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Abstract

Purpose: The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in
dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic
attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of
people with central field loss (CFL) to detect pedestrian hazards in simulated driving.

Methods: 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated.
Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent
variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation
duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and
selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians
that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in
time to avoid a collision).

Results: UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely
reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely
reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on
the UFOV divided and selective attention subtests (r = 20.66 and 20.62, respectively, p,0.04), with better contrast
sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = 20.60, p = 0.05).

Conclusions: Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of
functional visual ability of individuals with CFL relevant to more complex mobility tasks.
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Introduction

Central field loss (CFL) is the presence of scotomas (blind areas)

within the central visual field including the fovea. The most

common cause of CFL is age-related macular degeneration, a

major public health concern with the increasingly aged popula-

tion. Despite advances in treatments [1], the majority of

individuals with macular degeneration have irreversible vision

loss that causes difficulties in a range of activities including reading

and mobility (walking and driving) [2,3].

People with CFL almost always use a preferred retinal locus

(PRL), an extra-foveal location near the scotoma, to fixate targets

that would normally be foveally fixated [4,5]. Thus they not only

have a blind area in central vision, but also impaired visual acuity

and contrast sensitivity [6]. In order to compensate effectively for

the CFL, the PRL has to be used consistently for fixation, saccades

need to be directed to the PRL rather than the fovea, and scanning

of a scene with the PRL has to be accomplished in such a way as to

minimize occlusion of objects by the scotoma. Results of a prior

study in the dynamic environment of a driving simulator suggest

that drivers with CFL might not be able to fully compensate for

their scotomata, as responses to pedestrian hazards that appeared

in scotoma areas were much slower than responses to hazards in

non-scotoma areas [7].

In rehabilitation clinics, residual vision of people with CFL is

typically evaluated in terms of visual acuity, visual field measures,

and, possibly, fixation characteristics and letter contrast sensitivity

[6,8]. However, with the exception of reading, the ability of

patients to use their remaining vision for tasks representative of

activities of everyday living is rarely evaluated [8,9]. For example,

walking or driving assessments can be time consuming and often

require specialized equipment, such as a driving simulator, which

might not be available in a clinic. Moreover, traditional vision

measures, such as visual acuity and visual fields, typically account
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for only a small amount of variance in mobility performance of

people with CFL [10,11]. It is therefore important to develop

measures of visual performance that are both suitable for

implementation in clinical settings and predictive of how well

vision is used in real-world tasks (i.e., how well the person

compensates for his vision loss).

The ability to deploy visual attention effectively is a fundamen-

tal aspect of many tasks, including walking and driving. The Useful

Field of View (UFOV) test, the most well-known test of visual

attention, has been shown to be predictive of walking and driving

performance in elderly populations [12,13,14], in visually

impaired populations with a broad range of visual deficits

[15,16], and, more specifically, in patients with peripheral field

loss [17,18]. However, only a limited number of studies have

included patients with CFL, and they were always part of a larger

sample of heterogeneous vision impairments [15,16].

Driving and walking are carried out in dynamic environments

in which both the observer and the objects in the environment are

in motion. Attention has to be shifted between objects, divided

between objects (attending to the car ahead while being aware of a

person about to step into the road) and also maintained for

sustained periods of time. For people with CFL, this will require

effective gaze strategies and consistent use of the PRL. However,

commonly-used tests of visual attention, including the UFOV,

typically use only brief presentations of static stimuli. A task

requiring sustained attention to moving stimuli, which mimics the

continuous attention shifts between objects that are necessary

during mobility, might provide a more relevant assessment of

visual attentional abilities of patients with CFL than a test of static

visual attention. One such task is multiple object tracking (MOT),

which measures the ability to track several targets amongst

distractors while all are moving in random directions on a

computer screen [19].

