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Predicting potential global 
and future distributions 
of the African armyworm 
(Spodoptera exempta) using species 
distribution models
Irene Gómez‑Undiano1*, Francis Musavi2, Wilfred L. Mushobozi3,4, Grace M. David4, 
Roger Day5, Regan Early6 & Kenneth Wilson1

Invasive species have historically been a problem derived from global trade and transport. To aid in the 
control and management of these species, species distribution models (SDMs) have been used to help 
predict possible areas of expansion. Our focal organism, the African Armyworm (AAW), has historically 
been known as an important pest species in Africa, occurring at high larval densities and causing 
outbreaks that can cause enormous economic damage to staple crops. The goal of this study is to map 
the AAW’s present and potential distribution in three future scenarios for the region, and the potential 
global distribution if the species were to invade other territories, using 40 years of data on more than 
700 larval outbreak reports from Kenya and Tanzania. The present distribution in East Africa coincides 
with its previously known distribution, as well as other areas of grassland and cropland, which are 
the host plants for this species. The different future climatic scenarios show broadly similar potential 
distributions in East Africa to the present day. The predicted global distribution shows areas where 
the AAW has already been reported, but also shows many potential areas in the Americas where, if 
transported, environmental conditions are suitable for AAW to thrive and where it could become an 
invasive species.

Global trade and transport have historically led to the movement of organisms, mostly for domestication, farm-
ing, etc. where they are in a controlled environment1,2. However, some movements of species are unintentional 
and can result in species becoming invasive in these new areas3–5. Invasive species, therefore, can produce mas-
sive economic and environmental damage due to their ability to spread without limitations6–8; and insects, being 
the most diverse group of organisms on Earth, are also one of the most invasive9. Some of the major problems 
caused by invasive insects include human disease vectors and agricultural and forest pests10, often impacting the 
health and economy of the countries affected11. Some well-known recent examples of invasive agricultural pests 
are the cotton bollworm, Helicoverpa armigera (Hübner), the diamondback moth, Plutella xylostella (Linnaeus), 
and the fall armyworm, Spodoptera frugiperda (J. E. Smith)12–14.

The African Armyworm (AAW) is the larval stage of the noctuid moth Spodoptera exempta (Walker, 1856). 
Like other armyworms15, AAW is considered a major pest species, historically the most important after locusts 
in parts of Africa16,17. AAW often occurs at high larval densities, causing outbreaks and, therefore, significant 
economic damage to crops and pasturelands16,18. The species is widely distributed across sub-Saharan Africa, 
where it especially affects Central, Eastern and Southern Africa, but the presence of the species has also been 
reported in Arabia, Southeast Asia, and Australia19–21. AAW caterpillars are a major pest of cereals and grasses, 
including some of the most economically important crops such as maize, rice or wheat22. Generally, low-density 
populations of the larvae persist throughout the continent, usually going unnoticed as they are in small numbers 
and have a cryptic coloration23. Many studies (e.g.24–26) have pointed out that it is after the first (short) rainy 
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season in East Africa (around November or December) that the ‘primary’ (first) outbreaks occur. These outbreaks 
are caused by the mating and oviposition of the adult moths emerging from the low-density (dry season) popu-
lations, which are dispersed and scattered by the rainy season winds and end up concentrating in patchy areas 
where rainfall occurs27,28, that is thought to be due to convergent wind flows23. After these primary outbreaks, 
the long rainy season initiates a series of ‘secondary’ outbreaks, throughout eastern and central Africa, which 
may cause massive damage to crops, and can be monitored and predicted thanks to meteorological observation 
and monitoring27,29,30. In some countries, like Zambia, its maize production in 2012–2013 was reduced by 11% 
due to AAW attack31 and in 2017 it was estimated that 30–40% of the crop production could have been lost due 
to this pest32.

Since at least 1930, AAW outbreaks and moth trap data, as well as some meteorological data, have been 
collected in the most affected countries, including Kenya and Tanzania16,21. Subsequently, these data have been 
digitised and incorporated into data management and information systems, such as WormBase33, which was 
developed in the 1990s to aid in the prediction of AAW outbreaks. In the present study, we use forty years of 
AAW outbreak data to model the environmental suitability of the pest.

