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Abstract: Enteroviruses (EV) are implicated in an extensive range of clinical manifestations, such as
pancreatic failure, cardiovascular disease, hepatitis, and meningoencephalitis. We recently reported
on the biochemical properties of the highly conserved cysteine residue at position 38 (C38) of
enteroviral protein 3A and demonstrated a C38-mediated homodimerization of the Coxsackievirus
B3 protein 3A (CVB3-3A) that resulted in its profound stabilization. Here, we show that residue C38
of protein 3A supports the replication of CVB3, a clinically relevant member of the enterovirus genus.
The infection of HeLa cells with protein 3A cysteine 38 to alanine mutants (C38A) attenuates virus
replication, resulting in comparably lower virus particle formation. Consistently, in a mouse infection
model, the enhanced virus propagation of CVB3-3A wt in comparison to the CVB3-3A[C38A] mutant
was confirmed and found to promote severe liver tissue damage. In contrast, infection with the CVB3-
3A[C38A] mutant mitigated hepatic tissue injury and ameliorated the signs of systemic inflammatory
responses, such as hypoglycemia and hypothermia. Based on these data and our previous report on
the C38-mediated stabilization of the CVB3-3A protein, we conclude that the highly conserved amino
acid C38 in protein 3A enhances the virulence of CVB3.

Keywords: enterovirus; coxsackievirusB3; infection; animal model; virulence regulation

1. Introduction

Enteroviruses (EV) comprise a large genus of single-stranded RNA viruses that cause
a wide spectrum of diseases with potentially lethal progression. During periods of high
EV prevalence, newborn infants and young children are at particular risk of develop-
ing life-threatening septic syndromes [1,2]. In addition to their significant pathology in
humans, EV are also endemic among domestic pigs and occasional outbreaks of severe
porcine EV infection are reported worldwide. For some human EV strains, there are also
reports showing transmission to pigs and vice versa [3]. Among the various clinically
relevant EV, the human EV coxsackievirus B3 (CVB3) is a well-studied pathogen and the
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clinical manifestation of CVB3 infection can extend to severe conditions such as myocardi-
tis, pancreatitis, meningoencephalitis, and hepatitis, with potentially fatal outcomes [2].
The clinical picture in humans can be mimicked in mice, and here the severity of CVB3
infection, under the influence of the host’s innate antiviral effector responses, is associated
with extensive virus-mediated cytotoxicity—e.g., in the pancreas [4], liver [5,6], and heart
tissue [7,8]—and is accompanied by systemic inflammation.

Both cell culture and mouse infection models have revealed mechanisms that evolved
to support the viral replication process and defined immune escape mechanisms executed
by the virus to expedite its growth. Similar to other RNA viruses, CVB3 manipulates
cellular proteins and lipids for the formation of replication organelles, a process that
optimizes the concentration and localization of the viral genome and viral and cellular
proteins and supports the assembly and release of viral particles from infected cells [9].
For CVB3, the respective membrane remodeling in infected cells and the generation of
replication organelles requires the non-structural viral protein 3A. Protein 3A is formed
by the cleavage of the viral precursor protein 3AB and consists of a soluble N-terminus
and a hydrophobic C-terminus, the latter forming a single transmembrane helix with
membranes of the endoplasmic reticulum (ER) and Golgi apparatus. Protein 3A not only
promotes the replication process by the formation of replication organelles but also mediates
immune escape functions in CVB3 infection. As a transmembrane protein, 3A can block the
anterograde traffic of host proteins from the ER to the Golgi complex, contributing to the
reduced presentation of MHC molecules at the cellular surface and limiting the secretion of
anti-viral cytokines [10–13]. Mutations in the 3A coding region give rise to viruses defective
in viral RNA synthesis and incapable of blocking ER-to-Golgi traffic, but a specific function
of the 3A protein in the viral replication cycle has not yet been demonstrated [14,15].

In infected cells, the N-terminal domain of protein 3A resides on the cytosolic side of
cellular membranes, where it recruits host proteins such as guanine nucleotide exchange
factor GBF1 as well as acyl-CoA-binding domain-containing protein 3 (ACBD3). The N-
terminus of protein 3A can interact with the ACBD3 GOLD domain, promoting heterodimer
formation, which has been shown to promote viral replication [16,17]. Moreover, there
are also protein-protein interactions between individual 3A proteins and protein X-ray
crystallography previously defined residues L25, V34, and Y37 to form the hydrophobic
core of the protein 3A dimerization interface [16]. At the side of viral replication, ACBD3-
protein 3A heterodimers/heterotetramers recruit the lipid kinase phosphatidylinositol
4-kinase-β (PI4KB), a Golgi-localized lipid kinase that phosphorylates phosphatidylinositol
to yield phosphatidylinositol-4-phosphate (PI4P) lipids [18,19]. The 3A-ACBD3-PI4KB
route represents a major mechanism of PI4KB recruitment to the sites of EV replication [19].
PI4P-modified lipids attract oxysterol-binding protein (OSBP) and thereby form membrane
contact sites between the ER and replication organelles, triggering an accumulation of
cholesterol that is necessary for efficient viral genome replication [9].

