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Synergetic enhancement 
of gold nanoparticles and 
2-mercaptobenzothiazole as 
highly-sensitive sensing strategy 
for tetrabromobisphenol A
Xuerong Chen1,2, Liudi Ji2, Yikai Zhou1 & Kangbing Wu2

Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through 
electrochemical reduction under different potentials such as −0.60, −0.50, −0.40, −0.30 and 
−0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity 
of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and 
electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A 
(TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation 
activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA 
show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole 
(MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects 
of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous 
nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and 
the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a 
sensitive and simple electrochemical method was developed for the direct determination of TBBPA, 
with detection limit of 0.12 μg L−1 (0.22 nM). The practical applications in water samples manifest that 
this new sensing system is accurate and feasible.

Due to wide applications in textiles, printed circuit boards and electronic equipments as brominated flame retard-
ant (BFR), tetrabromobisphenol A (TBBPA) has been detected not only in the environmental samples1,2, but also 
in wildlife3 and humans4,5. Studies have proved that overexposure to TBBPA can cause severe adverse health 
effects. For example, TBBPA has been identified as an endocrine disruptor because it shows 10-fold increase 
in binding affinity to human transthyretin compared with the natural thyroid hormone thyroxin6. In addition, 
the immunotoxicity7, nephrotoxicity8 and developmental toxicity9 of TBBPA have also been proven. Therefore, 
determination of TBBPA in a rapid, sensitive and simple manner is quite important. Electrochemical sensing 
has obtained more and more attention due to its unique properties such as sensitivity, rapidness, good handling 
convenience, low cost, in situ monitoring and miniaturization. Until now, indirect electrochemical methods have 
been developed for the determination of TBBPA using [Fe(CN)6]3−/4− as the indicator10 or based on the response 
signals of [Fe(CN)6]3−-TBBPA complex11,12. So the direct electrochemical determination of TBBPA is urgent and 
still full of challenge.

Owing to their fascinating electrical, chemical, optical and catalytic properties, gold nanostructures have 
obtained wide applications in electrochemical sensing13–16, catalysis17,18, surface-enhanced Raman scattering19,20 
and so on. Until now, various methods have been developed for the preparation of Au nanostructures, including 
chemical reduction21,22, seed-growth23, vapor deposition24, photochemical reduction25, hydrothermal synthesis26 
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and electrochemical deposition27. Among them, electrochemical preparation is considered as a simple and effi-
cient strategy to precisely tune the shape of Au nanostructures.

Herein, a series of gold nanoparticles (AuNPs) were prepared on the surface of glassy carbon electrode (GCE) 
via one-step electroreduction at different potentials such as − 0.60, − 0.50, − 0.40, − 0.30 and − 0.20 V. It is found 
that the reduction potentials have big impacts on the surface morphology, effective sensing area and catalytic abil-
ity of AuNPs. Moreover, we also find that the oxidation activity of TBBPA on the surface of different AuNPs is also 
controlled by the deposition potentials. The AuNPs that prepared at − 0.40 V are more sensitive for the oxidation 
of TBBPA, and exhibits stronger enhancement effects. Interestingly, we notice that the oxidation signals of TBBPA 
further increase greatly on the surface of AuNPs after addition of 2-mercaptobenzothiazole (MBT) in the buffer 
solution. The synergetic enhancement mechanism of AuNPs and MBT has been discussed, and a novel electro-
chemical sensing platform with high sensitivity has been developed for the direct determination of TBBPA. The 
developed sensing system is promising in the automatic and on-line monitoring TBBPA because the preparation 
of sensing film is fulfilled by electrochemical processes.

Results and Discussion
Properties of Different AuNPs. AFM was used to characterize the detailed three-dimensional structures 
of different AuNPs. The unmodified GCE surface is very smooth (Fig. 1A), and a large number of nanoparticles 
are observed on GCE surface after electrochemical reduction of HAuCl4 (Fig. 1B–F). The coating of AuNPs not 
only enhances the surface roughness of GCE, but also forms abundant three-dimensional structures. In addition, 
we clearly find that the particle size and surface arrangements of AuNPs are heavily dependent on the reduction 
potentials. From the comparison, it is apparent that the surface morphology of AuNPs that deposited at − 0.40 V 
is more attractive due to smaller particle size and more uniform arrangements. In conclusion, the different surface 
morphology manifests that the shape of AuNPs can be easily controlled by variation of the reduction potentials.