We conducted a pilot study to examine the effects of CFL on

static and dynamic attention, assessed with the UFOV test and a

brief MOT test, respectively. We also quantified the ability of each

test to predict performance on a more complex mobility-related

task in which effective deployment of attention is likely to be

important - detection of walking/running pedestrian hazards while

driving in a simulator. Participants with CFL who had better

scores on the attention tests had better performance on the driving

simulator task with a higher proportion of timely responses to the

approaching pedestrians than participants who scored less well on

the attention tests.

Methods

Ethics statement
The study adhered to the tenets of the Declaration of Helsinki

and was approved by institutional review boards at the Schepens

Eye Research Institute and the Veterans Administration Boston

Healthcare System. All participants gave voluntary, written

informed consent.

Participants
Eleven normally-sighted current drivers and eleven people with

bilateral CFL participated in the study. They were recruited from

Schepens, the Veterans Administration Boston Healthcare Sys-

tem, and the Harvard Cooperative Program on Aging. The

normally-sighted group was selected to have a similar age and sex

distribution to the CFL group (Table 1). Inclusion criteria for the

participants with CFL were: an absolute bilateral central scotoma

(involving the fovea) to a 0.7u target at 1 m (kinetic perimetry using

a custom computerized central visual fields test [20]), corrected

binocular single letter visual acuity of 20/200 or better (the

minimum acuity for a restricted driving license in the USA [21])

and at least 120u horizontal binocular field extent (Goldmann

perimeter, V4e target). Causes of the CFL included: age-related

macular degeneration (n = 6), Stargardt’s macular dystrophy

(n = 2), optic atrophy (n = 2) and presumed ocular histoplasmosis

syndrome (n = 1). Seven of the CFL subjects were current drivers,

while four (aged 47 to 81 years) had stopped driving a median of 4

years (range 6 months to 12 years) before being tested in the

driving simulator.

All participants completed a questionnaire addressing general

health and medications to ensure that they did not have any (non-

visual) conditions that might affect their simulator performance.

Furthermore, none had cognitive decline (all scored at least 9/10

on the Short Portable Mental Status Questionnaire [22]) and none

had prior experience of driving in a virtual environment. Habitual

spectacle corrections were used for all tests and when driving in the

simulator.

Vision measures
Binocular single letter visual acuity was measured using Test

Chart 2000 Pro software (Thomson Software Solutions; Hatfield,

Hertfordshire, UK). Binocular letter contrast sensitivity (2.5u
letters) was measured with a custom, computer-based test on a

luminance-calibrated display [23] that gives results very similar to

those obtained with Pelli-Robson and Mars tests for visually

impaired patients tested with letters of comparable visual angle (R.

Woods, personal communication). The size of the binocular

scotoma for each CFL patient was determined under binocular

viewing conditions with kinetic perimetry using a custom

computerized central visual fields test [20] (0.7u target, similar to

the Goldmann IV3d target). The size was calculated as the mean

diameter of 4 main meridians passing through the center of the

scotoma.

Visual Attention Tests
The two attention tests were presented on a 20-in touch-screen

monitor and were administered at the same session. The UFOV

test took 10 to 15 minutes and the MOT test about 20 minutes.

Useful Field of View. The three UFOV subtests were

administered using the commercially-available UFOV test

[24,25], version 6.0.9 (Visual Awareness Research Group, Inc.,

Punta Gorda, FL). The first subtest (processing speed) required the

identification of a central target (outline of a car or a truck). The

second (divided attention) required identification of the central

target, as well as localization of a peripheral target (car) presented

simultaneously at one of eight radial locations 11 cm from the

center of the screen. In the third subtest (selective attention), the

central and peripheral targets were embedded among visual

distractors (triangles). Targets were displayed from 17 to 500 ms

using a double staircase method, and the score for each subtest was

expressed as the display duration for which the subject achieved a

75% correct response rate (with longer durations representing

poorer performance).

In our pilot testing, it quickly became apparent that the central

identification task was difficult for the CFL participants as the only

difference between the car and truck was a thin line of less than

0.1u width at the recommended 45 cm viewing distance (Figure 1).