In addition to L25, V34, and Y37, other residues of protein 3A can mediate homodimer
formation as well, and this may influence the replication process by as-yet-unknown
mechanisms. As an example, protein 3A from poliovirus, another member of the EV
genus, forms a symmetric homodimer via the soluble N-terminal domain [20]. We recently
demonstrated that CVB3 protein 3A forms SDS-resistant homodimers [21] via a DTT-
sensitive disulfide bridge between cysteine residues at position 38 (C38), thereby increasing
its stability [22]. The conservation of 3A-C38 among various representatives of the EV
genus suggests that the functional properties of this cysteine residue are a common feature
of EV protein 3A [22]. These aspects prompted us to investigate whether cysteine 38 of
CVB3 protein 3A plays a role in infection, and our experiments documented a pro-viral
function of 3A-C38 that occurs by it supporting the production of viral particles and
enhancing cytotoxicity.
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2. Results
2.1. Cells Infected with Protein 3A C38A Mutant and Wild-Type Virus Display Similar
Ultrastructural Changes

The structural modelling of C38-linked protein 3A homodimers implies an efficient
recruitment of ACBD3 by protein 3A irrespective of this disulfide bridge [22]. To investigate
whether protein 3A-C38 indeed has, as predicted, no effect on the recruitment of ACBD3 to
cellular membranes in CVB3-infected cells, C38 of CVB3 3A was mutated to alanine by site-
directed mutagenesis, generating CVB3-3A[C38A]. This mutation rendered protein 3A inert
to a C38-mediated formation of a disulfide bridge (Figure 1A). For the assessment of the
effect of protein 3A-C38 on ACBD3 distribution during infection, extracts of cells infected
with CVB3 3A wild-type (wt) or CVB3 3A[C38A] virus were subjected to differential
centrifugation to obtain a medium-speed membrane pellet (16 k), a high-speed membrane
pellet (120 k), and a supernatant fraction representing the cytosolic fraction. With this
approach, we could document the cellular distribution of viral and host proteins in the
different compartments during infection. We previously demonstrated that the CVB3
proteins are most abundantly localized in the 16k membrane pellet [21], indicating that
this fraction contains replication organelles. The redistribution of ACBD3 in CVB3-infected
cells from the cytosolic fraction to the 16k membrane fraction, which contains protein
3A, was similar for both the wt 3A and the mutant C38A variants (Figure 1B). Thus, it is
most likely that wt and mutated protein 3A can efficiently interact with ACBD3 proteins,
recruiting them independently of 3A-C38 to cellular membranes and causing similar PI4KB-
dependent alterations in the lipid composition during CVB3 infection. We also examined
whether the different effects of the wt and mutant 3A with regard to the disulfide bridge
formation of protein 3A could affect the generation of the membranous vesicles on which
virus RNA replication occurs. To investigate the effect of the 3A C38A mutant on the
rearrangement of cellular membranes during viral infection, the ultrastructure of cells
infected with wt and CVB3-3A[C38A] mutant was examined using electron microscopy.
This experiment documented similar ultrastructural changes with a cluster of vesicles in
the cytoplasm, where Golgi stacks are found in uninfected cells (Figure 1C–H), indicating
that the 3A[C38A] mutation did not inhibit the membrane rearrangements induced by
CVB3 infection. The formation of replication organelles for cells infected by the mutant
strain was similar to that found in cells infected with CVB3-3A wt. This finding confirms
that 3A-C38 is not essential for the initiation phase that leads to tubulovesicular membrane
structures and the formation of replication organelles in CVB3-infected cells.
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Figure 1. Effect of cysteine 38 of protein 3A at the ultrastructural level. (A) HeLa cells were infected
with GFP-CVB3 encoding protein 3A wt or 3A[C38A] at MOI 1 for 16 h and processed for the
immunoblotting of protein 3A. (B) Fractionation of non-infected cells and cells infected with GFP-
CVB3 variants (3A wt and 3A C38A) at MOI 1 for 5 h. Pre-cleared lysates in hypotonic lysis buffer
were subjected to differential centrifugation at 16,000 rcf (16 k) and 120,000 rcf (120 k). Resulting
membrane pellets and supernatants were analyzed by the immunoblotting of 3A-interactor ACBD3,
loading control GAPDH. Quantification of indicated immunosignals in 16k-rcf membrane pellets
(n = 4). n.s.—not significant. (C–G) Thin-section electron microscopy of HeLa-cells after infection
with either GFP-CVB3-3A wt or GFP-CVB3-3A[C38A]. (C,D) Non-infected cells (control). (E–H) Cells
infected with GFP-CVB3-3A wt (E,F) or GFP-CVB3-3A[C38A] (G,H). Images in the right column
show a detail of the overview images in the left column. Both viruses induce the formation of large
virus factories, which are composed of membrane-enveloped replication organelles (ro) and dense
cytoplasmic deposits (arrows) that are most likely formed by viral proteins. g: Golgi apparatus; m:
mitochondrion; n: nucleus. Scale bar in (C,E,G) = 2 µm. Scale bar in (D,F,H) = 1 µm. * p < 0.05.
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2.2. Cysteine 38 of Protein 3A Affects Its Subcellular Distribution in Infected Cells