The electron exchange ability of different AuNPs was compared using electrochemical impedance spectros-
copy (EIS). As depicted in Fig. 2A, well-shaped semicircles with different diameter are clearly observed over the 
high frequency range, and straight lines appear in the low frequency range. Compared with those on bare GCE, 
the diameter of semicircles decreases obviously on the surface of AuNPs modified GCEs. Based on the Randles 
equivalent circuit, the determination of the values of charge transfer resistance (Rct) is repeated 3 times, and the 
results are fitted to be 311.2 ±  15.3, 261.3 ±  11.9, 169.8 ±  6.5, 152.9 ±  8.2, 178.4 ±  7.3 and 222.4 ±  9.1 Ω on bare 
GCE and AuNPs modified GCEs that prepared at − 0.60, − 0.50, − 0.40, − 0.30 and − 0.20 V. The decreased Rct 
value reveals that AuNPs exhibit higher catalytic ability, and the AuNPs that prepared at − 0.40 V are superior.

In addition, the effective response area of different GCEs were measured using the probe of K3[Fe(CN)6]. As 
shown in Fig. 2B, a pair of well-defined redox peaks with peak potential separation (Δ Ep) of 69 mV is observed, 
and the peak currents increase on the surface of AuNPs modified GCEs. When increasing the scan rate (v) from 
0.1 to 0.4 V s−1, the peak potentials remain unchanged, but the reduction peak currents (Ipc) increase linearly with 

Figure 1. AFM images of GCE (A) and AuNPs modified GCEs that prepared at − 0.60 V (B), − 0.50 V(C),  
−0.40 V (D), − 0.30 V (E) and − 0.20 V (F).
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the square root of scan rate, as displayed in Fig. 2C, suggesting a reversible and diffusion-controlled electrode 
process. According to the Randles-Sevcik equation, the effective electrode areas (A) are individually calculated to 
be 0.0564, 0.0625, 0.0682, 0.0704, 0.0665 and 0.0653 cm2 for bare GCE and AuNPs modified GCEs that prepared 
at − 0.60, − 0.50, − 0.40, − 0.30 and − 0.20 V. Apparently, the deposition of AuNPs on GCE surface enhances the 
electrochemical sensing area, and the values of AuNPs that prepared at − 0.40 V are larger. In summary, the used 
reduction potentials not only influence the surface morphology of AuNPs, but also affect the electron transfer 
ability and electrochemical sensing area of AuNPs.

Synergetic Enhancement Effects of AuNPs and MBT. The electrochemical behaviors of TBBPA in 
0.1 M acetate buffer solutions with different pH values were individually examined using cyclic voltammetry 
(CV). On the surface of bare GCE and AuNPs modified GCEs that prepared at − 0.60, − 0.50, − 0.40, − 0.30 and 
− 0.20 V, just an oxidation wave is observed for TBBPA, and the peak currents enhance obviously on the surface 
of AuNPs modified GCEs, as Fig. 3A shown. The signal enlargements manifest that the prepared AuNPs are 
more active for the oxidation of TBBPA, and moreover, the deposition potentials for AuNPs have big impacts as 
confirmed from the different oxidation peak currents of TBBPA. In addition, we clearly find that the oxidation 
activity of TBBPA on GCE and AuNPs is pH-dependent because the oxidation signals increase gradually with 
pH value from 3.6 to 4.6, and then gradually decrease with further improving pH value to 5.6. Similarly, it is 
also found that the enhancement activity of AuNPs toward TBBPA oxidation is also related to pH value, and the 
enhancement effects are much higher at pH of 4.6.

