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Abstract: Mycobacteria are able to degrade natural sterols and use them as a source of carbon and
energy. Several genes which play an important role in cholesterol ring degradation have been
described in Mycobacterium smegmatis. However, there are limited data describing the molecular
mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed
the role of the echA19 and fadD19 genes in the degradation process of the side chain of cholesterol
and (3-sitosterol. We demonstrated that the M. smegmatis fadD19 and echA19 genes are not essential
for viability. FadD19 is required in the initial step of the biodegradation of C-24 branched sterol side
chains in Mycobacterium smegmatis mc>155, but not those carrying a straight chain like cholesterol.
Additionally, we have shown that echA19 is not essential in the degradation of either substrate. This is
the first report, to our knowledge, on the molecular characterization of the genes playing an essential
role in C-24 branched side chain sterol degradation in M. smegmatis mc*155.

Keywords: microbial sterol degradation; cholesterol; 3-sitosterol; M. smegmatis; sterol side-chain
degradation

1. Introduction

Fast-growing mycobacteria (M. smegmatis, M. vaccae, M. phlei, M. fortuitum) have been the
subject of biotechnological research for many years. They have been used e.g., in steroid compound
biotransformation processes, which provide precursors for the production of steroid drugs [1].
Microbial transformation of steroids is used for the production of novel drugs and also for the
synthesis of the key intermediates [2]. In pharmaceutical manufacturing processes the microbiological
transformation of steroids are particularly associated with the production of hormones [3]. A great
advantage of the bioconversion of steroids is the possibility of modifying a steroid molecule at locations
that are typically not available by chemical synthesis. The biotransformation process can be regio- or
stereoselective. Moreover, fast growing Mycobacteria are active in the biodegradation of polycyclic
aromatic hydrocarbons [4,5], particularly naphthalene, phenantrene, anthracene, fluoranthene, pyrene
and benzopyrene [6].

Molecular characterization studies concerning sterol degradation processes could not only be
important for the biotechnological production of steroid drugs, but also help widen our knowledge
on the pathogenesis of Mycobacterium tuberculosis (Mtb). Recent studies show that cholesterol can
play an important role in the host-pathogen interaction [7]. Cholesterol, a component of the host cell
membrane, allows mycobacterial survival in the epithelial cells of the alveoli [8]. It was also suggested
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that cholesterol degradation ability may be necessary for the intracellular survival of M. tuberculosis
during human macrophage infection [9-16]. Furthermore, the ability of cholesterol accumulation by
mycobacteria reduces the cell wall permeability for toxic substances [10]. These data indicate that
cholesterol can play an important role in M. tuberculosis pathogenesis. A better understanding of the
molecular basis of the cholesterol degradation process in mycobacteria is very important to complete
comprehension of the virulence process and search for new antituberculosis drugs.

Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy.
Several genes have been described in Mycobacterium smegmatis mc*155 which play an important role in
cholesterol ring degradation. Oxidation of the 33-hydroxyl group and isomerization of the resulting
cholest-5-en-3-one to cholest-4-en-3-one is catalyzed by hydroxysteroid dehydrogenase (HsdD) or
cholesterol oxidase (ChoD) with the main role postulated for HsdD [17,18]. 33-Hydroxysteroid
dehydrogenase (Rv1106¢) is responsible for 3(3-hydroxysterol oxidation in M. tuberculosis [19].
However, it was also noted that neither HsdD nor ChoD is essential for cholesterol degradation
by M. smegmatis and M. tuberculosis [20]. On the other hand, Yang ef al. showed that 33-hydroxysteroid
dehydrogenase encoded by Rv1106¢ (hsd), but not the putative cholesterol oxidase (Rv3409c), is
required for bacterial growth on cholesterol as a sole carbon source. Moreover, they demonstrated
that disruption of hsd does not limit M. tuberculosis CDC1551 replication in macrophages [21].
An essential enzyme for steroid ring degradation is 3-ketosteroid dehydrogenase (KsdD), catalyzing
the transhydrogenation of 3-keto-4-ene-steroid to 3-oxo-1,4-diene-steroid. The inactivation of this gene
also affects the virulence of M. tuberculosis [15].