The close proximity that we documented in CVB3-infected cells for the Golgi appa-
ratus, emerging replication organelles, and viral particles (Figure 1E–H) concurs with the
capacity of protein 3A to interfere with cellular protein secretion via the inhibition of the
ER to Golgi transport, hence promoting viral replication [13]. We recently demonstrated
that 3A-C38 elevates the intensity of protein 3A signals at cellular membranes, suggesting
that the capacity to form C38-linked protein 3A homodimers might increase the availability
of this viral protein at replication organelles. To assess the reported effect of C38 on protein
3A in the context of CVB3 infection, we made use of the C38A mutant that was generated
by the site-directed mutagenesis of recombinant CVB3 encoding in addition to EGFP in
its genome (Figure 1A). An immunofluorescence analysis of CVB3-3A wt-infected HeLa
cells showed that 5 h after the start of infection, corresponding to the exponential phase of
the replication cycle, protein 3A is highly concentrated in few bright clusters (Figure 2A).
The staining of 3A in CVB3-3A[C38A]-infected cells on the other hand is localized, with a
lower intensity in less-defined clusters merging into bigger structures, distributed all about
the cell. A quantitative comparison of anti-3A staining intensities showed a significant
difference in intensity distribution between CVB3-3A wt and CVB3-3A[C38A] (Figure 2B).
Infection with CVB3 encoding EGFP results in GFP expression after 5 h. Cells with similar
GFP fluorescence and 3A staining intensity, both being indicators of CVB3 infection in their
respective HeLa cells, were selected for CVB3-3A wt and CVB3-3A[C38A] (Supplementary
Figure S1). An analysis of anti-3A immunofluorescence using autocorrelation-based image
correlation spectroscopy showed bigger areas of staining clusters in the case of protein 3A
for CVB3-3A[C38A]-infected cells, thus confirming that cysteine 38 of protein 3A at least
partially directs its subcellular localization towards more condensed membrane structures,
as shown for the ectopic expression of protein 3A-C38A variants [22]. The cellular alter-
ations seen in CVB3-3A wt-infected cells that we attributed to 3A-C38 suggested a more
pronounced availability of protein 3A at the side of viral replication, which is in agreement
with the enhanced stability of protein 3A as a C38-linked homodimer, as previously shown.

2.3. Cysteine 38 of Protein 3A Supports Virus Replication

The 3A-C38-mediated increased the stability for protein 3A [22], and the detection of a
higher protein 3A signal intensity at specific foci in infected cells (Figure 2) prompted us to
explore a role of the highly conserved 3A-C38 residue in virus replication. Virus with the
C38A mutation was viable. We infected cells with the CVB3 3A-C38A mutant and compared
its replication with that of the wt strain in more detail. To ascertain that the obtained effects
on viral replication were due to a disulfide bond in CVB3 3A protein and did not constitute
an impaired non-covalent interaction mediated by the polar properties of the cysteine
residue, we also analyzed a C38S mutation of CVB3 protein 3A (CVB3-3A[C38S]), with
serine being chemically related to cysteine. The assessment of viral replication showed
that the effects of C38A and C38S are similar, resulting in ~50% lower viral titers compared
to CVB3 encoding wt protein 3A (Figure 3A). Five hours after infection at MOI 1, the
virus replication of CVB3-3A[C38A] was markedly reduced compared to CVB3-3A wt,
as confirmed by fluorescence microscopy and the flow cytometry-based quantification of
co-expressed GFP (Figure 3B,C). The difference in replication efficiency between CVB3-3A
wt and CVB3-3A[C38A] was also observed when infecting cells at MOI 0.1 for 12 to 36 h, a
period that entails several replication cycles (Figure 3D,E). The impaired viral replication
of CVB3-3A[C38A] was also reflected by less intense GFP staining (Figure 3D) as well as
lower virus titers (Figure 3E). The importance of protein 3A-C38-mediated effects in viral
replication is supported by the fact that the levels of the viral proteins 3D and VP1 in the 16k
membrane pellet were up to 60% lower during infection with CVB3 encoding 3A[C38A].
The difference seen for monomeric protein 3A and 3AB was even more pronounced, with
nearly 75% lower expression levels seen for CVB3-3A[C38A] (Figure 3F).
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Figure 2. Cysteine 38 of protein 3A affects the subcellular distribution of the viral 3A protein.
(A) Confocal microscopy of HeLa cells infected with GFP-CVB3 variants at MOI 1 for 5 h. GFP signal
reflecting CVB3 replication, staining of DNA (DAPI, blue), and protein 3A (magenta). Scale bar: 10 µm.
(B) Quantitative comparison of anti-3A immunofluorescence intensity distributions (n = 15) depicted
in (A). (C) Autocorrelation-based image correlation spectroscopy of anti-3A immunofluorescence
shown in (A). Two-dimensional plots depicting the auto-correlation of x/y-shifted confocal images to
assess cluster sizes, which are collapsed into a 1D Pearson correlation coefficient plot (n = 15). In order
to quantitatively compare the immunofluorescence frequency distributions and auto-correlation
curve of the two strains, differences between single bins from GFP-CVB3 3Awt and GFP-CVB3
3A[C38A] were tested with a one-sample t-test against zero, * p < 0.05. We used a significance level of
0.05 and Bonferroni correction to correct for the multiple testing of several bins.

Consistent with the functional role of the C38 residue in viral replication in CVB3
infection, the cytopathic effect was more pronounced for cells that were infected with
CVB3-3A wt in comparison to the CVB3 3A[C38A] mutant (Figure 3G).
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Figure 3. Cysteine 38 of protein 3A supports virus replication. (A) HeLa cells were infected with
GFP-CVB3 encoding wt protein 3A, 3A[C38A], or 3A[C38S] at MOI 1 for 5 h. Virus titers were
determined by plaque assay. (B) HeLa cells were infected with GFP-CVB3 variants at MOI 1 for
5 h. Fluorescence microscopy with the 488 nm excitation of infected cells. (C) Analysis by flow
cytometry to assess the percentage of GFP positive cells and mean fluorescence intensity (MFI) of GFP
in GFP-positive cells. (D) Disulfide-linked enteroviral protein 3A promotes viral replication. HeLa
cells were infected with GFP-CVB3 encoding protein 3A wt or 3A[C38A] at MOI 0.01 for the indicated
periods. Fluorescence microscopy at 30× magnification with 488 nm excitation of infected cells.
(E) The amount of infectious virus was determined by plaque assay (n = 3). The bar charts depict
the actual viral titers and normalized titers, respectively. (F) Fractionation of non-infected cells and
cells infected with GFP-CVB3 variants at MOI 1 for 5 h. Pre-cleared lysates in hypotonic lysis buffer
were subjected to differential centrifugation at 16,000 rcf (16 k) and 120,000 rcf (120 k). Resulting
membrane pellets and supernatants were analyzed by the immunoblotting of CVB3 proteins 3A, 3D,
and VP1. Loading control GAPDH. Quantification of indicated immunosignals in 16 k-rcf membrane
pellets (n = 4). * p < 0.05. ** p < 0.005. n.s. non significant (G) Cell killing assay. HeLa cells were
infected at MOI 0.5 for 24 h. Cells were fixed with 5% trichloroacetic acid and stained with crystal
violet to assess cell viability (n = 2, each in quadruplicates).