Figure 3B shows the oxidation peak currents of TBBPA on the surface of bare GCE and AuNPs modified 
GCEs in different acetate buffer solutions containing 2.0 μ M MBT. The oxidation peak currents of TBBPA are also 
pH-dependent, and much higher at pH of 4.6. Due to larger surface area and higher electron transfer ability, the 
prepared AuNPs exhibit notable signal enhancement ability toward TBBPA oxidation, and consequently enhance 
its oxidation peak currents obviously. Additionally, the oxidation activity of TBBPA in the presence of MBT is also 
pH-dependent, and the signal is much higher at pH 4.6. However, it is must to be indicated that the oxidation sig-
nals of TBBPA on the AuNPs modified GCEs further enhance obviously in the presence of MBT, compared with 
the values in Fig. 3A. Via formation of Au-S bond, the MBT molecules can be firmly assembled on the surface of 
AuNPs, and the benzothiazole ring then display strong hydrophobic interaction with TBBPA. As a result, AuNPs 
and MBT exhibit synergetic enhancement effects for the oxidation of TBBPA, and greatly enhance the response 

Figure 2. (A) Nyquist impedance plots of 5.0 mM K3/K4Fe(CN)6 in 0.1 M KCl on GCE (a) and AuNPs modified 
GCEs that prepared at − 0.60 (b), − 0.20 (c), − 0.30 (d), − 0.50 (e) and − 0.40 V (f), frequency range: 100 kHz to 
1 Hz, amplitude: 5 mV; (B) Cyclic voltammograms of 5.0 mM K3[Fe(CN)6] in 1.0 M KCl on GCE (a) and AuNPs 
modified GCEs that prepared at − 0.60 (b), − 0.20 (c), − 0.30 (d), − 0.50 (e) and − 0.40 V (f), scan rate, 100 mV s−1;  
(C) Variation of reduction peak currents of 5.0 mM K3[Fe(CN)6] with the square root of scan rate on on GCE  
(a) and AuNPs modified GCEs that prepared at − 0.60 (b), − 0.20 (c), − 0.30 (d), − 0.50 (e) and − 0.40 V (f).
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signals of TBBPA. Additionally, we also find that the synergetic enhancement ability of AuNPs and MBT is also 
controlled by pH value, and is much stronger at pH of 4.6.

To further discuss the enhancement effects of AuNPs and MBT toward trace levels of TBBPA, the oxida-
tion behaviors of 5.0 μ g L−1 TBBPA were examined using differential pulse voltammetry (DPV). From the prop-
erty analysis, we know that the surface morphology and electrochemical activity of AuNPs are controlled by the 
reduction potentials. So we speculate that the reduction potential also affects the signal enhancement ability 
of AuNPs toward TBBPA oxidation. This speculation is proved using Fig. 4A, and it is found that the obtained 
AuNPs using different potentials exhibit different enhancement effects toward the oxidation signals of TBBPA. 
From Fig. 4A, we clearly find that the prepared AuNPs at − 0.40 V is more active for TBBPA oxidation, most likely 
resulted from higher electron transfer ability and larger electrochemical sensing area. Therefore, the AuNPs that 
prepared at − 0.40 V were used to construct sensing platform for TBBPA.

Figure 3. Oxidation peak currents of 0.5 mg L−1 TBBPA at different pH values on GCE (a) and AuNPs 
modified GCEs that prepared at − 0.60 (b), − 0.20 (c), − 0.30 (d), − 0.50 (e) and − 0.40 V (f) in the absence (A) 
and presence of 2.0 μ M MBT (B), scan rate: 100 mV s−1.

