’.

Towards the base of the structure, the ‘‘anemone assemblage’’

occupies 8% of the projected mosaic area, and the ‘‘substratum

assemblage’’ only represents 7%, in contrast with the other

mosaiced structures. The remaining 1% of surveyed surface on

this structure was represented by the ‘‘anhydrite assemblage’’.

Carbon and sulphur isotope composition of dominant

primary consumers. Across the faunal assemblages identified

at the E9 vent field, the visually dominant taxa show an increase in

d34S values with distance from visible vent fluid source. Kiwa n. sp.

sampled from the ‘‘Kiwa assemblage’’ exhibited a mean d34S (s.d.) of

3.0661.12 (n = 52), while peltospiroid gastropods from the

‘‘gastropod assemblage’’ showed a mean d34S of 4.1260.93 (n = 37),

Figure 4. Horizontal mosaic of an area of low-lying diffuse flow around ‘‘Twin Peaks’’. Dive 139, 2401 m depth. ROV heading 358u. Area
mosaiced ,280 m2. Laser scale = 10 cm (A) unidentified Octopod (B) cluster of stichasterid seastars (C) pycnogonid genus Colessendeis sp. predating
on actinostolid (D) small area of diffuse flow (E) barnacles on ‘y’ – shaped fracture (F) ‘‘Kiwa assemblage B’’ and ‘‘gastropod assemblage’’ (G) ‘‘Kiwa
assemblage A’’ associated with peak ROV mounted CTD temperature measurement (6.03uC) (H) small area of diffuse flow in collapsed basalt.
doi:10.1371/journal.pone.0048348.g004

Vent Faunal Assemblages in the Southern Ocean

PLOS ONE | www.plosone.org 8 October 2012 | Volume 7 | Issue 10 | e48348



Vent Faunal Assemblages in the Southern Ocean

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e48348



and the mean d34S of Vulcanolepas n. sp. from the ‘‘barnacle

assemblage’’ was 8.1362.95 (n = 46).

The dominant primary consumers among assemblage types also

varied in mean d13C values. The mean d13C (s.d.) value of Kiwa n.

sp. from the ‘‘Kiwa assemblage’’ was 210.6460.74, while the value

for peltospiroid gastropods from the ‘‘gastropod assemblage’’ was

230.7160.70. The mean d13C of Vulcanolepas n. sp. from the

‘‘barnacle assemblage’’ was 224.4662.52, intermediate to the values

shown by the Kiwa n. sp. and peltospiroids.

Discussion

Faunal Assemblages at a Vent Field in the Southern
Ocean

The fauna occupying the E9 hydrothermal vent field on the

East Scotia Ridge belong to a proposed new Southern Ocean

province of vent biogeography [53]. The assemblages at the E9

vent field include aggregations of a new species of anomuran crab,

Kiwa n. sp., and video mosaicing of vent structures shows that this

species occurs at abundances of .700 individuals m22 in close

proximity to vent fluid sources. Two other species of Kiwa are

known to occur in chemosynthetic environments. Kiwa hirsuta

occurs at hydrothermal vents on the Pacific-Antarctic Ridge, but

at lower population densities (0.1 to 0.2 individuals m22) towards

the periphery of vent fields [56]. Kiwa puravida occurs at cold seeps

on the Costa Rica margin, but has not been observed in extensive

aggregations similar to those of the Kiwa species at the E9 vent field

[57]. Recently, specimens superficially resembling Kiwa n. sp. have

also been found in close proximity to active vent sources at a vent

field on the SW Indian Ridge, though at population densities at

least an order of magnitude lower than those observed at the E9

vent field in the Southern Ocean (Copley & Marsh, pers. obs.).

The galatheid Shinkaia crosnieri found in the Okinawa Trough back-

arc basin of the western Pacific [58] is the only other anomuran

known to occur in dense aggregations (exceeding 560 individuals

m22) in close proximity to vent fluid sources [51].

The ventral surface of Shinkaia crosnieri is covered in plumose

setae, similar to Kiwa n. sp., and S. crosnieri has been observed

‘‘combing out’’ these setae using its third maxilliped to transfer

epibiotic bacteria to its mouth [68]. Carbon radioisotope uptake

and stable isotope studies confirm that S. crosneiri obtains nutrition

from harvesting epibiotic bacteria in this fashion [69,70]. Kiwa

hirsuta and K. puravida are thought to harvest epibiotic bacteria

similarly from the setae on their chelipeds, although this has only

been demonstrated for K. puravida [57]. The chelipeds of Kiwa n.

sp. are not conspicuously setose and much shorter in proportional

length than those of K. hirsuta and K. puravida, but its ventral surface

is densely covered in setae unlike other Kiwa species. Filamentous

bacteria associated with these ventral setae suggest that Kiwa n. sp.

may also feed on epibiotic bacteria [53].