2.4. Infection with the CVB3-3A[C38A] Mutant Mitigates Viral Pathology

To test whether protein 3A cysteine 38 affects the virulence of the pathogenic CVB3
H3 strain in vivo, C57BL/6 mice were infected with CVB3 encoding wt (CVB3-3A wt)
or C38A protein 3A (CVB3-3A[C38A]) and sacrificed after three days. The assessment
of the amount of infectious viral particles for this point in time by plaque assay showed
significantly higher virus concentrations in the spleen, pancreas, heart, and liver of animals
infected with CVB3-3A wt (Figure 4A), thus corroborating the results obtained in cell
culture and highlighting the functional importance of 3A cysteine 38. Correspondingly,
the progression documented for the loss of body weight was less severe in mice infected
with CVB3-3A[C38A], reaching a similar decline to that seen for the CVB3-3A wt strain
after three days (Figure 4B). The infection of C57BL/6 mice with CVB3-3A wt triggered
a hypothermic stage after three days, and this characteristic of a systemic inflammatory
response (SIR) after virus infection was substantially milder in CVB3-3A[C38A]-infected
mice (Figure 4C). CVB3-induced SIR was accompanied by hypoglycemia, as evidenced by
the low blood glucose concentration and decreased liver glycogen seen in infected mice
(Figure 4D–F). In comparison to the CVB3-3A wt strain, infection with CVB3-3A[C38A]
profoundly attenuated this catabolic disturbance, resulting in higher serum glucose levels
and an enhanced detection of hepatic glycogen. The profiling of virus-triggered liver tissue
damage by histology and pathobiochemistry revealed multifocal necrosis and inflammation
three days after infection, which was accompanied by enhanced serum activity of liver
enzymes such as alkaline phosphatase (AP) (Figure 4G–I). The liver tissue damage was less
prominent in mice that were infected with CVB3-3A[C38A], emphasizing the functional
impact of 3A cysteine 38 in infection. Altogether, the in vivo infection study demonstrated
that CVB3 3A cysteine 38 supports viral replication and presents a virulence trait with
disease-exacerbating effects in mice.
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Figure 4. Mitigation of virus-triggered liver pathology by the CVB3-3A[C38A] mutant. Male C57BL/6
mice were infected intraperitoneally with 1 × 105 pfu of CVB3 (wt) encoding wt protein 3A or
3A[C38A] and sacrificed at day 3 after infection (n = 10 for each virus strain). (A) Virus titers
in indicated tissues were determined by a plaque assay. (B) Normalized body weight change
(day 0 = 100%) at each day after infection. (C) Body temperature at baseline and 3 days after infection.
(D) Serum glucose levels at baseline (control) and 3 days after infection. (E) Periodic acid-Schiff
(PAS) staining of liver sections. (F) Graph depicts scoring of staining intensity (0–4, 0 = PAS-negative
cells, 4 = PAS-positive cells). (G) Serum alkaline phosphatase levels 3 days after infection (n = 10 per
group). (H) Hematoxylin-eosin staining of liver sections. (I) Liver pathology was categorized based
on the severity of inflammation and necrosis using the following scoring system: 0: no inflammation/
necrosis; 1: scattered immune cells/mild necrosis (<10%); 2: immune cell foci/marked necrosis
(10–50%); 3: diffuse immune cell infiltrates/severe necrosis (>50%), according to [23]. Unpaired t-test
with the exception of (B,C), analysis by 2-way ANOVA with Sidak post hoc test.
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3. Discussion

Infection by EV causes extensive cellular reorganization, including a protein 3A-
mediated generation of replication organelles and the recruitment of cellular proteins
such as GBF1, ACBD3, and PI4KB, all supporting viral RNA synthesis and virion
assembly [9,13,24]. In this study, we investigated whether the highly conserved C38 of pro-
tein 3A, which supports the disulfide-linked homodimer formation of EV protein 3A and
increases its stability [22], influences the virulence of CVB3. To explore the effect of cysteine
residue 38 in protein 3A on CVB3 replication, we used a virus with a C38A mutation in 3A
created by the site-directed mutagenesis of the CVB3 cDNA. The experimental detection of
the CVB3 3A-[C38A] mutant demonstrates that the function of 3A-C38 to form homodimers
at the cytosolic leaflet of membranes is not an absolute prerequisite for viral replication.
In fact, the formation of viral particles under conditions where protein 3A cannot form
DTT sensitive disulfide bridges (CVB3 3A-[C38A]) concurs with the efficient hijacking
of the host ACBD3 protein to the sites of viral replication as well as the generation of
replication organelles, as shown by ultrastructural microscopy in cells infected with CVB3
3A-[C38A]. Differential centrifugation and immunoblotting experiments together with
immunofluorescence and electron microscopy demonstrated that protein 3A, expressed
in the context of viral infection, co-localizes with membranes derived from the Golgi com-
partment irrespective of 3A-C38. In cells that are either infected with the wt virus or the
3A-[C38] mutant, vesicles accumulated in the region of the cytoplasm where Golgi stacks
are found in uninfected cells, indicating that the ER-to-Golgi traffic at the step of vesicle
formation is not affected by 3A-C38. These results confirm the recent demonstration of the
intact interaction of the mutant 3A-C38A protein with cellular membranes [22].