Figure 4. (A) Influences of reduction potential of AuNPs on the oxidation peak currents of 5.0 μ g L−1 TBBPA 
in the presence of 2.0 μ M MBT; (B) DPV curves of 5.0 μ g L−1 TBBPA on GCE (a, b), AuNPs modified GCE (c–f) 
in pH 4.6 acetate buffer (a, c) and in the presence of 2.0 μ M MBT (b, d), BT (e) and DT (f); accumulation time: 
3 min.
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Figure 4B,C illustrate the synergetic enhancement effects of AuNPs and MBT toward TBBPA oxidation. On 
the surface of bare GCE, no oxidation wave is observed for 5.0 μ g L−1 TBBPA even after 3-min accumulation in 
pH 4.6 acetate buffer (curve a), and a very low oxidation peak appears at 0.676 V after addition of 2.0 μ M MBT 
(curve b). However, the oxidation wave of TBBPA is improved obviously on the surface of AuNPs modified 
GCE that prepared at − 0.40 V (curve c), and further improved greatly in the presence of 2.0 μ M MBT (curve d). 
Additionally, the oxidation behaviors of TBBPA in the presence of benzothiazo (BT) and 1-dodecanethiol (DT) 
were also investigated to deeply elucidate the synergetic enhancement effects of AuNPs and MBT. As seen from 
the curve (e) in Fig. 4B, we clearly find that the oxidation signals of TBBPA on AuNPs that prepared at − 0.40 V 
just increase slightly in the presence of BT, revealing that the enhancement ability of BT is very weak. When add-
ing low concentration of DT that contains -SH and long C-H chain, the oxidation wave of TBBPA enhance obvi-
ously on the surface of AuNPs, as shown in the curve (f) in Fig. 4B. Without -SH group, the BT molecules can not 
adsorb on the surface of AuNPs, while the DT molecules can be effectively assembled on AuNPs through Au-S 
bond. Therefore, DT exhibits effective enhancement ability toward TBBPA oxidation, while the enhancement 
effects of BT are very poor. Moreover, we also find that MBT has stronger enhancement activity toward TBBPA 
compared with DT, maybe attributed to the stronger hydrophobic interactions resulted from benzothiazole ring 
and TBBPA. In conclusion, the great signal improvements manifest that AuNPs and MBT possess remarkable 
synergetic enhancement ability for TBBPA oxidation, and the detection sensitivity is certainly enhanced greatly.

Enhancement Mechanism of AuNPs and MBT. To elucidate the origin of enhancement effects for 
TBBPA oxidation, the adsorption behaviors of TBBPA on different GCEs were studied using chronocoulometry. 
During the potential step from 0.40 to 0.80 V, the curves of charge (Q)-time (t) were firstly recorded, and then 
transferred to Q-t1/2 straight lines. Figure 5 shows the Q-t1/2 plots on GCE (A) and AuNPs modified GCE (B) in 
pH 4.6 acetate buffer (curve a) and in the presence of TBBPA (curve b). After addition of MBT, the Q-t1/2 plots 
on GCE (Fig. 5C) and AuNPs modified GCE (Fig. 5D) were also recorded in pH 4.6 acetate buffer (curve a) and 
in the presence of TBBPA (curve b). According to the integrated Cottrell equation, the intercept value of Q-t1/2 
plot in pH 4.6 acetate buffer represents the charge of double-layer capacitance (Qdl), while the intercept value 
in the presence of TBBPA is the summation of Qdl and Qads (the Faradaic charge of adsorbed species)28. So the  
Qads values of TBBPA on GCE in the absence of MBT are calculated to be 0.363 μ C, and then increase to 0.411 μ C  
in the presence of MBT, as individually confirmed from Fig. 5A,C. On the surface of AuNPs modified GCE 
that prepared at − 0.40 V, the Qads values in the absence of and presence of MBT are to be 1.008 and 2.251 μ C, as 
obtained from Fig. 5B,D. Clearly, the surface modification of AuNPs greatly improves the accumulation ability of 

Figure 5. Q-t1/2 plots on GCE (A) and AuNPs modified GCE (B) in pH 4.6 acetate buffer (curve a) and 
containing 0.5 mg L−1 TBBPA (curve b); Q-t1/2 plots on GCE (C) and AuNPs modified GCE (D) in pH 4.6 
acetate buffer containing 2.0 μ M MBT (curve a) and in the presence of 0.5 mg L−1 TBBPA (curve b).
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TBBPA, and of course, results in higher response signals for TBBPA oxidation. On the other hand, the existence 
of MBT also enhances the surface accumulation efficiency of TBBPA on GCEs, especially on the AuNPs modified 
GCE. The numerous nano-scaled gold particles on GCE surface together with the strong hydrophobic interaction 
between TBBPA and MBT that assembled on AuNPs jointly provide highly-effective accumulation for TBBPA, 
and then greatly improves the surface amount of TBBPA. As a result, the oxidation signals and detection sensitiv-
ity of TBBPA enhance significantly.