Assemblages dominated by other decapod crustaceans occur in

close proximity to vent fluid sources at some Atlantic and Indian

Ocean vents. Alvinocarid shrimp of the genus Rimicaris occur at

high densities close to vent sources at depths greater than 3000 m

on the Mid-Atlantic Ridge (R. exoculata, 1500–2500 individuals

m22; [45,59,60]), on the Central Indian Ridge (R. kairei;

[61,62,63,64]), and on the Mid-Cayman Spreading Centre (R.

hybisae, 2000 individuals m22; [65,66]). In contrast, the substratum

adjacent to high-temperature fluid exits on vent chimneys at east

and northeast Pacific ridge vent fields is typically occupied by

alvinellid polychaetes (,2000 individuals m22; [67]).

Among taxa occupying a similar position in faunal zonation at

vents in other biogeographic provinces, Rimicaris exoculata are also

thought to derive nutrition from epibiotic bacteria [60,71,72],

which may include methanotrophs at vent fields in ultramafic

settings [73], and a nutritional role of epibiotic bacteria is also

indicated for the polychaete Alvinella pompejana [74]. The d13C

values of Kiwa n. sp. sampled from the ‘‘Kiwa assemblage’’ at the E9

vent field are similar to values found in other vent species thought

to feed on an epibiont flora dominated by epsilon-Proteobacteria

[59,70,74,75], although the epibiont flora associated with the

ventral setae of Kiwa n. sp. have not yet been characterised.

The occurrence of Kiwa n. sp. at the E9 vent field extends from

aggregrations around vent fluid sources to individuals in periph-

eral areas. Direct temperature probe measurements of the ‘‘Kiwa

assemblages’’ defined by video mosaicing of vent structures ranged

from 10.1 to 12.6uC. Lower temperatures of 20.11 to 1.02uC
were recorded by the ROV-mounted CTD where individual Kiwa

n. sp. occur in the periphery of the vent field (Figure 8), but these

temperature data are not directly representative of conditions

inhabited by the animals because of the elevated position of the

CTD sensor on the ROV. Lithodid crabs are the other anomuran

taxon known to maintain adult populations in deep Antarctic

waters south of the Polar Front [76], although a squat lobster,

Munidopsis albatrossae, has also been recorded from the Belling-

shausen Sea [77]. However, lithodid crabs appear to be excluded

at temperatures lower than 0.5uC [78]. Explanations for a general

absence of reptant decapods from deep Antarctic waters include

their inability to regulate haemolymph magnesium concentrations,

resulting in loss of activity and death at cold temperatures [79,80].

The elevated temperatures recorded directly by temperature

probe in areas occupied by ‘‘Kiwa assemblages’’ may exclude these

aggregations from this limitation.

The ‘‘gastropod assemblage’’ at the E9 vent field is visually

dominated by an undescribed species of peltospiroid and occurs

adjacent to ‘‘Kiwa assemblages’’ but, at greater distance from visible

vent fluid sources. Peltospiroid gastropods are a geographically

widespread taxon at hydrothermal vents, and occur in a similar

position in vent faunal zonation at several vent fields on the

Central Indian Ridge (undescribed ‘‘scaly foot’’ gastropod;

[62,64]) and on the Juan de Fuca Ridge in the northeast Pacific

(Depressigyra globulus; [10,81]). At the 9uN vent field on the East

Pacific Rise, three species of peltospiroid are associated with the

‘‘alvinellid zone’’ but do not dominate its assemblages [36]. Two

morphospecies of peltospiroid are also abundant at newly-

explored vents on the SW Indian Ridge (Copley & Marsh, pers.

