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Abstract Significantly increasing crop yield is a major and worldwide challenge for food supply

and security. It is well-known that rice cultivated at Taoyuan in Yunnan of China can produce

the highest yield worldwide. Yet, the gene regulatory mechanism underpinning this ultrahigh yield

has been a mystery. Here, we systematically collected the transcriptome data for seven key tissues at

different developmental stages using rice cultivated both at Taoyuan as the case group and at

another regular rice planting place Jinghong as the control group. We identified the top 24 candi-

date high-yield genes with their network modules from these well-designed datasets by developing a

novel computational systems biology method, i.e., dynamic cross-tissue (DCT) network analysis. We
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used one of the candidate genes, OsSPL4, whose function was previously unknown, for gene editing

experimental validation of the high yield, and confirmed that OsSPL4 significantly affects panicle

branching and increases the rice yield. This study, which included extensive field phenotyping,

cross-tissue systems biology analyses, and functional validation, uncovered the key genes and gene

regulatory networks underpinning the ultrahigh yield of rice. The DCT method could be applied to

other plant or animal systems if different phenotypes under various environments with the common

genome sequences of the examined sample. DCT can be downloaded from https://github.com/zt-

pub/DCT.
Introduction

Utilization of the heterosis of hybrids was reported to increase

the rice yield by 15%–25% during past decades in China [1].
Recently, based on the proportion of the national rice area
represented by each location and rice cropping system, the

national estimates of the potential rice yield in China are
6.8–9.8 metric tons per hectare (t�ha�1) whereas the farm yields
range from 5.2 to 8.8 t�ha�1 [2]. However, rice breeding is now

confronted with the challenge of overcoming the yield plateau
[3]. Interestingly, Taoyuan of Yunnan in China is a well-
known place where the highest rice yield in the world was

recorded with an average rice yield of 13.91 t�ha�1 [3,4].
Taoyuan is a dry and hot valley of the upstream part of
Yangtze River in Yunnan Province, where the temperature dif-
ference is large after heading, and the humidity is slightly lower

throughout the growing period. Consistently, during 4 years of
experimentations at Taoyuan, we observed that the rice yield
at Taoyuan is at least 70% higher than that obtained at Jin-

ghong which is a control place located south of Yunnan Pro-
vince with a similar environment to most rice planting areas
under the same cultivation management. Therefore, some

unidentified environmental differences could leave their
imprint in the epigenome and modify gene expression and reg-
ulatory networks [3,4]. However, the traditional differential
expression analysis only compares the differential gene expres-

sion in one tissue, and ignores the gene networks in multiple
tissues. To investigate the genes and gene regulatory networks
driving such ultrahigh yield observed at Taoyuan, we devel-

oped a new dynamic network analysis across tissues and devel-
opmental stages to identify candidate genes/networks
accounting for the ultrahigh yield.

Integration or meta-analysis is a recently developed
approach to study biological multi-tissue transcriptome data
[5–9]. Non-negative matrix factorization (NMF) is one such

methodology, which in particular has the advantage to inte-
grate multi-type high-throughput data, including RNA-seq
or microarray data. Thus, NMF has been widely adopted in
integration analysis involving heterogeneous data [10]. How-

ever, the conventional methods usually cannot take these con-
straints into consideration in a biological context, such as
tissue types and developmental stages, which severely limits

their effectiveness. To integrate gene expression data across tis-
sues and developmental stages by directly exploiting the bio-
logical context, we developed a new computational systems

biology method, i.e., dynamic cross-tissue (DCT) network
analysis. DCT is based on the newly proposed joint-
correlation NMF (jcNMF) and differential co-expression net-

works (DENs) [11,12]. Based on the integrative results of the
jcNMF calculation, a systematic gene selection approach
based on DENs was used to identify the key genes and the
key gene modules of high yield with some functional valida-
tions (Figure 1). This comprehensive DCT analysis of multiple
pairs of tissues across different developmental stages obtained

from our field experiments provides a clear and inclusive view
of the genes and networks driving the ultrahigh yield of rice at
Taoyuan.
Results

Special environment and ultrahigh yield of rice at Taoyuan

Field experiments using rice variety 9311 were conducted in
2010, 2011, 2013, and 2014 at Taoyuan and Jinghong, Yun-
nan, China (Figure S1 and Table 1). In the four testing years,
the rice variety 9311 consistently showed significantly higher

yields (88.91%, 74.60%, 92.61%, and 78.28% higher, respec-
tively) at Taoyuan than that at Jinghong (Table 1 and Fig-
ure S1), whereas the yield at Jinghong (approximately

7 t�ha�1) was comparable to that at other typical indica rice
planting areas [2,13]. These results showed that we could con-
sistently obtain an ultrahigh yield of rice at Taoyuan, which is

much higher than the gain of hybrid rice with only a 15%–
25% increase [3,13].