Electrochemical Determination of TBBPA. Figure 6A demonstrates the effects of concentration of MBT 
on the oxidation signals of TBBPA. As increasing the MBT concentration from 0 to 2.0 μ M, the oxidation peak 
currents of TBBPA on AuNPs modified GCE increase greatly, attributed to the obviously-improved accumulation 
efficiency resulted from the hydrophobic interaction between TBBPA and MBT. With further improving MBT 
concentration to 10.0 μ M, the oxidation peak currents of TBBPA decrease gradually, maybe ascribed to the fact 
that too much MBT lowers the electric conductivity. Therefore, the concentration of added MBT is fixed at 2.0 μ M.

The variation of oxidation peak currents of TBBPA with the accumulation potentials was measured, as shown 
in Fig. 6B. It is found that the influence of accumulation potential is slight because the oxidation signals of TBBPA 
vary slightly. For handling convenience and better wave shape, the accumulation potential and initial potential 
were controlled at 0.40 V. However, accumulation time has big impacts. As seen in Fig. 6C, the oxidation peak 
currents of TBBPA increase rapidly with improving accumulation time from 0 to 3.0 min, and then enhance 
slightly. Considering response signals and analysis time, 3-min accumulation was used before the DPV scans 
from 0.40 V to 0.80 V.

The reproducibility between multiple AuNPs modified GCEs was evaluated using 5.0 μ g L−1 TBBPA. The 
value of relative standard deviation (RSD) is 4.2% for nine GCEs, revealing good fabrication reproducibility and 
detection precision.

The potential interferences of other phenols on the detection of TBBPA were investigated under the opti-
mized conditions, as shown in Fig. S1 (Supporting Information). The phenols with close oxidation peak poten-
tial (Epa) such as bisphenol A (BPA, Epa =  0.676 V), p-cresol (Epa =  0.688 V), o-chlorophenol (Epa =  0.744 V), 
p-chlorophenol (Epa =  0.768 V) and phenol (Epa =  0.800 V) have no influences on the oxidation signals of 5.0 μ g L−1  
TBBPA (9.2 nM, Epa =  0.672 V) because their oxidation signals are much lower, even in the concentration of 
100 nM. In addition, the phenols with much lower or higher oxidation peak potentials such as hydroquinone 
(Epa =  0.352 V), catechol (Epa =  0.392 V), p-nitrophenol (Epa =  1.212 V) and o-nitrophenol (Epa =  1.260 V) also do 
not interfere with the signals of TBBPA because their oxidation signals at 100 nM are very low. The good selec-
tivity for TBBPA may be attributed to much stronger interaction between TBBPA and MBT that resulted from 
hydrophobic and conjugate force.

Figure 7 illustrates the linear range for the determination of TBBPA using AuNPs modified GCE in presence 
of MBT. The oxidation peak currents (Ipa, μ A) increase linearly with the concentration of TBBPA (C, μ g L−1) over 
the range from 0.5 to 30 μ g L−1, and the linear regression equation is expressed as Ipa =  0.03115 C. The correlation 

Figure 6. Influences of MBT concentration (A), accumulation potential (B), and accumulation time (C) on the 
oxidation peak currents of 5.0 μ g L−1 TBBPA on AuNPs modified GCE that prepared at − 0.40 V.
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coefficient (R) is 0.998, revealing good linearity. After 3-min accumulation, the value of detection limit is esti-
mated to be 0.12 μ g L−1 (0.22 nM) based on three signal-to-noise ratio.