Species distribution models (SDMs) are modern tools that are used to characterize and predict the present and 
future distribution of a species, using species distribution data and environmental variables that affect, directly 
or indirectly, the species’ ecological niche or environmental suitability34–36. This provides a very useful tool for 
pest management activities, as it can help identify areas where the species might be present or vulnerable areas 
for the pest37–39. SDMs have been used to model the environmental suitability of other similar pest species, such 
as the fall armyworm, S. frugiperda, FAW, which is native to the Americas, but has recently invaded and spread 
throughout sub-Saharan Africa, into areas where the African armyworm is endemic14. This work was used to 
predict new areas in the world that could be suitable for FAW expansion, including parts of Asia and Oceania; 
predictions that have subsequently been realised (https://​www.​fao.​org/​fall-​armyw​orm/​monit​oring-​tools/​faw-​
map/​en/). Although the distribution of S. exempta in Africa and Arabia has been well established for at least 
40 years21, and much is known about its feeding and migratory behaviour16, there is little information about its 
broader environmental requirements.

In this study, we generate the first predictive environmental suitability models for the African armyworm, 
using species distribution modelling techniques. We use occurrence data from reported larval outbreaks in Kenya 
and Tanzania, and variable selection methods to define the principal environmental variables that affect the 
geographical distribution of S. exempta. The generated models, which are local to Kenya and Tanzania, predict 
the present and future environmental suitability of the species under three different future-climate scenarios. 
For predicting the present suitability, we used the outbreak data from 1969 to 1990 and contrasted the generated 
model with the rest of the data, from 1991 to 2008. This meant we validated our model against data that are more 
independent than used in the majority of SDM studies, a highly recommended approach40. For the three future 
climate scenario models, we used all the outbreak data from Kenya and Tanzania, from 1969 to 2008 to forecast 
the 2061–2080 time period. We also model the global environmental suitability for the species by extrapolating 
these local data to the rest of the world to assess its invasion potential. Finally, we determine if models suggest 
that the African armyworm’s future distribution will likely intersect areas of cropland, which could demonstrate 
a need for preventive and control measures to target the vulnerable areas before they are attacked.

Results
Variable selection.  The variable selection through PCA narrowed the environmental suitability compo-
nents to five (Table 1). The variables are related to temperature and precipitation, and the AAW response to them 
can be seen in Fig. 1. Bioclim 07 (temperature range throughout the year) suggests that AAW do best in locations 
where the temperature variation is greater than around 12 °C annually. Variable Bioclim 08 is related to tempera-
ture during the wettest quarter and seems to suggest that AAW prefer temperatures between 15 and 25 °C dur-
ing the rainy season, and anything greater than 25 °C is much less suitable. Variable Bioclim 15 is related to the 
seasonality of precipitation and suggests that AAW do best when rainfall varies by around 80–100 mm annually. 
Finally, Bioclim 13 and 17 are related to the amount of precipitation during the wet and dry season, respectively. 
During the wettest month, it seems to require a minimum of around 100 mm rain, but also seems to have a 
maximum of around 300 mm rain, above which it is less suitable, perhaps indicating its susceptibility to floods. 
During the driest quarter, it seems to be more versatile and can tolerate a wide range of precipitation, but there 
appears to be a minimum rainfall of around 10 mm, indicating that is also susceptible to drought.

Model performance.  The receiver operation characteristic (ROC) curve is a graphical way of illustrating 
the model’s ability to distinguish between binary classes at various threshold settings, and area under the curve 

Table 1.   Variables selected by the PCA for the S. exempta environmental suitability models.