The ectopic expression of 3A or infection with CVB3 drastically alters the intracellular
localization of ACBD3. ACBD3 serves as a hub for various protein–protein interactions,
and hence it participates in a plethora of cellular signaling pathways [25]. When cells
were infected with CVB3, ACBD3 was found to co-localize with membrane-localized 3A
protein. The structural model that we presented recently for the disulfide-linked protein
3A homodimer [22] demonstrated that its protomer–protomer interface is completely
different from the ACBD3–protein 3A interfaces shown in [16], and the respective protomer
structures themselves were not altered by the C38-mediated dimerization of the protein
3A. From the perspective of this structural homodimer model, 3A protein homodimer
formation associated with a cysteine bridge does not change the complex formation with
ACBD3 [22]. Consistently, the recruitment of ACBD3 to the membrane in infected cells
was not affected by protein 3A’s ability to form C38-C38-linked homodimers. The intact
interaction of both wt 3A and C38A 3A with ACBD3 was also confirmed by the lack of
any substantial effect of 3A-C38 on the formation of replication organelles, confirming that
C38-C38-linked homodimers are not essential for viral replication.

On the other hand, the loss of the capability of 3A to be stabilized by C38-mediated
homodimerization reduced the yield of 3A-[C38A] mutant virus in single- and multiple-
replication cycle infections. Mouse infection experiments with wt CVB3 and the mutant
CVB3 3A-[C38A] confirmed the less efficient replication of the mutant strain, as indicated
by reduced viral titers in different tissues. From a pathophysiological perspective and
based on the expression of 3A-C38, the infection of mice with CVB3 resulted in elevated
cellular cytotoxicity, promoted severe liver tissue injury, and exacerbated the systemic signs
of viral infection and thereby triggered inflammation. Based on these findings, we propose
a functional role of the property to form C38-mediated disulfide-linked protein 3A dimers,
which can enhance the protein 3A stability, thereby supporting viral replication. Multimeric
protein complexes, being resistant to proteasomal degradation, might contribute to an
increased local concentration of host and viral proteins, thereby expediting viral replication.
The lower degradation of the Cys38-Cys38 dimerized 3A protein by the proteasome [22]
ultimately increases the availability of the 3A protein at the sides of viral replication,
as shown here by immunofluorescence and differential centrifugation. The increase in
protein 3A levels at the viral replication side would most likely augment some of the
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effects of the multifunctional protein 3A and its precursor 3AB—e.g., the stimulation of
the viral RNA polymerase [26]. However, the disulfide-linked dimerization of protein
3A would also offer additional modes of interaction with cellular processes by not yet
characterized mechanisms.

Recently, we demonstrated enhanced LC3-lipidation in cells with the ectopic overex-
pression of the wt 3A protein in comparison to the mutant C38A protein 3A [22], suggesting
that the C38-mediated dimerization of 3A protein augments the utilization of autophagy
components for viral replication. In fact, the exploitation of autophagy for viral replication
is common among RNA viruses [27], and they have developed mechanisms to circumvent
the eventual lysosomal degradation [28]. We propose that due to its enhanced stability, the
wt CVB3 might be more capable of utilizing autophagy components than the mutant CVB3
3A[C38A], and this might support or enhance the replication process, as reported here for
the wt strain. In conclusion, we suggest that Cys38-Cys38 homodimer formation by protein
3A is not required for viral RNA replication itself, but serves as a virulence factor, enlarging
the sources of protein 3A at the sides of viral replication in infected cells.

4. Materials and Methods
4.1. Mice

C57BL/6J mice were obtained from a stock breeding initially purchased from Jackson
Laboratory and kept at the animal facilities of the Charité—Universitätsmedizin Berlin.
Five–six-week-old male mice were infected with 1 × 105 plaque-forming units (pfu) of
Coxsackievirus B3 strain H3 (CVB3) or the mutant CVB3-3A[C38A] by intraperitoneal
injection. Three days after infection, anesthetized mice were sacrificed. Serum was obtained
by the centrifugation of whole blood at 10,000 rcf for 15 min and was stored at −80 ◦C.
Serum levels of alkaline phosphatase (AP) were determined by an external veterinary
diagnostic laboratory (Vetlab, Berlin). Blood glucose levels were measured in serum
samples using an AccuChek glucometer (Roche, Basel, Switzerland). Liver tissue was
incubated in HistoFix (1 × PBS, 4% RothTMHistofix, Carl Roth, Karlsruhe, Germany)
overnight and embedded in paraffin. To visualize cellular injury and inflammation, cross
sections were stained with hematoxylin and eosin. Periodic acid-Schiff histochemical
analysis was performed to visualize glycogen in liver tissue sections. Tissue slides were
immersed in a 0.5% periodic acid solution for 5 min, followed by incubation with Schiff’s
reagent for 15 min. Counterstaining was performed with Mayer’s hematoxylin. PAS-
positive cells were scored as described in [6].

4.2. Cell Culture

HeLa cells (ATCC) were maintained in DMEM supplemented with 10% (v/v) fetal
bovine serum and 1% (v/v) penicillin/streptomycin. Phase contrast and GFP fluorescence
images of cell cultures were acquired using a PAULA imager (Leica Microsystems, Wetzlar,
Germany). For transient transfections, cells were grown to 90% confluence and transfected
with 0.5 µg expression vector per 1 × 105 cells using Polyethylenimine-Linear, MW 25,000
(Polysciences, Inc., Warrington, PA, USA). Medium was replaced 8 h after transfection.