Prior studies that measured UFOV in patients with CFL used

customized software with the ability to alter target size [15,16].

However, when we conducted this study, only the commercial

version of the UFOV test was available for our use, so we could

not manipulate the line width and/or size of the central target; the

only way to increase target size was by reducing viewing distance.

Visual Attention in Central Field Loss
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Therefore CFL participants used a preferred distance (median

34 cm, interquartile range 29 to 47 cm) at which they could

resolve the detail of the central target. Despite using a shorter

viewing distance, the size of the task detail was still closer to the

resolution threshold of the CFL participants than of the control

participants (the mean visual acuity of CFL participants was 4

times poorer than that of controls (Table 1) but the median

decrease in viewing distance only increased the angular thickness

of the line by about 1.3 times). Thus, the display durations for CFL

participants may have been confounded by differences in central

task resolution difficulty, adding variability that was not due to

attentional difficulties per se. By comparison, the peripheral

localization task was much less likely to be affected by visibility

issues as both controls and CFL participants performed this task

using peripheral vision. Only detection (not identification) of the

peripheral target was required and the overall target subtended

about 1.9u by 1.3u at 45 cm.

To remove the potentially confounding effects of differences in

central task resolution difficulty, the minimum display duration for

UFOV subtest 1 was subtracted from those of subtests 2 and 3.

These difference scores provided a measure of the effects of the

increased demands of the divided and selective peripheral

attention tasks, corrected for differences in visibility of the central

task. Both the UFOV threshold display durations and the

difference scores were analyzed.

One further consideration for the CFL participants was whether

any of the peripheral targets might have been obscured by the

central scotoma, which would have confounded performance on

subtests 2 and 3. Based on their scotoma size and location (as

measured with kinetic perimetry described under vision measures),

the peripheral targets fell outside of the central scotoma for nine

participants. For each of the two remaining participants the

peripheral target would have fallen within the scotoma for 2 of the

8 potential locations. These participants were not outliers on any

of the UFOV measures.

Multiple Object Tracking
A brief MOT task designed for clinical populations was

administered to all participants [26]. Stimuli were six high-

contrast black disks (2 cm in diameter) presented against a lighter

grey background. At the start of each trial three target disks were

highlighted in green for 2 s, and then turned black again. The task

was to track those target disks (among the distractor disks) as they

moved for 5–8 s. Each disk had an initial random direction and

changed direction when it met the boundaries of the display (23 by

23 cm) or came close to another disk. Thus, disks never occluded

one another. At the end of the trial all disks stopped moving and

the participant used the touch screen to indicate which disks were

the original green targets. Once three disks were selected, feedback

was given. The speed at which the disks moved was adjusted on

each trial using a simple one-up, one-down staircase. A correct

trial was one on which all three targets were selected correctly; a

trial with at least one incorrect selection was classified as an

incorrect trial. Speed was increased by 40% following correct trials

and decreased by 60% following incorrect trials starting from an

initial speed of 12u/s. Ten practice trials were followed by 50 test

trials and took approximately 20 minutes to complete. For each

participant, we then used the QUEST [27] algorithm to estimate

the speed (in degrees of visual angle per second) yielding 60%

correct performance.

Unlike the UFOV test in which fixation was constrained by the

central identification task, CFL and control participants were

permitted to move their eyes freely during the MOT task (there was

no central fixation target), and to adopt any viewing strategy that

might be helpful. Head position was also unrestrained. Participants

performed the task at a preferred distance that was comfortable for

viewing and interacting with the touch screen. Controls performed

the task at a median distance of 52 cm (interquartile range 42 to 53)

and CFL participants at a median distance of 40 cm (interquartile

range 36 to 43 cm). Thus the 2 cm disks subtended a median of 2.0u
for controls and 2.6u for CFL participants. Viewing distance was

accounted for in the computation of the threshold tracking speed.