Variable name Description

Bioclim 07 Temperature annual range

Bioclim 08 Mean temperature of the wettest quarter

Bioclim 13 Precipitation of the wettest month

Bioclim 15 Precipitation seasonality

Bioclim 17 Precipitation of driest quarter

https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/
https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/
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(AUC) of the ROC is a value that measures the degree to which these classes can be distinguished between. This 
means that the closer to 1 the AUC value is, the better the model will be at separating classes, which in this case 
would be the environmental suitability of the species. AUC values of our models are considered to be ‘excel-
lent’41, and TSS, values are considered ‘moderate’ and ‘substantial’42, therefore showing a good performance of 
the models, and that they are robust and accurate (Table 2). This indicates that the ecological suitability sug-
gested by the generated models resemble the real probability of occurrence of the species, and therefore, its 
possible distribution.

Environmental suitability of S. exempta.  Present-time environmental suitability models for the AAW 
in Kenya and Tanzania (Fig. 2A) show high suitability in the south and west of Kenya and the north and centre 
of Tanzania. These areas coincide with the occurrence points from the outbreak data used (blue dots in Fig. 2A); 
outbreaks are usually reported on crops such as maize, so it is likely that environmental suitability overlaps with 
agricultural land use. These suitable areas also coincide with sub-humid and tropical highlands; the paler or non-
suitable areas coincide with more arid conditions, such as north-eastern Kenya43. Figure 2B shows a land use 
map extracted from Ref.44, indicating that the vegetation in the suitable areas of our model (Fig. 2A) are mainly 
grasslands, savannas and croplands. Regarding the prediction of the 1991–2008 outbreaks, all the points (yellow 
dots in Fig. 2A) seem to fall in areas with medium to high suitability, with AUC = 0.90, considered as ‘excellent’41, 
which indicates the model can accurately predict the areas that are suitable for outbreaks in the near future.

Future and worldwide environmental suitability scenarios.  Figure 3 presents three maps that show 
the difference in environmental suitability between present-time and three different CO2 emission scenarios 
between 2061 and 2080 in Kenya and Tanzania. The outputs of the three scenarios are very similar to each other. 
Scenario SSP1-2.6 (a gradual decline in CO2 emissions) show fewer gained areas (74,075 km2) than lost (109,500 
km2), and the same happens with the extreme CO2 emission increase scenario—SSP5-8.5 (70,425 km2 of gained 
areas; 161,425 km2 of lost areas). Gained areas (109,625 km2) for scenario SSP3-7.0 (gradual increase in CO2 
emissions), are however similar to the lost areas (106,350 km2). These results depict a future where the species 
seems to have a limited spread. Gained areas coincide mainly with cropland and grassland45,46. This all suggests 
that climate change might help the AAW distribution to expand and take over areas of grassland and cropland; 
but also limit its expansion in other areas where too many emissions might destroy these grasses and crops.

The world environmental suitability model shows a marked high suitability in tropical areas, especially related 
to high, but not extreme, temperatures and precipitation (Fig. 4). It appears that the suitability overlaps the dis-
tribution of grasses, which is historically the main food source of the AAW, as it is noticeable in the Savannas, 
Pampas and Veldts, and seems to be delimited by arid areas and tropical deserts (e.g. Sahara, Kalahari, Atacama, 
etc.) as well as areas of extreme rainfall like rainforests (e.g. Amazon, Congo River Basin, South East Asia and 
Australian). However, as the models have only been constructed with climatic variables and not land use rasters, 
we cannot be completely certain that these forested areas could be suitable if converted to agriculture.

Figure 1.   Response of S. exempta presences and absences to the selected variables. Bioclim_07 is temperature 
annual range, Bioclim_08 is mean temperature of the wettest quarter, Bioclim_13 is precipitation of the wettest 
month, Bioclim_15 is precipitation seasonality, and Bioclim_17 is precipitation of driest quarter.

Table 2.   Internal evaluation statistics for the generated species distribution models (SDMs) generated. AUC 
and TSS values are average values ± standard deviation for the algorithms used in the SDMs.

Model AUC​ TSS

Predictive local model (1969–2000) 0.90 ± 0.01 0.62 ± 0.002

Present-time local all data model (1969–2008) 0.88 ± 0.02 0.59 ± 0.003

Present-time global all data model (1969–2008) 0.98 ± 0.03 0.99 ± 0.002
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Figure 2.   (A) S. exempta present-time environmental suitability model for Kenya and Tanzania. Points are 
the occurrence points from the outbreak data used for the models; (B) land cover map for Kenya and Tanzania 
(after Ref.44). Maps were generated in R v.4.0.2 104 (https://​www.r-​proje​ct.​org/) using RStudio v.1.3.1093 
(https://​www.​rstud​io.​com/).