4.3. Generation and Quantification of Infectious Viral Particles

The virus strains CVB3(wt) (used for all in vivo experiments) and GFP-CVB3 (used
for all cell culture experiments) were generated by the transfection of HEK293T cells with
the virus-cDNA containing plasmids pBKCMV-H3 (kindly provided by Andreas Henke,
Friedrich Schiller University, Jena, Germany) and pMKS1-eGFP-CVB3 (provided by Zhao-
Hua Zhong, Harbin Medical University, Harbin, China). HEK293T cells were transfected
using PEI (polyethylenimine) Max (Polyciences, Warrington, PA, USA) and subsequently
to virus-induced cell lysis, virus was amplified in HeLa cells. CVB3(wt)-3A[C38A] and
CVB3-3A[C38A] were created by the site-directed mutagenesis of pBKCMV-H3 and pMKS1-
eGFP-CVB3 using the primer CVB3-3A[C38A]-sense 5′-c cgt gag aga gta tgc caa aga aaa
ggg atg g-3 and CVB3-3A[C38A]-antisense 5′-c cat ccc ttt tct ttg gca tac tct ctc acg g-3′.
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GFP-CVB3-3A[C38S] was created by the site-directed mutagenesis of pMKS1-eGFP-CVB3
using the primer CVB3-3A[C38S]-sense 5′-c cgt gag aga gta ttc caa aga aaa ggg atg g-3 and
CVB3-3A[C38S]-antisense 5′-c cat ccc ttt tct ttg gaa tac tct ctc acg g-3′. PCR was run using the
Q5® High-Fidelity DNA Polymerase (New England Biolabs, Frankfurt am Main, Germany).
Virus titers were determined by plaque assay and aliquots stored at −80 ◦C. Plaque assays
were performed on sub-confluent monolayers of HeLa cells incubated with serial 10-fold
dilutions of cell culture supernatant. After incubation at 37 ◦C for 30 min, supernatants were
removed and monolayers were overlaid with agar containing Eagle’s minimal essential
medium (MEM) and 10% FCS. After 2 days, virus plaques were stained with 0.5% MTT/PBS
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma).

4.4. Cell Lysis

Adherent cultures of HeLa cells were scraped off, pelleted by centrifugation at 2000× g
rcf for 3 min, washed in PBS, and pelleted again. Then. the cell pellet was lysed in 20 mM
Hepes pH 7.4, 1% (v/v) Triton X-114, 8 mM EDTA, 2 mM EGTA, complete protease
inhibitor (Roche, Basel, Switzerland), 50 mM NaF, 5 mM Na-pyrophosphate, 2 mM Na-o-
vanadate, and 10 mM NEM. After incubation on ice for 20 min, lysates were centrifuged at
16,000× g rcf (4 ◦C) for 10 min to pellet debris. Protein concentration was determined by
the Bradford assay.

4.5. Differential Centrifugation

Adherent cultures of HeLa cells were scraped off, pelleted by centrifugation at 200 rcf
for 3 min, washed in PBS, and pelleted again. Then, they were resuspended in 20 mM
HEPES pH 7.4, 10 mM KCl, 2 mM MgCl2, 1 mM EDTA, 1 mM EGTA, complete protease
inhibitor (Roche, Basel, Switzerland), and 10 mM NEM. Cell suspension was incubated on
ice for 10 min and then passed 10 times through a 30-gauge needle. Intact cells were pelleted
by centrifugation at 200 rcf for 5 min (4 ◦C) and the resulting supernatant transferred to a
new tube for Bradford assay and subsequent differential centrifugation. Crude lysate with
2 µg/µL protein was centrifuged at 16,000× g rcf for 10 min (4 ◦C), then the supernatant
was transferred to polycarbonate tubes and centrifuged at 120,000× g rcf (Beckman Coulter
Optima TLX) for 60 min (4 ◦C). The supernatant and membrane pellets were immediately
used for further analysis.

4.6. Immunoblotting

SDS-PAGE was performed on 12%, 15%, or 4–15% (Bio-Rad Laboratories GmbH,
Feldkirchen, Germany) Tris-glycine gels using Tris-glycine running buffer. For SDS-PAGE,
protein samples were prepared in 62.5 mM Tris HCl pH 6.8, 10% glycerol, 2% SDS, 0.005%
Bromophenol Blue. The transfer of proteins onto 0.2 µm nitrocellulose membrane (Licor
Bioscience, Lincoln, NE, USA) was carried out using Towbin buffer for tank blotting
(Bio-Rad Laboratories GmbH, Feldkirchen, Germany) or discontinuous Tris-CAPS buffer
for semi-dry blotting (Bio-Rad). Immunostaining was performed according to standard
protocols. The following primary antibodies were used: GAPDH (Thermo Scientific &
Abcam, Cambridge, UK), VP1 (Mediagnost, Reutlingen, Germany), and ACBD3 (Santa
Cruz Biotechnology, Dallas, TX, USA). Anti-3A antibody was a gift from J. L. Whitton (The
Scripps Research Institute, USA). Secondary IRD680CW or IRDye800CW labeled antibodies
(Li-Cor Biosciences, Lincoln, NE, USA) were visualized using an Odyssey CLx imager and
analyzed with the Image Studio software 5.2 (Li-Cor Biosciences, Lincoln, NE, USA).