On the other hand, there are limited data describing the molecular mechanism of aliphatic
steroid side chain degradation by Mycobacterium spp. The sterol side chain is degraded by a process
similar to the (3-oxidation of fatty acids [14,20,22-25], which is initiated by ATP-dependent CoA
ligase [26]. It is known that enzymes of the cytochrome P450 (CYP) families 125 and 142 catalyze
the oxidation of the alkyl side chain of cholesterol [27]. The role of M. tuberculosis Cyp125 in
sterol side chain degradation was examined [14,28-30]. Ouellet et al. showed that in the clinical
isolate M. tuberculosis CDC1551 cyp125 is required for bacterial growth on cholesterol as a sole
carbon source [14], whereas H37RvAcyp125 strain is able to grow on cholesterol [28]. Johnston ef al.
demonstrated that Cyp142 is a compensatory enzyme, which can support the growth of H37RvAcyp125
on cholesterol [30]. Moreover, it has been revealed that the CYP142 subfamily can metabolize
cholesteryl sulfate and cholesteryl propionate, while CYP125 enzymes oxidize only cholesteryl sulfate
but at a slower rate [27]. Structural and biochemical characterization of M. tuberculosis Cyp142
(Rv3518¢ in M. tuberculosis H37rRv genome) was provided by Driscoll et al. [31]. Further, FadA5
has been described in M. tuberculosis H37Rv as involved in steroid side chain degradation, which
finally leads to the production of AD or ADD [23]. Metabolite identification studies in Actinomycetes
suggest that cholesterol side chain degradation requires one or more acyl-CoA dehydrogenases
ACAD:s [32]. Acyl-CoA dehydrogenase in M. tuberculosis (FadE28-FadE29) exhibits activity toward
cholesterol metabolites which contain a 3-carbon isopropyl side chain on ring D [32]. Additionally,
Ruprecht and co-workers showed that FadE34 (also known as ChsE3) in M. tuberculosis and CasC
in R. jostii RHA1 catalyze the dehydrogenation of 5 C, but not 3 CoA ester substituents at ring D.
This observation proves that ACADs metabolize the steroid side chain and have separate chain
length specificities [33]. Recently, the substrate specificity of ChsE4-ChsE5 (rv3504-Rv3505) and ChsE3
(Rv3573c) have been described [34]. Moreover, Lu and co-workers demonstrated that ChsE4-ChsE5
specifically catalyzes the dehydrogenation of the (255)-3-oxocholest-4-en-26-oyl-CoA diastereomer
in B-oxidation of the cholesterol side chain [35]. The igr (intracellular growth) operon is required
for M. tuberculosis growth on cholesterol as a carbon source [11,23]. Thomas et al. identified the igr
operon as necessary factor for degradation of the 2’-propionate side chain fragment during cholesterol
degradation by Mycobacterium [36].
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One of the sterols commonly present in natural environment is 3-sitosterol, which belongs to
the phytosterols and has a C-24 branched side chain. There are no data available about the molecular
mechanisms of 3-sitosterol degradation in Mycobacterium.

In this paper we analyzed the role of selected M. smegmatis genes coding for enzymes engaged
in the process of degradation of the side chains of cholesterol and 3-sitosterol (Scheme 1). We have
demonstrated that fadD19 (acyl-CoA-ligase) is required in the initial step of biodegradation of C-24
branched sterols in M. smegmatis. Additionally, we have shown that echA19 (putative enoyl-CoA
hydratase) is not essential in the degradation of either substrate ([3-sitosterol or cholesterol), but its
absence partially inhibits this process.
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Scheme 1. The basic pathways of cholesterol (a) and {3-sitosterol (b) side chain degradation containing
analyzed metabolites [14,24,25,35,37].