Figure 3.   S. exempta future environmental suitability maps for Kenya and Tanzania for 3 different CO2 
emission scenarios and two different time periods. (A) 2021-2040 SSP1-2.6, (B) 2021-2040 SSP3-7.0, (C) 2021–
2040 SSP5-8.5, (D) 2061-2080 SSP1-2.6, (E) 2061-2080 SSP3-7.0, and (F) 2061-2080 SSP5-8.5. Gained areas are 
areas where the present-time model predicts as non-suitable, and the future-time model as suitable; lost areas 
are areas where the present-time model predicts as suitable, and the future-time model as non-suitable. Maps 
were generated in R v.4.0.2 104 (https://​www.r-​proje​ct.​org/) using RStudio v.1.3.1093 (https://​www.​rstud​io.​
com/).

https://www.r-project.org/
https://www.rstudio.com/
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
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When looking at the recorded distribution of AAW globally21 (Fig. 5), it very much resembles the world 
environmental suitability model (Fig. 4). Grey areas show where the projections are extrapolated outside of the 
climate conditions used to build the SDM, according to the results of the MESS approach47. Projections in these 
areas should be treated with extreme caution, as there is no way of knowing how accurate they are. In Africa, 
there is high suitability in the eastern, western, and central areas, where larval infestations have been recorded, 
even on the west of southern Africa. Madagascar is also predicted to be suitable for AAW outbreaks, although no 
larval infestations have been recorded there to our knowledge, but moth specimens have been found, indicating 
the possibility of being there. In Arabia, which has extensive larval infestations, only a limited area is predicted to 
be suitable, and with only medium suitability, probably due to it not being a very suitable climate, but in practice, 
irrigation could have permitted its viability and expansion. There is very high suitability in the west and south 
of India, and Sri Lanka (Figs. 4, 5), which coincides with the ghats where grasses are present, but the species 
has not yet been recorded there. Many AAW larval infestations and outbreaks have been reported in southern 
(but not northern) parts of Southeast Asia and the western Australian coast, coinciding with areas of medium 
to high suitability. With the exception of Hawaii48—where the model shows high suitability—the species has 
never been reported in the Americas. Nonetheless, the model does predict very high environmental suitability 
in some countries like Brazil, Colombia and Mexico (Fig. 4), which sets an alarm for its potential distribution 
and settlement if the species was to reach those areas. All this indicates that the model has been able to predict 
most of the actual worldwide distribution, using a database limited to a relatively small area in East Africa, and 
therefore, that it is a robust model.

Discussion
In a world in which crop production often revolves around extensive monocultures, and global changes in 
climate and trade facilitate the spread of insect crop pests, there is increased potential for the introduction and 
spread of invasive species49–51. Understanding the environmental requirements of potentially invasive crop pests 
can identify areas at threat and facilitate targeted monitoring. Some authors have previously tried to do this by 
generating current or potential Species Distribution Models. Examples include important invasive pest species, 
such as the cotton bollworm, H. armigera, the diamondback moth, P. xylostella, the gypsy moth, Lymantria dispar 
(L.), the spotted wing drosophila, Drosophila suzukii (Matsamura), the European paper wasp, Polistes dominula 
(Christ), and the fall armyworm, S. frugiperda12–14,52,53. In this study we have constructed SDMs for the African 
armyworm, S. exempta, a pest endemic to sub-Saharan Africa. Our results identify those climatic variables that 
seem most important in determining the geographical distribution of AAW and provide a robust SDM for Kenya 
and Tanzania in the present time, as well as three different future climate change scenarios. We expand this to 
a predictive worldwide model that identifies areas, especially in the Americas and South Asia, where AAW has 
the potential to become invasive if it were introduced.