obs.), and another peltospiroid occurs in high abundance at a vent

field north of the Azores on the Mid-Atlantic Ridge [82]. Physico-

chemical tolerances are thought to be important in defining

gastropod microdistributions within hydrothermal vent fields,

although other factors such as biological interactions and

microbial flora may also be important [36,38,81]. The d13C

Figure 5. Images captured from high-definition video footage of the key fauna from the E9 vent field. Unless stated otherwise, laser
scale or scale bar = 10 cm (A) Anhydrite assemblage adjacent to Kiwa assemblage A (B) Kiwa assemblage B (C) gastropod assemblage (D) barnacle
assemblage (E) anemone assemblage (F) Actinostolid observed egesting a Kiwa n. sp. carapace (indicated by white arrow) (G) Un-described seven-
armed stichasterid seastar (H) Predatory seastar observed preying on a Kiwa n. sp. (I) On-board still image of Lepetodrilus n. sp. on carapace of large
individual of Kiwa n. sp. 62 individuals counted, Scale = 5 cm (J) Lepetodrilus n. sp in association with the gastropod assemblage (5900–6200
individuals m22).
doi:10.1371/journal.pone.0048348.g005
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values of peltospiroid gastropods from the ‘‘gastropod assemblage’’ are

similar to those of other taxa with endosymbionts dominated by

gamma-Proteobacteria, such as the gastropod Ifremeria nautilei [83]

and some Bathymodiolus spp mussels [75,84,85].

The sessile filter-feeding stalked barnacle Vulcanolepas n. sp.

dominates the third assemblage away from visible vent fluid

sources in video mosaics at the E9 vent field. Eolepadid barnacles

occupy a similar position in faunal zonation at vent fields on the

Central Indian Ridge [62,64,75], SW Indian Ridge (Copley &

Marsh, pers. obs), and several back-arc basins of the western

Pacific [86,87] where similar abundances have been recorded to

those reported at the ESR [88].

Molecular phylogenetics of Vulcanolepas n. sp. from the E9 vent

field indicates that it is most closely related to V. osheai from the

Brothers Caldera on Kermadec Ridge in the SW Pacific [53]. The

cirral setae of V. osheai harbour filamentous bacteria, and stable

isotope and fatty acid analyses indicate that V. osheai derives

nutrition from these epibionts [87]. Eolepadid barnacles at other

vents also harbour filamentous bacteria on elongated cirral setae

and may be capable of feeding on finer particles than other deep-

sea barnacles [86]. The stable isotope composition of eolepadid

barnacles from vents on the Central Indian Ridge is consistent

with nutrition from epibiotic bacteria in addition to filter feeding

[75]. The d13C values of Vulcanolepas n. sp. from the ‘‘barnacle

Figure 6. Lepetodrilus n. sp. (A) Barnacle assemblage with associated Lepetodrilus n. sp. 20,172–56,904 individuals m22. (B) Line plot indicates the
total number of limpets in each 5 cm increment towards an area of rising hydrothermal effluent. Bar plot indicates average number of limpets per
capitula. Error bars are standard deviation.
doi:10.1371/journal.pone.0048348.g006

Figure 7. Minimum and maximum distance of assemblages from varying fluid exits. (A) Assemblage distances from the vertical high-
temperature black smoker exit on the ‘‘Black & White’’ edifice (B) Assemblage distances from the vertical diffuse flow exits on the ‘‘Carwash’’ edifice.
(C) Assemblage distances from the horizontal diffuse flow exit indicated by ROV CTD peak temperature measurement on the ‘‘Twin Peaks’’ mosaic
(see Figure 4 & Figure 8). (D) Image illustrating transition from assemblage to assemblage.
doi:10.1371/journal.pone.0048348.g007
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assemblage’’ suggests a similar mixed nutritional mode for

eolepadid barnacles at the E9 vent field.

In the ‘‘barnacle assemblage’’ and ‘‘gastropod assemblage’’ defined by

video mosaicing, lepetodrilid limpets are the numerically domi-

nant species, occurring at high abundances on the peduncles and

capitula of the eolepadids, the shells of the peltospiroids, and also

occasionally on the carapaces of individual Kiwa n. sp., both in the

‘‘Kiwa assemblages’’ and in the periphery of the E9 vent field.

Lepetodrilids are a numerically dominant component of the fauna

in zones comparable to the ‘‘barnacle assemblage’’ at some vent fields

in other regions, for example on the northern East Pacific Rise

[11] and Juan de Fuca Ridge [81]. Although the proximity of

lepetodrilid species closest to vent sources may be determined by

tolerance of hydrothermal conditions [89], their distribution is

often widespread across other faunal assemblages at vent fields

elsewhere [36].