2. Results

2.1. M. smegmatis fadD19 and echA19 Genes are not Essential for Viability

M. smegmatis has an ability to use cholesterol or 3-sitosterol as a source of carbon and energy.
Culturing of M. smegmatis in the presence of cholesterol results in fast complete degradation of this
substrate which was observed as soon as at 24 h (Figure 1). In the case of 3-sitosterol the complete
degradation occurred at 96 h (Figure 2). The two-step recombination protocol of Parish and Stocker [37]
was used to obtain the unmarked deletion of M. smegmatis fadD19 and echA19 genes. The successful
engineering of mutants confirmed by PCR and Southern blot hybridization (Figures 3 and 4) showed
that neither fadD19 nor echal9 is essential for viability of M. smegmatis in rich medjia.
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Figure 1. Cholesterol degradation by M. smegmatis based on HPLC analysis. The curves represent the
rate of cholesterol degradation in cultures of M. smegmatis mc?155 (x), AfadD19 (A), AechA19 (B) in
minimal medium. The substrate control (the stability of cholesterol in media) is marked by circles (®).
Results are representative of three independent experiments.
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Figure 2. 3-Sitosterol degradation by M. smegmatis based on HPLC analysis. The curves represent the
rate of B-sitosterol degradation in cultures of M. smegmatis mc?155 (stars), AfadD19 (A), AechA19 (W),
AfadD19,attb::PfadD19fadD19 (#) in minimal medium. The substrate control (the stability of 3-sitosterol

in media) is marked by circles (®). Results are representative of three independent experiments.
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Figure 3. Southern blot-based analysis of mycobacterial mutants generated by directed mutagenesis.

(Top) Scheme showing the length of the restriction DNA fragment (2256 bp) and the internal deletion

in the mutated gene (706 bp). The chromosomal localization of fadD19 is represented by red arrow,

while the internal deletion is marked by black rectangle. (Bottom) Southern blot confirming the internal

deletion in the fadD19 gene of M. smegmatis. The lanes represent genomic DNA from: 1, wild-type

M. smegmatis; 2-5, double crossover mutants carrying the internally deleted AfadD19 gene; 6, single

crossover mutant; 7, double crossover mutant carrying the wild-type fadD19 gene.
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Figure 4. Southern blot-based analysis of mycobacterial mutants generated by directed mutagenesis.
(Top) Scheme showing the length of the restriction DNA fragment (950 bp) and the internal deletion in
the mutated gene (404 bp). The chromosomal localization of echA19 is represented by red arrow, while
the internal deletion is marked by black rectangle; (Bottom) Southern blot confirming the internal
deletion in the echA19 gene of M. smegmatis. The lanes represent genomic DNA from: 1, wild-type
M. smegmatis; 2-3, double crossover mutants carrying the internally deleted AechA19 gene; 4, single
crossover mutant; 5, double crossover mutant carrying the wild-type echA19 gene.

2.2. M. smegmatis fadD19 and echA19 Genes are not Essential for Cholesterol (Side Chain) Degradation

The ability of M. smegmatis AfadD19 and AechA19 mutants to utilize cholesterol was monitored
using the LC-MS/MS technique. The very fast consumption of cholesterol (90% of the substrate was
degraded completely at 24 h of culture) was observed for both mutants (Figure 1). M. smegmatis
AfadD19 and AechA19 were capable of cholesterol degradation, as well as cholestenone, AD, ADD
production (Table 1). The first metabolite identified in the degradation process was cholestenone, with
the largest amount between 12 h and 24 h of the culture. Cholestenone was more abundant in AfadD19
in the 24 h culture, than in the culture of the parent strain.

Table 1. The content [%] of a selected metabolite intermediate of cholesterol degradation on minimal
medium by AfadD19, AechA19, M. smegmatis mc>155.

Time (h) Cholestenone AD ADD Cholestenone AD ADD Cholestenone AD ADD

Mycobacterium smegmatis mc>155 AfadD19 AechA19

0 0 0 0 0 0 0 0 0 0
12 11.19 0 0 11.02 0 0 10.01 0 0
24 10.31 1.95 0.83 14.13 225 1.05 11.05 0.75 0.9
48 0 4.51 6.2 0.74 3.94 6.98 1.05 3.02 6.14
72 0 4.06 9.4 0 5.11 7.5 0 4.97 7.5
96 0 4.04 8.5 0 6 8.71 0 7.34 9
144 0 2.1 6.1 0 2.07 5.09 0 1.79 6.01
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2.3. fadD19 but not echA19 is Required for (3-Sitosterol (Side Chain) Degradation

We used B-sitosterol (C-24 branched side chain sterol) as a substrate to analyze the ability of
wild type M. smegmatis and its AfadD19 and AechA19 mutants to degrade side-chain branched sterols.
We found that mutant AfadD19 is unable to use [3-sitosterol as the only source of carbon and energy,
suggesting the fundamental role of FadD19 in 3-sitosterol degradation by M. smegmatis (Figure 2,
Table 2). Moreover, we observed that AechA19 inactivation delayed the 3-sitosterol degradation by
M. smegmatis AechA19 (Figure 2, Table 2), which was associated with a slower initial growth phase
(24 h) (unpublished data).