Selected variables for the environmental suitability of African armyworm outbreaks are mainly related to 
annual temperature variation and precipitation, especially during the wettest quarter, which is the rainy season. 
The rainy season plays an important role in the movement of AAW adults in Africa, as the winds that occur 

Figure 4.   S. exempta present-time worldwide environmental suitability model. Grey areas represent 
uncertainty, calculated through MESS approach47. The map was generated in R v.4.0.2 104 (https://​www.r-​proje​
ct.​org/) using RStudio v.1.3.1093 (https://​www.​rstud​io.​com/).

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
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during it are key for the dispersal of the adult moths. Existing literature23,26,29,54 indicates that adult moths migrate 
along the dominant winds to grassland areas or crops, where they feed, causing subsequent larval outbreaks in 
nearby areas where they can disperse or migrate to. Precipitation outside the rainfall season is important for the 
low density populations of AAW that persist in these areas where outbreaks have occurred, during the dry sea-
son, as it stimulates the growth of grasses, providing the AAW with suitable habitats for feeding and breeding55, 
which could explain why variables like ‘precipitation seasonality’ or ‘precipitation of the driest quarter’ have 
been identified as important explanatory variables. Nonetheless, the areas where outbreaks occur (which we 
modelled) are not always the same as the ones where low-density populations settle (which we did not explicitly 
model). Temperature changes affect the species distribution too because, being ectotherms, their development 
and survival are temperature-dependent56.

The local present-time model depicts a robust environmental suitability for S. exempta in Kenya and Tanza-
nia (Fig. 2A). Low environmental suitability coincides with arid or semi-arid areas, which may seem evident as 
extreme temperatures and dry conditions are not ideal for the development of its eggs and pupae56,57. Indeed, 
water and ambient humidity scarcity can affect the water balance of insects, impacting their survival, development 
and even their population dynamics, as seen in similar species, the FAW58. Climatic conditions in these areas can 
also affect its suitability indirectly. For example, changes in the water content and concentration of nitrogen and 
other minerals of the host plants, can negatively impact AAW adults’ fitness59. Additionally, plants that grow in 
arid or semi-arid areas are not suitable host plants of the AAW​16, which mainly feeds on Graminae, and these 
require a certain level of humidity for their development. According to the generated model, sub-humid and 
tropical highlands are the most suitable areas for the AAW and, the known distribution of the AAW, besides the 
biology of the species, coincide with these areas. During the dry season, low-density armyworm populations are 
usually found in the highlands as the low temperatures extend their development16, which may explain why these 
tropical highlands are highly suitable. Looking at land cover and vegetation maps (e.g.44,45), the vegetation present 
in the suitable areas are mainly grasslands, savannas and croplands, which are the main host plants for the AAW.

The predictions of the environmental suitability for the 1991–2008 outbreaks (not included in the training 
dataset), appear to be accurate and robust, indicating that modelling present environmental suitability can be 
useful to predict outbreaks in the near future. These predictions can also be combined with population dynamic 
studies to predict outbreaks of the next few years, like other authors have previously done30,60,61.

Local future-scenario models (Fig. 3) are useful to predict where the species might be present in some years’ 
time. It is evident that climate change is altering the environmental conditions, therefore redesigning where 
species can live. It has been thoroughly documented that the distribution of many species is shifting to new 

Figure 5.   Recorded worldwide S. exempta larval infestations and moth specimens (reproduced with permission 
after Ref.21) overlapping Fig. 4 environmental suitability model. The map was generated in R v.4.0.2 104 (https://​
www.r-​proje​ct.​org/) using RStudio v.1.3.1093 (https://​www.​rstud​io.​com/).