4.7. Immunofluorescence

For immunofluorescence microscopy, cells were seeded on 13 mm cover slips coated
with poly-lysine (Sigma–Aldrich, Saint Louis, MO, USA). For the staining of anti-3A (rabbit
polyclonal antibody provided by K. Klingel, University of Tübingen, Germany) and anti-
RCAS1 (Cell Signaling) immunofluorescence, cells were fixed with 4% paraformaldehyde
in PBS for 20 min and then rinsed with PBS. After permeabilization with 0.2% Triton
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X-100 for 10 min, non-specific binding sites were blocked with 4% fetal bovine serum in
PBS supplemented with 0.1% Triton X-100 for 30 min. Incubation with primary antibody
was performed in blocking solution at room-temperature for 2 h. After three washing
steps with PBS, samples were incubated with Alexa Fluor 568 coupled secondary antibody
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) in blocking solution for 1 h. After
three washing steps with PBS and a rinse in ultra-pure water, samples were mounted on
microscope slides using ROTI-Mount Fluoro-Care DAPI (Carl Roth). Images were acquired
on a Nikon Scanning Confocal A1Rsi+ (Nikon, Minato, Japan) using a Plan Fluor 63× Oil
objective (NA = 1.3).

For the quantitative comparison of immunofluorescence intensity distributions, confo-
cal images in an 8-bit grey scale were analyzed using ImageJ. The area of a cell excluding
the nucleus was defined as region of interest to determine the intensity distribution of
anti-3A immunofluorescence. The intensities of the anti-3A staining in the region of interest
were normalized to its mean intensity and intensity distributions were represented as the
percentage of pixels of a particular normalized intensity.

4.8. Autocorrelation-Based Image Correlation Spectroscopy (ICS) of Anti-3A Immune-Fluorescence

Autocorrelation-based ICS was applied to confocal images in order to compare cluster
sizes. Regions with protein 3A signal were automatically selected by Otsu’s method.
Images were then auto-correlated after shifting them pixel-wise against themselves along
the x and y axes. Pearson coefficients were calculated for each shift and plotted against
the shift. In this analysis, large and small structures can be readily distinguished by
their broad or narrow distribution of auto-correlation values, respectively. The custom
written python script is available as a Jupyter Notebook: https://github.com/ngimber/
ImageCorrelationSpectroscopy/releases/tag/1.0.0 (accessed on 15 March 2022).

4.9. Thin Section Electron Microscopy

HeLa cells were seeded into small (2 × 2.5 mm) chambers on a plastic dish (micro-
insert 4 well µ-dish, ibidi, Gräfelfing, Germany) and infected with GFP-CV3B-3A wt or
GFP-CV3B-3A[C38A] at an MOI of 5. After 5 h of incubation, the medium was removed
and cells were fixed with 2.5% glutaraldehyde in sodium cacodylate buffer (2.6 mM MgCl2,
2.6 mM CaCl2, 50 mM KCl, 2% sucrose, pH 7.4) at room temperature. Post-fixation, en bloc
contrasting, dehydration, and infiltration with epon resin (using acetone/resin mixtures)
were conducted within the chambers following a standard protocol with tannic acid [29].
Thin sections (60–70 nm) were produced with an ultramicrotome (Ultracut UCT, Leica
Microsystems, Wetzlar, Germany), collected on naked mesh grids, contrasted with uranyl
acetate and lead citrate, and coated with a thin layer of carbon. Electron microscopy
was performed with a transmission electron microscope (Tecnai Spirit, Thermo Fisher
Scientific, Electron Microscopy Solutions, Eindhoven, The Netherlands) operated at 120 kV.
Images were recorded with a side-mounted CCD camera (Megaview III, EMSIS, Muenster,
Germany) using the image montage function to increase the pixel number.

4.10. Statistics

Statistical analysis of the data was performed in GraphPad Prism v7.00/v8.00 (Graph-
Pad Software, San Diego, CA, USA). Data summary is depicted as mean ± standard error
of the mean (SEM). Unpaired t-test was used for two group comparisons. If samples had
unequal variances (determined by an F test), an unpaired t-test with the Welch correction
was used. If values were normalized to an internal control, one-sample t-tests were applied.
For multiple group comparison, unequal variance versions of ANOVA (one-way or two-
way ANOVA) were performed followed by Sidak’s or Tukey’s multiple comparison test.
The significance threshold for all tests was set at the 0.05 level.

https://github.com/ngimber/ImageCorrelationSpectroscopy/releases/tag/1.0.0
https://github.com/ngimber/ImageCorrelationSpectroscopy/releases/tag/1.0.0
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14040769/s1, Figure S1: (for Figure 2): Quantitative comparison
of intensity distributions and autocorrelation-based image correlation spectroscopy.

Author Contributions: Conceptualization, M.V. and A.B.; supervision, A.B. and P.-M.K.; methodol-
ogy, M.V., S.P., N.G., M.K., M.L., K.K. and M.G.; data acquisition, M.V., S.P., N.G., M.L., K.K. and M.G.
data analysis, M.V., K.K., S.P., N.G., J.S. and M.G.; data visualization, M.V., S.P., N.G., M.L., K.K. and
M.G.; funding acquisition, A.B. and J.S.; writing—original draft: M.V., P.-M.K. and A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: AB receives support from the Foundation for Experimental Biomedicine Zurich, Switzer-
land. The German Research Foundation (DFG) funded this project with grants BE 6335/5-1, 6335/6-1,
SFB1292/2 TP02 (Project Number 318346496), CRC167/2 project B16, and CRC1470/1 project A08
to AB as well as SFB1292/2 TPQ01 (Project Number 318346496) to MG. MK received support from
the International Max Planck Research School for Infectious Diseases and Immunology (IMPRS-
IDI), Berlin.