Table 2. The content [%] of selected metabolite intermediate of (3-sitosterol degradation on minimal
medium by AfadD19, AechA19, M. smegmatis mc2155.

Time (h)  1,4-BNC ADD 1,4-BNC ADD 1,4-BNC ADD
Mycobacterium smegmatis mc*155 AfadD19 AechA19
0 0 0 0 0 0 0
24 10.24 0.51 0 0 13.05 0
72 17.81 3.57 0 0 29.1 2.1
144 2.34 8.75 0 0 4.75 7.05
168 0 3.01 0 0 0.21 8.95

We also tested the ability of the wild type strain and its mutants to utilize 1,4-BNC
(3-0x0-23,24-bisnorchola-1,4-dien-22-oic acid), a steroid with a partially preserved aliphatic chain
(Figure 5). It was observed that both wild type and AfadD19 strains were able to degrade 1,4-BNC.
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Figure 5. 1,4-BNC degradation by M. smegmatis based on HPLC analysis. The curves represent
the rate of 1,4-BNC degradation in cultures of M. smegmatis mc?155 (%), AfadD19 (A), AfadD19,attb::
PfadD19fadD19 (4) in minimal medium. The substrate control (the stability of 3-sitosterol in media) is
marked by circles (®). Results are representative of three independent experiments.

To confirm the essential role of FadD19 in the early step of {3-sitosterol degradation, a
complemented mutant was constructed carrying an intact fad D19 under control of its natural putative
promoter (M. smegmatis AfadD19; attB::Ppgp19fadD19). The complemented strain, but not the AfadD19
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mutant, was able to degrade (-sitosterol with kinetics similar to that of wild type M. smegmatis
(Figure 2). The complementation confirmed that the inhibition of (-sitosterol degradation by
M. smegmatis AfadD19 was directly due to the absence of an intact fad gene, not to a polar effect.

In the case of the AechA19 mutant we observed a delay in the degradation of 3-sitosterol compared
to a wild type strain (Figure 2, Table 2). Analysis of the growth kinetics (unpublished data) on
minimal medium supplemented with (3-sitosterol confirms that inactivation of echA19 results in slower
consumption of this substrate.

3. Discussion

In this study we demonstrated for the first time an important role of fadD19 in the initial step
of B-sitosterol degradation by M. smegmatis. Moreover, this is the first report on the molecular
characterization of the gene playing an essential role in C 24-branched chain sterol degradation in
M. smegmatis. In addition, we observed that echA19 inactivation delayed the process of 3-sitosterol
degradation by M. smegmatis AechA19. This effect is specific to 3-sitosterol, because the addition of
acetate or propionate abolishes this effect between the wild type strain M. smegmatis mc?155 and the
AechA19 mutant (unpublished data). The literature data concerning EchA19 is very limited, so the role
of EchA19 in sterol side-chain degradation will be further examined.

Fast growing mycobacteria, including M. smegmatis, are able to degrade sterols carrying straight
or branched side chains. Here, we found that FadD19 in M. smegmatis is essential to utilize branched
side chain sterols, but not those carrying a straight chain, like cholesterol. Using 1,4-BNC as a substrate,
we found that FadD19 acts in the early step of 3-sitosterol degradation. On the other hand, EchA19
appeared not to be essential for degrading either (3-sitosterol or cholesterol. Similar observations were
made by Wilbrink et al. [26] with Rhodococcus rhodochrous as a model strain. The mutant defective in the
synthesis of FadD19 was not able to utilize sitosterol and campesterol but degraded cholesterol [26].
The essentiality for degradation of steroid substrates carrying branched but not straight side chains
was also shown in the case of aldol-lyases Ltp3 and Ltp4 [24].