Unlike the UFOV central identification task, the MOT task did not

require resolution of final detail, only detection of the high contrast

disks which were well above the detection threshold for both CFL

and control participants. Any differences in disk visibility between

CFL and control participants would have had little impact on their

ability to track the discs. By comparison, the central scotoma may

have impeded performance on the dynamic attention task, but that

was what we intended to measure.

Table 1. Demographic and visual characteristics of normally-sighted (n = 11) and CFL (n = 11) study participants.

Normally sighted CFL
Test for group differences,
p-value*

Male; n (%) 8 (72) 6 (54) 0.33

Age, years; Mean (range) 65 (46 to 84) 65 (46 to 87) 0.97

Visual acuity, LogMAR; Mean (range) 20.05 (20.12 to 0.12) 0.55 (0.20 to 0.98) 0.001

Contrast sensitivity, log units; Mean (range) 1.81 (1.55 to 1.95) 1.27 (0.90 to 1.60) 0.001

Average binocular scotoma diameter, degrees; Mean
(range)

n.a. 12 (5 to 23) n.a.

*Fisher’s Exact Test for sex; Student’s independent t-tests for other variables.
doi:10.1371/journal.pone.0089381.t001

Figure 1. The car and truck targets from the UFOV central
identification task. The targets differed only in whether two thin lines
were present in the top left area of each outline, making this task
difficult for participants with CFL.
doi:10.1371/journal.pone.0089381.g001
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Driving Simulator and Pedestrian Detection task
Each participant completed two driving simulator sessions in a

high-fidelity driving simulator (PP-1000, FAAC, Inc., Ann Arbor,

MI) with a 225u horizontal field of view and standard controls for a

car with automatic transmission [7,28]. Each session (about one

week apart) started with a period of familiarization and practice in

the driving simulator. Participants were given as much time as they

needed (about 30–45 minutes) to become comfortable controlling

the virtual car before progressing to the test drives. Participants

then drove three test drives in a city environment (30 mph) and 2

drives on rural undivided highways (60 mph) with other traffic on

the road and in the daytime [29,30]. They had full control of

vehicle steering and speed (gas pedal and brake pedal) at all times.

Each drive took about 8 to 12 minutes depending on drive length

and participant speed. Participants were instructed to follow all the

normal rules of the road. Breaks were taken between test drives, as

needed.

While driving, participants performed a pedestrian detection task

[31]. There were 8–12 pedestrian appearances per drive (52 per

session). The initial appearance was at one of four possible

eccentricities (214u, 24u, 4u, 14u) at 67 m (city) and 134 m

(highway) from the participant’s vehicle. At these distances there

was 5 seconds between pedestrian appearance and a potential

collision occurring (assuming that the participant was driving at the

posted speed limit). Five seconds is twice the perception-brake time

(time from hazard detection to first stepping on the brake) used in

the calculation of minimum recommended stopping sight distances

for safe roadway design [32]. The pedestrians (wearing a grey shirt

and trousers) initially vertically subtended 1.5u and 0.75u in city and

highway drives, respectively. After appearing, pedestrians walked or

ran with biological motion (i.e. their limbs moved realistically) as if

to cross the travel lane in front of the approaching vehicle; however,

they stopped at the edge of the travel lane to avoid collisions. The

speed of the pedestrians was such that there would have been a

collision with the participant’s car if it had continued without

braking and if the pedestrian had continued into the travel lane.

Thus pedestrians maintained a relatively constant eccentricity with

respect to the car heading direction for most of the approach time.

Pedestrians at small eccentricities (24u and 4u) represented

situations in which a pedestrian might approach from an adjacent

lane (while crossing the street), or the sidewalk. Pedestrians at larger

eccentricities

(214u and 14u) represented hazards approaching more quickly

from a greater distance (e.g., a bicyclist). Participants were

instructed to press the horn as soon as they saw a pedestrian appear.