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
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areas, as well as disappearing from others62–64. This is especially important in pest management as predicting 
new areas could help set control measures for those areas and prevent outbreaks39,65,66. Although we produced 
models for three different CO2 emission scenarios, they all portray similar results, where there are suitable areas 
being both gained and lost. A positive side to this similarity in suitability is that management and control plans 
will probably be effective in all scenarios. On the other hand, it is interesting that such an aggressive pest like the 
AAW is predicted to show a slow expansion of their distribution, if compared to other similar pest species like 
processionary moths (Thaumetopoea spp.) or the box tree moth (Cydalima perspectalis)67,68. Climate change will 
likely alter the environmental suitability of all living organisms as it challenges their physiological limits69, and 
there is evidence that the geographical distribution of crop pests is moving increasingly polewards in response 
to climate change70,71. Due to this, it would be assumed that the expansion of the suitable areas would be much 
quicker or extensive, but these results might indicate the contrary, that climate change could reduce the suitable 
areas for its expansion. Factors affected by climate change, such as temperature, rainfall and relative humidity, 
seem to have mostly positive effects on fecundity and development of migratory pests like locusts72,73. How-
ever, for other lepidopteran pest species, like H. armigera, climate change has negatively affected its survival 
and reproduction74,75. Climate change is also reducing the amount of rainfall, which has had an impact on the 
ecosystem dynamics and vegetation structure of grasses in South Africa reducing grassland areas76, but also 
grass productivity, shifting these grasslands to shrubland and other tree-dominated biomes77,78. As grasses are 
the main food source for the AAW, it is coherent that all these lost suitable areas in our future scenario models 
might correspond to grass areas shifting to other vegetation patterns.

Global environmental suitability in the African continent resembles very much the previously reported dis-
tribution of African armyworm21 and appears in nearly all the same areas, that is, sub-humid areas, grasslands 
and croplands. Haggis’ study indicated that AAW has been recorded in India, South-East Asia, and Australia, 
where the models do predict a high environmental suitability, even though their presence there had not been 
used to generate it. This shows that the models are competent and can predict real areas where the species might 
expand into. There are areas, nevertheless, where the model does not predict high suitability, but the species has 
been recorded, like some parts of Indonesia, Arabia, and southern Africa. This could be due to the sample size 
and its limited geographic extent. Many authors (e.g.79,80) have reviewed this issue and it does seem to affect the 
accuracy and performance of SDMs. As our database is limited to Kenya and Tanzania, the selected variables 
will extrapolate to areas where the conditions are similar, that is why the prediction of suitability outside the 
tropics is not as accurate, as shown by the results of the MESS approach. Projections into colder regions seem 
likely to be inaccurate due to the variable response (Fig. 1), which have a clear upper limit. However, projections 
into areas with higher or lower precipitation rate might be more trustworthy due to a wider tolerance to change 
in precipitation26. Nonetheless, the worldwide model seems to predict an accurate environmental suitability in 
general.

In the global environmental suitability model, areas where the AAW has not been recorded but have a high 
suitability are intriguing. These are mostly in the Americas, especially between the tropics, where the climatic 
variables define the AAW’s niche. They also include coastal regions where there are grasses, like Pampas; or 
open woodlands, but also avoid tropical rainforests or arid areas due to their extreme conditions. The global 
environmental suitability of the AAW mirrors the environmental suitability and distribution of the FAW14 
which has very similar environmental requirements, making them potentially competing species. The FAW, 
which is native to the American continent, was introduced into Africa, probably due to transportation of plants 
and crops, and rapidly spread to become one of the most important crop pests on the continent. Another 
example of this is H. armigera, which made a jump from Africa and Europe to the American continent13. The 
global model suggests that a similar thing could happen with the AAW on the American continent if it were 
introduced. Countries like Brazil, which is one of the world’s biggest maize producing countries could, in time, 
become hotspots for the AAW and enhance this global problem. Our models, and the variables used however, 
do not consider anthropogenic factors that could increase the migration and dispersal of S. exempta, such as 
global connectivity and human-mediated transport81, as it has been done for the fall armyworm14. If considered 
in future studies, this could confirm our findings about S. exempta ability to disperse throughout the American 
continents, which has already been considered as a potential risk82. This manifests the importance of revisiting 
and tightening international agricultural biosecurity, as invasive species are transported to new territories in a 
daily basis, aggravating the problem83,84.