Institutional Review Board Statement: This study was carried out in accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the German animal welfare
act, which is based on the directive of the European parliament and of the council on the protection
of animals used for scientific purposes. This study was approved by the local authorities for animal
welfare in Berlin (permit number: G0070/18). All efforts were made to minimize suffering.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Karolin Voss, Anika Linder, and Sandra Bundschuh for their
excellent technical assistance. The Advanced Medical Bioimaging Core Facility at the Charité sup-
ported this project with confocal microscopy. CVB3-cDNA containing plasmids pBKCMV-H3 and
pMKS1-eGFP-CVB3 were kindly provided by Andreas Henke (Institute of Virology and Antiviral
Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany) and Zhao-Hua
Zhong (Department of Microbiology, Harbin Medical University, Harbin, China), respectively. Anti-
3A antibody was a generous gift from J. Lindsay Whitton (The Scripps Research Institute, La Jolla,
CA, USA).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thibaut, H.J.; De Palma, A.M.; Neyts, J. Combating enterovirus replication: State-of-the-art on antiviral research. Biochem.

Pharmacol. 2012, 83, 185–192. [CrossRef]
2. Whitton, J.L.; Cornell, C.T.; Feuer, R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol.

2005, 3, 765–776. [CrossRef]
3. Zhang, G.; Haydon, D.T.; Knowles, N.J.; McCauley, J.W. Molecular evolution of swine vesicular disease virus. J. Gen. Virol. 1999,

80 Pt 3, 639–651. [CrossRef]
4. Kallewaard, N.L.; Zhang, L.; Chen, J.W.; Guttenberg, M.; Sanchez, M.D.; Bergelson, J.M. Tissue-specific deletion of the coxsack-

ievirus and adenovirus receptor protects mice from virus-induced pancreatitis and myocarditis. Cell Host Microbe 2009, 6, 91–98.
[CrossRef]

5. Koestner, W.; Spanier, J.; Klause, T.; Tegtmeyer, P.K.; Becker, J.; Herder, V.; Borst, K.; Todt, D.; Lienenklaus, S.; Gerhauser, I.; et al.
Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination
in Coxsackievirus B3-infected mice. PLoS Pathog. 2018, 14, e1007235. [CrossRef]

6. Kespohl, M.; Bredow, C.; Klingel, K.; Voss, M.; Paeschke, A.; Zickler, M.; Poller, W.; Kaya, Z.; Eckstein, J.; Fechner, H.; et al. Protein
modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Sci. Adv. 2020, 6, eaay1109.
[CrossRef]

7. Althof, N.; Harkins, S.; Kemball, C.C.; Flynn, C.T.; Alirezaei, M.; Whitton, J.L. In vivo ablation of type I interferon receptor from
cardiomyocytes delays coxsackieviral clearance and accelerates myocardial disease. J. Virol. 2014, 88, 5087–5099. [CrossRef]

8. Rahnefeld, A.; Klingel, K.; Schuermann, A.; Diny, N.L.; Althof, N.; Lindner, A.; Bleienheuft, P.; Savvatis, K.; Respondek, D.;
Opitz, E.; et al. Ubiquitin-Like Protein ISG15 (Interferon-Stimulated Gene of 15 kDa) in Host Defense Against Heart Failure in a
Mouse Model of Virus-Induced Cardiomyopathy. Circulation 2014, 130, 1589–1600. [CrossRef]

9. Baggen, J.; Thibaut, H.J.; Strating, J.; van Kuppeveld, F.J.M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev.
Microbiol. 2018, 16, 368–381. [CrossRef]

https://www.mdpi.com/article/10.3390/v14040769/s1
https://www.mdpi.com/article/10.3390/v14040769/s1
http://doi.org/10.1016/j.bcp.2011.08.016
http://doi.org/10.1038/nrmicro1284
http://doi.org/10.1099/0022-1317-80-3-639
http://doi.org/10.1016/j.chom.2009.05.018
http://doi.org/10.1371/journal.ppat.1007235
http://doi.org/10.1126/sciadv.aay1109
http://doi.org/10.1128/JVI.00184-14
http://doi.org/10.1161/CIRCULATIONAHA.114.009847
http://doi.org/10.1038/s41579-018-0005-4


Viruses 2022, 14, 769 15 of 15

10. Kemball, C.C.; Harkins, S.; Whitmire, J.K.; Flynn, C.T.; Feuer, R.; Whitton, J.L. Coxsackievirus B3 inhibits antigen presentation
in vivo, exerting a profound and selective effect on the MHC class I pathway. PLoS Pathog. 2009, 5, e1000618. [CrossRef]

11. Cornell, C.T.; Kiosses, W.B.; Harkins, S.; Whitton, J.L. Coxsackievirus B3 proteins directionally complement each other to
downregulate surface major histocompatibility complex class I. J. Virol. 2007, 81, 6785–6797. [CrossRef]

12. Fujita, K.; Krishnakumar, S.S.; Franco, D.; Paul, A.V.; London, E.; Wimmer, E. Membrane topography of the hydrophobic anchor
sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication.
Biochemistry 2007, 46, 5185–5199. [CrossRef]

13. Doedens, J.R.; Giddings, T.H., Jr.; Kirkegaard, K. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A:
Genetic and ultrastructural analysis. J. Virol. 1997, 71, 9054–9064. [CrossRef]

14. Wessels, E.; Duijsings, D.; Notebaart, R.A.; Melchers, W.J.; van Kuppeveld, F.J. A proline-rich region in the coxsackievirus 3A
protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. J. Virol. 2005, 79, 5163–5173. [CrossRef]

15. Hope, D.A.; Diamond, S.E.; Kirkegaard, K. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein
3AB. J. Virol. 1997, 71, 9490–9498. [CrossRef]
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