Data analyses
For the attention tests, the following measures were used in

analyses: UFOV threshold display durations for subtests 1 to 3,

UFOV divided attention difference score (i.e., subtest 2 – subtest

1), UFOV selective attention difference score (subtest 3 – subtest 1)

and logarithm of the MOT threshold speed. For ease of

interpretation, MOT data are reported in terms of the actual

speeds rather than the logarithms of the speeds.

For each pedestrian appearance we calculated whether the

participant could have stopped in time to avoid a collision

assuming the pedestrian had continued on its trajectory and

entered the travel lane. The analysis took account of the

participant’s speed and distance from the pedestrian at the time

when they reacted (pressed the horn). We computed both the time

to contact and the time to bring the vehicle to a stop from the time

of the horn press. A braking deceleration of 5 m/s2 was assumed,

representing a dry road and a car in good condition [33]. Each

event was then classified as timely or untimely. Timely reactions

were those for which participants would have been able to stop in

time if they began braking at the time of the horn press (i.e.,

estimated braking time was less than the calculated time to

contact). Untimely reactions were those for which participants

would not have been able to stop in time, including events where

the braking time was greater than the time to contact, or the

pedestrian was not detected. For data pooled across city and

highway drives, overall pedestrian detection performance was then

summarized as the proportion of all reactions that were timely

[31,34]. To avoid the truncation effect [35], a probit transform

was applied to convert the timely reaction proportions to z-scores,

which were used in analyses.

Continuous variables were normally distributed and analyzed

with parametric tests. The alpha level was 0.05.

Results

As expected, CFL participants had worse visual acuity and

contrast sensitivity scores than participants with normal vision

(Table 1). The binocular scotoma diameter ranged from 5 to 23u
(Table 1).

The CFL group scored more poorly than controls on all of the

attention measures (Table 2). The threshold durations for the

UFOV subtests 1, 2 and 3 were significantly higher (longer

presentation durations, poorer performance) for the CFL group

than controls. The UFOV divided-attention difference scores were

also greater for participants with CFL than participants with

normal sight indicating a greater impairment in performance for

the CFL than the normal vision group in subtest 2 (the divided

attention condition) relative to subtest 1 (central discrimination

task only). A similar trend was apparent for the selective-attention

difference scores, but did not reach significance. In addition, the

MOT speed threshold of participants with CFL was lower (worse)

than that of participants with normal sight. For the CFL group,

UFOV difference scores and MOT speed thresholds were only

weakly correlated with vision measures (r,|0.48|, p.0.14) or age

(r,|0.36|, p.0.27).

The proportion of timely reactions in the driving simulator

detection task was significantly lower for participants with CFL

than participants with normal sight (Table 2). Unlike the UFOV

and MOT tasks, in which both groups demonstrated a wide range

of performance, in the driving simulator task only the participants

with CFL exhibited a range of performance. This was intended;

the detection task was designed to be taxing for the visually

impaired population but to allow sufficient time for a response to

avoid a collision [32].

As participants with normal sight demonstrated such a small

range of performance on the simulator detection task, correlations

between timely reactions and other measures were only examined

for participants with CFL. Higher proportions of timely reactions

were significantly correlated with better performance on the

attention tests, including: lower difference scores on the UFOV

divided and selective attention subtests (r = 20.66, p = 0.03; and

r = 20.62, p = 0.04, respectively); and higher MOT speed thresh-

olds (r = 0.73, p = 0.01) (Figure 2). However, correlations with the

threshold durations on the UFOV divided and selective attention

subtests were not as strong (r = 0.35, p = 0.30; and r = 20.42,

p = 0.20, respectively). Higher proportions of timely reactions were

also associated with vision measures, including smaller scotomas

(r = 20.60, p = 0.05), better contrast sensitivity scores (r = 0.54,

p = 0.08) and better visual acuity (r = 20.49, p = 0.15). The

proportion of timely reactions was only weakly correlated with

age (r = 0.34, p = 0.30) and there was no significant difference in the
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proportion of timely reactions between current and non-current

drivers (t(9) = 1.25, p = 0.24).