Characterizing the climatic variables that explain or delineate the AAWs niche will help with a better under-
standing of the species’ biology and its possible management85. Future and global scenario models based on 
climatic variables, like the ones used in this study, are important to understand how invasive pest species might 
react to climate change or new areas if they are transported there. In fact, IPM studies often use these SDMs 
and niche characterization86 of important pest species such as the fall armyworm, S. frugiperda15, underlying its 
importance. However, to understand how the species will disperse in space and time, models should be used as 
part of a bigger research effort, including natural competence, or anthropogenic factors, such as bias in outbreak 
reporting, land use and management, transport, etc.

Finally, it is worth noting that SDMs are generally only used to predict suitable abiotic environments and 
seldom include detailed information regarding the presence of potential competitor species or natural enemies. 
Invasive fall armyworms have rapidly expanded throughout the African continent and globally88. It is considered 
a very aggressive and cannibalistic alien pest89,90 and feeds on a range of plant species, including the cereals and 
grasses that AAW specialises in, meaning there is a possibility of displacement, as it appears to be doing with 
other sympatric species, such as the Asiatic pink stem borer, Sesamia inferens (Walker) or the maize stalk borer, 
Busseola fusca (Füller)91,92. Given this, it is possible that although our SDM suggests that parts of the Americas 
are environmentally suitable for AAW to invade, in this environment it would be potentially competing with the 
native FAW, which is much more aggressive than AAW and is likely to be the stronger intra-guild competitor. 
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It is therefore possible that AAW has previously reached the Americas but has failed to establish there due to 
competitive interactions with FAW or other natural enemies.

Materials and methods
Distribution data compilation.  The presence records for Kenya and Tanzania were obtained from an 
updated version of WormBase33, which is a data management and information system that includes AAW out-
break and trap data for both countries since 1969. Outbreak data were used for the present study, where only 
presence records with defined geographic coordinates, following the WGS84 geographic coordinate system were 
used. Presence points that were inaccurate and duplicates were filtered using ArcGIS Pro. In total, 721 occur-
rence points, from 1984 to 2008, were obtained. 568 occurrence points were recorded from the years 1969–1990, 
and were used to make the first model, which predicted the current distribution.

Environmental data.  Species Distribution Models (SDMs) require selecting biotic and/or abiotic environ-
mental variables that relate to the distribution of the modelled species40, and to minimize uncertainties in mod-
elling predictions it is important to understand which variables are more significant to the species by performing 
a good variable selection93.

Variables used in this study were the WorldClim Version 294 bundle of 19 global climatic layers from 1970 to 
2000 in a 5 × 5 km resolution; and WorldClim CMIP Phase 6 (CIMP6)95 global climatic layers for future suitability 
models. We selected the 2061–2080 period for the BCC-CSM2-MR General Circulation Model (GCM)96 and 
three Shared Socio-economic Pathway (SSP): SSP1-2.6, which shows a gradual decline in emissions; SSP3-7.0, 
which would be an intermediate scenario where the CO2 emissions continue to rise in a similar fashion to now; 
and SSP5-8.5, which shows a dramatic rise in CO2 emissions97.

Variable selection.  In previous modelling studies for the fall armyworm14, the variable selection was based on 
the life-history and environmental requirements for the species. Nonetheless, other studies98–100 suggest other 
analyses, such as Ecological Niche Factor Analysis (ENFA) or Principal Component Analysis (PCA), may be 
more robust, as they result in uncorrelated variables. This both eliminates information that might be redun-
dant and means that the forecasts are not affected by changes in the correlation between environmental vari-
ables between time periods or regions. We followed the methodology described by Gómez-Undiano, 2018100, a 
method derived from Petipierre et al.98, which showed that a PCA resulted in a more accurate variable selection 
for better models. Therefore, we did a PCA with all the previously chosen variables and reduced the number to 
some main ones, based on the variance explained in the presences of S. exempta; this being the variables that had 
the greatest loadings on some of the PCA axes. The variables used for the future predicted suitability were the 
same as the ones resulting in the PCA, but from the 2021–2040 bundle. The variable selection was carried out in 
R v.4.0.2101 using RStudio v.1.3.1093.