The knowledge of genes involved in sterol side-chain degradation is very limited in contrast
to enzymes catalyzing the sterol ring degradation. However, a catabolic gene cluster was identified
in M. smegmatis and R. jostii, as encoding the enzymes which are probably responsible for the
-oxidation process [22,25]. The (3-oxidation process requires several enzymes, such as enoyl-CoA
hydratase (EchA), acyl-CoA dehydrogenase (FadE), 3-hydroxy-acyl-CoA-dehydrogenase (FadB) and
3-keto-acyl-CoA thiolase (FadA) [38]. Steroid-CoA ligase (fadD19), which plays a key role in C-24
branched sterol degradation, has been identified by Wilbrink et al. [26]. A second gene which is
analyzed in this study is echA19 (putative enoyl-CoA hydratase). EchA5 was described as non-essential
for M. tuberculosis growth in vitro and in vivo [39]. Yang et al. showed that MaoC-like enoyl-CoA
hydratase, ChsH1-ChsH2, catalyzes the hydratation of 3-oxo-4,17-pregnadiene-20-carboxyl-CoA
to 17-hydroxy-3-oxo-4-pregnene-20-carboxyl-CoA in cholesterol side chain degradation [40].
Moreover, Casabon et al. characterized acyl-CoA synthetases involved in steroid side-chain degradation
in M. tuberculosis and R. jostii RHA1 [41]. In the genome of pathogenic mycobacteria, Mtb, orthologs of
analyzed genes fadD19 and echA19 can be identified with an 82.7% and 81.6% identity at the amino
acids level, respectively. FadD19 was predicted to be specifically required in Mtb for growth on
cholesterol [17]. However, the specific inactivation of both genes, A(echA19-fadD19), in Mtb did not
affect the process of cholesterol degradation (Brzostek et al., unpublished data). There are no published
data about the utilization of 3-sitosterol by Mtb, however, a number of different sterols are available in
the host.

The degradation of the sterol aliphatic side-chain is still not well understood. However, it is
generally accepted that the side-chain of sterols is shortened by 3-oxidation reactions. Some genes
encoding putative 3-oxidation enzymes in the cholesterol regulons of Mtb and Rhodococcus rhodochrous
DSM43269 were identified. FadAb5 catalyzes the thiolysis of acetoacetyl-CoA in vitro yielding
androsterone metabolites [e.g., 4-androstenedione (AD) and 1,4-androstenedione (ADD)] [23].
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Thiolase activity appeared to be required for growth on cholesterol and for Mtb virulence, especially
during the late stage of mouse infection. Cytochrome P450 monooxygenase (Cyp125) was identified
as a selective sterol side chain degradation enzyme in the Rhodococcus rhodochrous RG32 strain.
The orthologue of cyp 125 in M. tuberculosis (rv3545c) was suggested to be associated with the process
of pathogenesis [42].Understanding of the process of sterol degradation by mycobacteria is important
not only from the point of view of Mtb pathogenesis but can also have practical implications in the
production of steroid drugs (AD, ADD). These compounds might be synthesized using non-pathogenic
mycobacterial strains [2,43].

4. Experimental Section

4.1. Bacterial Strains and Culture Conditions

The following bacterial strains were used: Escherichia coli Top 10 (Invitrogen, Carlsbad, CA,
USA), Mycobacterium smegmatis mc?155 (Snapper et al., [44]). E. coli strains were grown in LB medium.
For growth on solid medium, 1% (w/v) Difco agar (Becton, Franklin Lakes, NJ, USA) was added.
The mycobacterial strains were cultured in Middlebrook 7H9 broth or 7H10 agar plates supplemented
with albumin-dextrose-sodium chloride and/or kanamycin (25 pg- mL™1).

For steroid degradation experiments, mycobacterial strains were cultured in NB broth [8 gL~
nutrient broth (Difco, Franklin Lakes, MJ, USA), 10 gL.~! glucose, supplemented with 2% Tween
80 (pH 6-6.2)] or in minimal medium [gL_lz MgSO;4-7H0, 5; NapHPOy,, 1; KHpPOy4, 5 NH4NO;3,
25; CaCly-2H;0, 0.001; Fep(SO4)3- nH,0O, 0.01; MnSO4. nH,0O, 0.0001; Co(NO3)-2.6H,O, 0.000005;
(NH4)6MO7OZ4' 4H20, 0.0001].