Figure 8. Temperature and positional data acquired from the ‘‘Twin Peaks’’ horizontal mosaic survey (A) Dotted line indicates the
ROV position, offset to represent the 3-chip camera location. Temperature plot is an interpolation using data acquired from the ROV
mounted CTD. (B) Digitised faunal assemblages of the ‘‘Twin Peaks’’ low-lying diffuse flow area. Assemblage types are colour coded and presented in
the legend. Peripheral fauna are indicated using the following symbols (+) Kiwa n. sp. (#) unidentified Octopod (N) un-described Stichasterid seastar
(x) Colessendeis sp. pycnogonid.
doi:10.1371/journal.pone.0048348.g008
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The ‘‘anemone assemblage’’ defined by video mosaicing occurs

beyond the ‘‘barnacle assemblage’’ at greater distance from visible

vent fluid sources in the E9 vent field, and is the most peripheral

assemblage type dominated by a single taxon. Actinostolids occupy

a similar position in faunal zonation at several vent fields in other

biogeographic provinces, either dominating peripheral zones (e.g.

TAG hydrothermal mound, Mid-Atlantic Ridge [90]; Rose

Garden, Galapagos Rift [9]; Kairei and Edmond fields, Central

Indian Ridge [61,62]) or surfaces at low temperatures (Ashadze-1,

Mid-Atlantic Ridge [49]). The abundances of actinostolids in the

‘‘anemone assemblage’’ at the E9 vent field (33–44 individuals m22)

are comparable with anemone abundances reported on the Mid-

Atlantic Ridge at the TAG hydrothermal mound (,20 individuals

m22; [91]) and Ashadze-1 (32 individuals m22; [49]), and at the

Beebe Vent Field on the Mid-Cayman Spreading Centre (.20

individuals m22; [66]). The observation of an anemone egesting

a carapace of Kiwa n. sp. at the E9 vent field is consistent with

a general recognition of actinostolids as secondary consumers at

vents [92].

The ‘‘peripheral assemblage’’ defined by horizontal video mosaicing

at the E9 vent field is characterised by the occurrence of secondary

consumers such as octopus, seven-armed stichasterid asteroids and

Colessendeis spp. pycnogonids (Figure 4A, 4B and 4C). Specimens of

the suspension-feeding brisingid genus Freyella were also present on

inactive structures in the southern sector of the E9 vent field

(‘‘Needle’’ and ‘‘Windsor Castle’’, Figures 2L and 2M). Predators,

Figure 9. Quantitative 2D analyses for each assemblage type were performed on a comparable vertical face of each upstanding
hydrothermal structure. (A) ‘‘Ivory Towers’’ (B) ‘‘Black & White’’ (C) ‘‘Carwash’’ (D) Comparative bar chart of percentage surface coverage of defined
faunal assemblages associated with each edifice.
doi:10.1371/journal.pone.0048348.g009
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scavengers and suspension-feeders known from non-vent environ-

ments are known to occur opportunistically in the periphery of

vent fields [93]. Whether taxa only observed in the ‘‘peripheral

assemblage’’ at the E9 vent field can be considered ‘‘vent endemic’’

is therefore not clear, even where stable isotope values indicate

nutrition ultimately derived from chemosynthetic sources of

carbon fixation [94].

Overall, although the fauna present at the E9 vent field are

distinct from those of other biogeographic provinces at species

level, it is clear that they exhibit similarities in zonation patterns at

Table 2. Surface area coverage of assemblages for each mosaiced chimney structure, including minimum abundances calculations
for the dominant taxa of each assemblage type based on a monolayer distribution.

Surface Area Coverage m2 Minimum Abundance Dominant Fauna individuals m22

Carwash Black and White Ivory Towers Carwash Black and White Ivory Towers

Kiwa A 0.00 1.69 0.70 – 65 272

Kiwa B 2.46 1.27 0.51 731 533 715

Kiwa C 0.00 0.23 0.00 – 4017 –

Gastropod 4.08 0.35 1.43 1062 1781 2688

Barnacle 8.32 0.99 0.00 893 1686 –

Anemone 1.39 1.39 0.00 34 44 –

Substrate 1.27 9.43 2.11 – – –

Anhydrite 0.09 0.00 1.14 – – –

Total Surface Area 17.61 15.35 5.89

doi:10.1371/journal.pone.0048348.t002

Figure 10. Idealised schematic of the spatial distribution of the E9 vent field faunal assemblages with increasing distance from
a vent fluid exit. This spatial pattern of zonation radiates in both (A) horizontal and (B) vertical directions.
doi:10.1371/journal.pone.0048348.g010
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higher taxonomic levels. Similarities in zonation at disparate

locations may result from family-level constraints of physical

tolerances to physico-chemical gradients at vents, and/or family-

level similarities in trophic ecology. However, the families that

dominate the assemblages at the E9 vent field do not always co-

occur at vents in other biogeographic provinces. Currently,

a zonation dominated by peltospiroids, eolepadids, and actinos-

tolids with increasing distance from vent sources is only known at

vent fields on the Central Indian Ridge [62,64]. At family level,

the E9 vent field is distinct in the high abundance of kiwaid crabs

in close proximity to high-temperature vent sources, not previously

observed for other kiwaid species, and only known for one other

anomuran species at vent examined so far [51].