Practical Application. In order to evaluate the practical applications, the proposed method was used to 
determine TBBPA in different water samples that collected in Wuhan city. The samples were filtered using 0.45 μ m  
cellulose acetate membrane before analysis. After addition of 5.0 mL sample solution into 5.0 mL pH 4.6 acetate 
buffer containing 4.0 μ M MBT, the DPV curves were recorded from 0.40 to 0.80 V after 3-min accumulation. 
Each sample solution undergoes three parallel detections, and the RSD is below 3.7%, revealing good precision. 
The content was obtained by the standard addition method, and the results were listed in Table 1. In order to 
testify the accuracy, TBBPA standards were spiked into the original water samples, and then analyzed according 
to above procedure. The values of recovery are in the ranger from 97.2~103.6%, revealing that the developed 
determination method for TBBPA is accurate and has promising application.

Conclusions
By means of changing reduction potentials, gold nanoparticles with different morphology and electrochemi-
cal activity have been prepared. The oxidation activity of TBBPA enhances effectively on the surface of AuNPs, 
and further increases greatly in the presence of MBT. The abundant nano-scaled gold particles together with 
the strong hydrophobic interaction resulted from TBBPA and the assembled MBT on AuNPs jointly improve 
the accumulation efficiency of TBBPA. Moreover, the prepared AuNPs using different potentials exhibit differ-
ent electrochemical reactivity toward TBBPA oxidation, and the AuNPs that deposited at − 0.40 V is superior. 
Utilizing the strong synergetic enhancement effects of AuNPs and MBT, a highly-sensitive, accurate and simple 
sensing platform has been successfully developed for the direct electrochemical determination of TBBPA.

Methods
Reagents. All chemicals were of analytical grade and used as received. 2.0 mg mL−1 stock solution of TBBPA 
(Laboratories of Dr. Ehrenstorfer, German) was prepared with ethanol, and stored at 4 °C. HAuCl4 was purchased 
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). MBT, BT and DT were purchased from Sigma-
Aldrich, and individually dissolved into ethanol in concentration of 2.0 mM. Ultrapure water (18.2 MΩ) was 
obtained from a Milli-Q water purification system and used throughout.

Instruments. Electrochemical measurements were performed on a CHI 660A electrochemical workstation 
(Chenhua Instrument, Shanghai, China) with a conventional three-electrode system. The working electrode is a 
modified glassy carbon electrode (GCE), the reference electrode is a saturated calomel electrode (SCE), and the 
counter electrode is a platinum wire. Atomic force microscopy (AFM) was performed with a SPM 9700 micro-
scope (Shimadzu, Japan).

Figure 7. (A) DPV curves of TBBPA on AuNPs modified GCE in the presence of 2.0 μ M MBT with 
concentrations of 0 (a), 0.5 (b), 1 (c), 2.5 (d), 5 (e), 10 (f), 20 (g), 30 μ g L−1 (h); (B) Calibration curve for TBBPA. 
Error bar represents the standard deviation of triple measurements.

No. Measured (μg L−1) Added (μg L−1) Found (μg L−1) Recovery

1 1.03 1.00 2.05 102.0%

2 1.93 2.00 3.91 99.0%

3 4.80 5.00 9.98 103.6%

4 7.55 7.50 14.84 97.2%

5 10.05 10.00 19.81 97.6%

Table 1.  Detection of TBBPA in water samples.
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Electrochemical Preparation of AuNPs. Prior to electrodeposition, the GCE was polished with 0.05 μ m 
alumina slurry, and ultrasonically washed in ultrapure water. After that, AuNPs were deposition on the surface 
of clear GCE under different potentials for 200 s in 0.5 M H2SO4 containing 0.5 mM HAuCl4. The used reduction 
potentials were − 0.60 V, − 0.50 V, − 0.40 V, − 0.30 V and − 0.20 V. Finally, the resulting electrode was rinsed with 
ultrapure water to remove any adsorbed species.

Analytical Procedure for TBBPA. 0.1 M, pH 4.6 acetate buffer solution containing 2.0 μ M MBT was used 
as supporting electrolyte for TBBPA detection. The differential pulse voltammograms (DPV) were recorded from 
0.40 to 0.80 V after 3-min accumulation, and the oxidation peak currents at 0.672 V were measured for TBBPA. 
The pulse amplitude was 50 mV, the pulse width was 50 ms, and the scan rate was 40 mV s−1.
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