We conducted a multiple regression analysis with proportion of

timely reactions as the dependent variable (including data from

only the CFL participants). In the first step, MOT speed threshold

was entered as the only predictor, explaining 48% of the variance

(adjusted r2 = 0.48, F(1,9) = 10.18, p = 0.01). We then tested

whether the model could be improved with the addition of other

predictors. As sample size was limited, the model only ever

contained MOT speed threshold and one other predictor. Adding

UFOV divided attention score accounted for only an additional

1% of the variance (adjusted r2 = 0.49, F(2,8) = 5.86, p = 0.03).

Similar results were found when each of the other predictors was

added (UFOV selective attention difference, visual acuity, contrast

sensitivity, and scotoma size); none significantly improved the

model that contained only MOT speed threshold.

Discussion

Participants with CFL demonstrated poorer performance on

simulated pedestrian detection, MOT, and greater reductions in

UFOV performance in the divided and selective attention

conditions (relative to the central-task only condition) than

participants with normal sight. This was expected on the basis of

prior research on CFL participants in the driving simulator [7].

More interestingly, both MOT and UFOV scores were significant

predictors of the ability of CFL participants to detect pedestrians

in the driving simulator. CFL participants with a higher

proportion of timely reactions to pedestrians could track targets

at faster speeds in the MOT task and had less impaired

performance in the UFOV divided and selective attention tasks.

For each of the visual attention measures there was a wide range

of performance within the CFL group, which was only weakly

correlated with vision measures. This suggests that the level of

visual impairment per se was not an important factor accounting

either for variability within the CFL group or for differences

between the CFL and normally-sighted groups. Rather it appears

that the predominant factors were attentional capacity and the

ability to deploy attention in static and dynamic situations

(including efficient use of a PRL and compensatory gaze

strategies).

Of the visual attention measures, MOT performance had the

strongest correlation with performance in the driving simulator

detection task. One possibility is that individuals who are better at

devising good compensatory strategies (e.g. efficient use of a PRL)

might perform well on dynamic tasks such as MOT and pedestrian

detection. On this account, the key aspect of the MOT task is its

dynamic nature, which taxes the ability to constantly redeploy

scarce attentional resources where they are most needed [36].

Similarly, the driving simulator task requires the ability to shift

attention where needed, from the speedometer to the road ahead

to the side of the road where pedestrians may appear. Note that

this ability would be largely useless in static tests of visual attention

and static tests of clinical visual function, such as visual acuity or

contrast sensitivity [37]. Nevertheless, in agreement with a

previous driving simulator study of individuals with CFL [7],

timely reactions were also correlated with vision measures, in

particular scotoma size and contrast sensitivity, suggesting that

clinical assessments of vision for driving should include traditional

vision measures as well as measures of the ability to deploy

attention. Both MOT and UFOV measure the ability to divide

attention. However, there was only a very weak association

between performances on the two tasks, which provides support

for our hypothesis that MOT adds additional information about

attentional abilities in dynamic situations that is not captured by

static tests of visual attention.

During the MOT task it is highly likely that some of the targets

were obscured by the scotoma at least briefly. Studies of normally-

sighted young observers have demonstrated that the visual system

can successfully track targets which are briefly occluded [38].

However, tracking through occlusion requires more attentional

resources than tracking without occlusion [39]. Thus, tracking

may be more attentionally demanding in the presence of a

scotoma. More generally, processing resources allocated to

compensating for the vision impairment may reduce those

available for deployment of attention.

Our study had several limitations. First, we compensated for the

reduced visual acuity of our participants by allowing CFL

participants to use a preferred working distance, typically less

than 45 cm, at which they could resolve the UFOV task detail,

rather than adjusting the size of the central target within the

software. We also computed alternate attentional performance

measures by subtracting the minimum display duration for UFOV

subtest 1 (central task only) from those of subtests 2 and 3. While

this approach may not be optimal, it was a practical solution which

could easily be implemented in vision rehabilitation clinics.