Microdistribution Patterns Revealed by Large-scale Video
Mosaicing at a Vent Field

There is a consistent pattern of faunal zonation at the E9 vent

field, transitioning between assemblage types with increasing

distance from vent fluid sources (Figure 10). Faunal zonation

occurs in both vertical and horizontal directions around ‘‘black

smoker’’ sources and areas of visible diffuse flow (Figure 7). The

importance of thiothrophic nutrition for primary consumers may

decline with distance from vent fluid sources, as indicated by the

increase in d34S values across the zonation of their assemblages

[95]. There are variations, however, in the coverage of surfaces by

different assemblage types on individual chimneys surveyed at the

E9 vent field (Figure 9). These chimneys vary in the occurrence of

visible fluid sources and predominance of focused high-tempera-

ture venting or lower-temperature diffuse flow.

The western face of ‘‘Ivory Towers’’ exhibits the highest

concentration of high-temperature fluid flow exits and the highest

proportion of ‘‘anhydrite assemblage’’ among the structures surveyed,

and the faunal zonation only extends to the ‘‘gastropod assemblage’’ in

the mosaiced area. At ‘‘Black and White’’, most venting occurs as

‘‘black smoker’’ activity at the peak of the structure, immediately

surrounded by ‘‘Kiwa assemblages’’. With most sources of buoyant

vent fluid concentrated at the top of this structure, much of the

lower chimney is uncolonised by faunal assemblages, with small

patches of ‘‘barnacle assemblage’’ on relict pinnacles above other vent

fluid sources.

At ‘‘Carwash’’, there are no visible sources of high-temperature

vent fluids, and no visible venting at the peaks of its two sulfide

pinnacles. Instead, venting occurs as diffuse flow from the central

and lower portions of the structure. More than 90% of its surveyed

area is covered by faunal assemblages, dominated by the ‘‘barnacle

assemblage’’ (Figure 9D). Zonation from ‘‘Kiwa assemblage’’ to

‘‘barnacle assemblage’’ occurs repeatedly across the lower structure

around individual sources of visible vent fluids. Dense faunal

aggregations also disperse vent fluids laterally from their sources in

this area, and there may be additional fluid flow exits in this area

that are obscured by faunal aggregations. A similar dispersion of

vent fluids by mussel beds at Rose Garden on the Galapagos Rift

has been proposed to extend the seawater-effluent interface and

thereby increase habitat for vent fauna [15].

Surveying several structures with different level and types of

activity in the E9 vent field reveals a possible successional pattern

in faunal colonisation as activity at a particular structure declines.

Nascent vent structures with high levels of ‘‘black smoker’’ venting

may resemble ‘‘Ivory Towers’’ in assemblage types and coverage,

while structures where high-temperature activity is waning may

resemble ‘‘Carwash’’. ‘‘Black & White’’ may represent a transition

between these two extremes. This successional pattern can be

tested on future visits to the E9 vent field, using the large-scale

high-definition video mosaics compiled here as a baseline to assess

faunal change.

Variations in faunal microdistribution patterns at the E9 vent

field appear to be aligned with temperature gradients, where CTD

temperature data are available for large-scale mosaic surveys of

horizontal surfaces (Figure 8). Temperature is often used as a proxy

for physico-chemical conditions at vents, and considered to

represent the primary abiotic drivers in the spatial structuring of

vent assemblages (e.g., [20,50,81,96,97,98]). However, biological

processes may also be important in structuring faunal assemblages

in vent environments (e.g., [8,23,44,71,99,100,101,102]), but

subsequent investigation of these processes usually requires

ecological experimentation at the seafloor [7].

Here, large-scale, high-definition video mosaicing at the E9 vent

field has enabled detailed determination and quantification of

faunal zonation and microdistribution patterns over a similar

spatial scale to studies in accessible intertidal environments.

Determining patterns of spatial variation is a prerequisite for

elucidating processes [6] and a necessary first step in understand-

ing the ecology of a new province of vent biogeography. Although

the presence/absence of species is used to distinguish bio-

geographic provinces, such information does not represent all

aspects of ecological similarity or difference. There are some

similarities at family level in the zonation of assemblages at the E9

vent field and those of other provinces, but also some differences.

Determining such patterns at a global scale, and understanding

their genesis, represents a goal for vent ecology beyond the

mapping of biogeographic distributions.
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