Modelling environmental suitability.  SDMs can be generated only with presence points but this can 
result in inaccurate and biased models102, so often, absence points are used too. However, absences are difficult to 
obtain, especially for mobile species like insects. However, studies suggest that selecting pseudo-absences, which 
could be generated randomly, helps to improve the quality of the models and their accuracy102–104. We followed 
the BIOMOD modelling algorithm105, using the ‘biomod2’ package106 in R for pseudo-absence generation, and 
selected 700 pseudo-absence points for the local distribution models in Kenya and Tanzania, to match the num-
ber of occurrences104. When extrapolating pseudo-absence data to the rest of the World, some authors107,108 sug-
gest delimiting a geographical background to which the species could reasonably disperse, can improve SDM. 
We generated a background area (for the Worldwide ensemble model) of the limited area of Kenya and Tanzania 
to reduce extrapolation of the variables to non-analogue areas.

Predicting global suitability from a limited area, such as Kenya and Tanzania, means that predictions could 
be extrapolated to areas with very different climate to Kenya and Tanzania, which could be highly erroneous. 
To ensure the predictions are only made in areas with conditions similar to those in the data used to construct 
SDMs, the Multivariate Environmental Similarity Surface (MESS)47 was calculated using the R package ‘dismo’109.

Choosing one modelling statistic method can be challenging because different methods have advantages and 
disadvantages and tend to produce variable predictions. However, ensemble modelling results in producing more 
robust and reliable models110,111. We created an ensemble that includes five algorithms based on logistic regression 
and machine learning: artificial neural networks (ANN), classification tree analysis (CTA), flexible discriminant 
analysis (FDA), generalised additive models (GAM), generalised linear models (GLM), MaxEnt, random forest 
(RF) and Surface Range Model (or BIOCLIM). This process was undertaken using default parameters from the 
‘biomod2’ package in R.

To evaluate the accuracy and robustness of the ensembled models, internal validation, which is included by 
default in the ‘biomod2’ setting, was used. We split the distribution data randomly into two, with 70% being 
used for the SDM calibration and 30% the validation set, using the area under the curve (AUC) of the receiver 
operation characteristic (ROC), and true skill statistic (TSS). 100 replicas were generated for each algorithm 
used, and models for which validation with AUC > 0.7 or TSS > 0.6 were selected to generate the final ensembles. 
Although studies generally use a 70–30% data split for the training and testing data e.g.14,112, we also generated 
additional models with different data-splits (10, 20, 30, 40, 50, 60, 80 and 90%) to ensure the model validation was 
robust (Supplementary Materials). External validation of the predictive model was constructed using outbreak 
data from 1969 to 1990 was also performed, by calculating the AUC of the model against the outbreak points 
from 1991 to 2008 as the validation set.
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In total, three ensemble models showing environmental suitability for S. exempta were generated: (1) a pre-
dictive local model using recent (1970–2000) environmental conditions for Kenya and Tanzania and outbreak 
data sub-sample from years 1969 to 1990, which was validated against more recent data (1991–2008); (2) a 
present-time local model for Kenya and Tanzania using all outbreak data (1969 to 2008) with three projections 
for three CO2 emission scenarios (A. SSP1-2.6; B. SSP3-7.0; and C. SSP5-8.5) between 2061 and 2080; and, (3) 
a Worldwide present-time model using all outbreak data (1969 to 2008).

When looking at the future-scenario models, it is sometimes difficult to determine which are new areas that 
are more or less suitable for S. exempta. To make it easier to visualise, we converted the future scenario model 
projections and the present time model (using all the outbreak data) into binary maps using the cut-off values, 
based on TSS, of each projection. Then we combined each future scenario model projection with the present 
time one to get a categorical map showing new suitable and non-suitable areas.

Data availability
The datasets generated during and/or analysed during the current study will be available in the DRYAD reposi-
tory, after the manuscript is accepted [https://​datad​ryad.​org/​stash/​share/t-​EgQOw​eHgcO​HQ_​paK1a​o6PQu​
Rsnjk​GCSh63_​HD4n00] with DOI number [https://​doi.​org/​10.​5061/​dryad.​sbcc2​fr9b].
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