Importantly, our results provide evidence in support of this

Table 2. Mean (SD) performance of normally sighted (n = 11) and CFL (n = 11) participants on each attention test and the simulator
detection task.

Normally sighted CFL Test for group differences

UFOV threshold durations (ms) Q

Subtest 1 central task only 20 (11) 112 (109) t(20) = 2.79, p = 0.01

Subtest 2 divided attention 83 (80) 251(113) t(20) = 4, p = 0.001

Subtest 3 selective attention 194 (114) 372 (114) t(20) = 3.65, p = 0.002

UFOV difference scores (ms) Q

Divided attention 63 (77) 148 (65) t(20) = 2.79, p = 0.01

Selective attention 173 (112) 251(98) t(20) = 1.74, p = 0.097

MOT speed threshold, 6/s q 13.5 (4.7) 9.1 (5.2) t(20) = 2.15, p = 0.043

Timely reaction, proportion q 0.96 (.01) 0.84 (.07) t(19.5) = 6.66, p = 0.001

qHigher scores indicate better performance.
QLower scores indicate better performance.
doi:10.1371/journal.pone.0089381.t002
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approach to analyzing UFOV data. Specifically, subtraction of the

central task-only presentation duration from the other two subtests

reduced the variability in the divided and selective attention task

scores within the CFL group, but not the control group (Table 2).

The reduction was greater for the divided attention than the

selective attention task, possibly because the peripheral target was

presented against an uncluttered background in the former task

but a cluttered background in the latter.

The peripheral target in the UFOV test was at approximately

the same retinal eccentricity (about 11u) for all control participants,

but varied amongst the CFL group, dependent on the viewing

distance and the eccentricity of the retinal location used for

fixation. This may have added some additional noise into the

Figure 2. Relationship between proportion of timely reactions and attention measures for CFL participants. (a) UFOV divided
attention threshold duration, (b) UFOV selective attention threshold duration, (c) UFOV divided attention difference score, (d) UFOV selective
attention difference score, and (e) the MOT task. Better performance on the pedestrian detection task was associated with better performance on
each of the attention tests. UFOV scores are plotted on reversed axes so that better performance is at the right hand side of the x-axis for all figures.
Thick black line shows the linear trend.
doi:10.1371/journal.pone.0089381.g002
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UFOV measurements for CFL participants, but was unlikely to

have had a major impact on the difficulty of the peripheral

localization task as the median decrease in viewing distance was

about 1.3 times, which would only have increased the retinal

eccentricity to about 14u.
Other limitations of this study include the small sample size and

the heterogeneity of the CFL group, which included both current

and non-current drivers; however, all were given ample time to

practice in the simulator and there were no differences in detection

performance between current and non-current drivers. We were

not evaluating fitness to drive per se; rather, we were using the

driving simulator as a safe, controlled, interactive test environment

that captured the complexities and attentional demands of a real

world mobility task while enabling repeated measurements of

detection under the same conditions for all participants; the

relationship between detection in simulated and on-road driving

has yet to be determined.

Although we cannot draw strong conclusions from this

exploratory study, the results are promising. Our findings suggest

that our brief laboratory-based test of dynamic visual attention

may be a better predictor of simulated driving performance than

the UFOV. More generally, dynamic attention tasks may prove to

be more useful than static attention tests in measuring the visual

performance of individuals with CFL relevant to predicting

performance in more complex mobility tasks. A follow-up study

is clearly warranted including a larger sample of visually impaired

participants, a UFOV test in which the size of the central task

detail can be manipulated and tracking of gaze movements to

evaluate compensatory scanning abilities. Furthermore, there are

many varieties of dynamic attention tests. It is possible that the

brief MOT test we utilized might not be the most optimal for

evaluation of dynamic sustained attention in individuals with

vision impairment; this remains an area for future research.
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