NB medium (100 mL) was inoculated with M. smegmatis and incubated overnight at 37 °C with
shaking at 140 r.p.m. min~!. An overnight culture of M. smegmatis was harvested by centrifugation
for 10 min at 5000 r.p.m. The cells were resuspended in 10 mL minimal medium and a sample (about
2—4 mL) was transferred to 96-98 mL fresh minimal medium in a 1 L flask. The optical density of
bacteria was 0.1. Finally, cholesterol or {3-sitosterol were added to the medium at a final concentration
of 100 mg/L. The cultures were incubated on a shaker (140 r.p.m.) at 37 °C.

4.2. Plasmid Constructions

To perform unmarked deletion in fadD19 and echA19 genes of Mycobacterium smegmatis,
suicidal recombination delivery vectors were constructed. In the first step the 5" ends of the
genes (fadD19 or echA19) and upstream regions were amplified using primers MsfadD19Gr1
(CCAGACGCCGGACGGATCCCAGGC) and MsfadD19Gr2 (CGCCTGTGTGGATACCAGCCATTG)
for fadD19, and MsechA19Grl (GCTGCAGATCGGTGATGACGCGGTTGG) and MsechA19Gr2
(CAAGCTTGACGATGAGGGTGTGTCCGC) for echA19, and cloned into the Kpnl/BamHI and
Pstl/HindlIIl sites of p2NIL to create pNWO03 and pNWO08, respectively. Subsequently, the 3" ends of
the genes (fadD19 or echA19) and downstream regions were amplified using primers MsfadD19Gr3
(CGGGATCCCCCGACGAGGTGTGGCAGG) and MsfadD19Gr4 (GCAAGCTTCCATCCAGACG
CCGGACQG) for fadD19, and MsechA19Gr3 (CAAGCTTTGGACAAGGCGCTGGAGATCG) and
MsechA19Gr4 (CGGTACCTCACATTCGGGAACGGTGGGACQC) for echAl19, and cloned into the
BamHI/HindlIlI sites of pPNWO03 and HindIII/Kpnl sites of pNWO08. The ligated 5" and 3’ fragments
of the fadD19 and echA19 genes in the resulting vectors were out of frame. The resultant vectors
were named pNWO04 and pNW09, respectively. Finally, Pacl marker gene cassette from pGOAL17
carrying lacZ and sacB genes was cloned into the Pacl site of pPNW04 and pNW09 to create pNW05 and
PNWO10, respectively. The plasmids used in this work are listed in Table 3.
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Table 3. Plasmids used in this study.

10 of 14

PLASMID DESCRIPTION SOURCE

CLONING VECTORS

p2NIL Recombination vector, non-replicating in mycobacteria, KmR Parish and Stocker [29]
pGOAL17 Source of Pacl cassette, AmpR Parish and Stocker [29]
pMV306 Mycobacterial integrating vector, KmR Med-Imune Inc.

VECTORS USED FOR THE GENE REPLACEMENT

P2NIL carrying a fragment of the 5’fadD19 gene and the DNA

pNWO03 located upstream of the gene (fadD19Gr1-2) restricted This study
recognition sequences for Kpn I and BamH1
PNWO3 carrying a fragment of the 3'fadD19 gene and the DNA

pNWO04 located below of the gene (fadD19Gr3-4), bounded by This study
recognition sequences BamH1 and HindIII

pNWO05 pNWO04 with PaclI cassette from pGOAL17 This study
P2NIL carrying a fragment of the 5 ’echA19 gene and the DNA

pNWO08 located upstream of the gene (echA19Gr1-2) restricted This study
recognition sequences for Pst I and HindIII
PNWOS carrying a fragment of the 3’echA19 gene and the DNA

pPNWO09 located below of the gene (echA19Gr3-4), bounded by This study
recognition sequences Kpnl and HindIII

pNW10 pNWO09 with PaclI cassette from pGOAL17 This study
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4.3. Disruption of fadD19 and echA19 Genes

The protocol of Parish and Stocker [29] was used to disrupt fadD19 or echA19 genes at their
native loci on the chromosome. Plasmid DNA (pNW05, pNW10) was treated with NaOH (2 mM) and
integrated into the M. smegmatis chromosome by homologous recombination. The resulting single
crossover (SCO) recombinant mutant colonies were blue, KmR and sensitive to sucrose. The site
of recombination was confirmed by PCR and Southern blot hybridization. The SCO strains were
further processed to select DCO (double-crossover) mutants that were white, KmS and resistant to
sucrose. PCR and Southern blot hybridization were used to distinguish between the wild-type and
DCO mutants. The probes were generated by PCR with primers binding to the 5" and 3’ of each gene
and DNA of pNW04 and pNWO09 as templates, and labeled with a nonradioactive primer extension
system (DIG-labeling system, Amersham, Uppsala, Sweden).

4.4. Complementation Constructs

The complementation vector was engineered by amplifying the fad gene with its own promoter
region (345 bp) using M. smegmatis chromosomal DNA as a template. The PCR product was initially
cloned into pJetl.2, verified by sequencing and subsequently re-cloned into the pMV306Km integrative
vector using Xbal and HindIII.

4.5. Sterols Degradation

4.5.1. Steroid Standards

Cholesterol, cholestenone, 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD),
(3-sitosterol were purchased from Sigma (Darmstadt, Germany) and used as standards for LC
MS/MS analyses; 3-0x0-3,24-bisnorchola-1,4-dien-22-oic acid (1,4-BNC) was synthesized by Steraloids
(Newport, RI, USA).

4.5.2. Preparation of Cholesterol

The substrate was dissolved in a solution of 96% ethanol-Triton WR1339 (1:1) at 80 °C.

4.5.3. Preparation of (3-Sitosterol

[3-Sitosterol (15 g) and Tween 80 (2 g) were suspended in distilled water (50 mL). The suspension
was homogenized at 94 °C for 20 min. Further the speed of homogenizer was reduced to 1000 rpm/min
and gradually water was added to the mixture to a final volume of 200 mL. The suspension was then
homogenized for 10 min. reaching up to 2000/min. In the final step the microscopic control of the
substrate was performed by measuring the (3-sitosterol crystal size. The resulting sample of (3-sitosterol
was in the shape of needles with a length of 24 um and 1-2 pm in width. The steroid compound was
sterilized by boiling three times in 1 h at 24 h intervals. 3-Sitosterol was stored at 4 °C.

4.5.4. HPLC MS/MS Analysis of Sterol Degradation

Sterol degradation analysis was performed using an Agilent 1200 HPLC (Santa Clara CA, USA)
system and a 3200 QTRAP mass spectrometer (AB Sciex, Framingham, MA, USA) with an atmospheric
pressure chemical ionization APCI source. Chromatographic separation was performed using an
XDB-C18 column (2.1 mm x 50 mm x 1.8 um; Agilent Technologies). The mobile phase consisted
of 2 mM ammonium formate and 0.2% formic acid in water (A) and 2 mM ammonium formate and
0.2% formic acid in methanol (B). The column temperature was maintained at 40 °C and the flow
rate was 0.5 mL- min~!. The ion source settings were as follows: curtain gas: 25 (CUR), IS: 5500 V,
nebulizer gas: 50 (GS1), drying gas: 50 (GS2) and temperature of 600 °C. Data analysis was performed
with the Analyst™ v1.5.2 software (AB Sciex). Tandem mass spectrometry for the quantitation of
sterols degradation courses was made using positive ionization in the multiple reaction monitoring
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(MRM) mode. The quantitative analysis of sterols and its degradation products was based on standard
curves with a linearity range from 1 ng-mL~! to 10 ng-mL~! (correlation coefficient R? = 0.951). All
the experimental data represent the means of at least three independent experiments.

5. Conclusions

The obtained results allows us to conclude that the FadD19 plays an important role in the
initial step of biodegradation of C-24 branched sterol side chains in Mycobacterium smegmatis mc*155.
The extension of our knowledge in the area of sterol degradation could have significant implications
for the production of steroid drugs. Additionally, a detailed explanation of the molecular mechanism
of sterol degradation could help to explain M. tuberculosis pathogenesis.
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