Because Taoyuan is a dry and hot valley of the upstream
part of Yangtze River in Yunnan Province, we selected Jin-

ghong, which is a typical indica rice planting region, as the con-
trol place (Figure S1). We recorded the temperature, humidity
and monthly rainfall. And the records showed that Taoyuan

has a high temperature before heading, and a low temperature
after heading, which results in a high temperature difference,
whereas the humidity was slightly low throughout the growing

period (Table S1). The rainfall exhibited the largest difference
between the two places, but we had good irrigating systems to
avoid drought in the plots. We strictly used the same crop

management practice, including the same plot area, planting
density and use of fertilized nitrogen (225 kg�N�ha�1) at the
two places. We set up 3–4 replicates of 15 m2 plots and con-
ducted careful phenotyping throughout the growth period.

We carefully dissected the phenotypic differences that
might have contributed to the ultrahigh yield, and found that
the number of effective panicles, grain numbers per panicles,

seed setting rate, and 1000-grain weight all contributed to
the ultrahigh yield at Taoyuan (Figure S1 A–E). However,
none of the traits showed > 70% increases at Taoyuan com-

pared with those at Jinghong. This finding suggests that the
ultrahigh yield observed at Taoyuan is a collective result from
these traits combined with the underlying gene regulation and
indicates that a systematic approach is needed to dissect such a

complex trait. Because these four traits are related to tillering,
panicle development, and photosynthesis of flag leaves at the

https://github.com/ztpub/DCT
https://github.com/ztpub/DCT


Table 1 Yield and yield components of rice variety 9311 at Taoyuan and Jinghong in 2010–2014

Note: Significant differences between Taoyuan and Jinghong were determined by Student’s t-test. *, P < 0.05; **, P < 0.01. Number of grains per

panicle includes the number of actual grains and the number of shrunken grains. Theoretical yield (t�ha�1) is calculated according to the formula:

No. of effective panicles (104 ha�1) � No. of grains per panicle � seed setting rate � 1000-grain weight � 10�5. Yield increase is calculated

according to the formula: (actual yieldTaoyuan � actual yieldJinghong)/actual yieldJinghong.
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grain filling stage, we collected transcriptome data from the til-
ler bud, tiller root, young panicle, booting panicle, booting

leaf, booting root, and flag leaf from Taoyuan and Jinghong
rice, respectively. This study aimed to reveal the internal gene
regulatory mechanisms accounting for the ultrahigh yield

detected at Taoyuan (Figure 2 and Figure 3A).

Identification of candidate high-yield genes through DCT meta-

analysis of transcriptomic data

To systematically identify the key genes across multiple tissues
for ultrahigh yield observed at Taoyuan, we developed a novel
algorithm (DCT) differing from the traditional expression

analysis (Figure 1, Files S1 and S2, https://github.com/ztpub/
DCT). The mathematical model used in the DCT analysis uti-
lizes joint correlation information (i.e., soft constraints on tis-

sue correlations in terms of gene modules) of NMF (jcNMF)
instead of the conventional joint value (i.e., hard constraints
on tissue compositions in terms of gene modules) of NMF

[9]. We showed that the joint correlation in jcNMF can well
characterize the associations among tissues from the observed
data between the case and control (Figure 3B and C). Further-

more, based on the results from the jcNMF calculation, a sys-
tematic gene selection approach based on DENs [11] was used
to capture the key genes and the key gene modules of high
yield with some validations from the additional field and func-

tional experiments.
The DCT approach maps genotype to phenotype via gene

networks (or modules), i.e., genotypes ? networks ? pheno

types, rather than via directly linking/bridging the genotype
and phenotype, i.e., genotypes ? phenotypes in the traditional
way. There are 42,145 genes in the rice genome (IRGSP-1.0,

http://rapdb.dna.affrc.go.jp/) and we obtained transcriptome
datasets from 7 tissues collected in our field experiments. The-
oretically, we would obtain a non-negative matrix X of
7 � 42,125 that includes all the raw data from either the case

or the control. Using traditional differential expression analy-
sis, a total of 343 differentially expressed genes (DEGs) was
identified (Table S2). Therefore, we excluded 42,125 genes
without significant expression changes (based on 1.2 fold

change on the expression level as the cutoff) between the case
and control samples, and thus, 4714 DEGs were included in X.
Experientially, the threshold of fold change used is 1.2, as a

conventional two fold change will be too strict, which can per-
mit more moderate (candidate) DEGs (usually including
important transcriptional factors (TFs)) to be considered in

the downstream analysis (i.e., network-based analysis).
Because TFs play important roles in gene regulation, we kept
1251 rice TFs from PlantTFDB in the analysis without consid-
ering their expression changes [14]. In addition, 26 genes which

have been reported to be related to rice yield until now (Dec
16, 2014) were included in the matrix regardless of their expres-
sion changes. These 26 genes were identified by other research

groups using map-cloning, and their functions in rice yield
were very clear (Table S3). In this study, these 26 genes serve as
anchors in the co-expression networks to identify other candidate

high-yield genes, which are not used for ‘‘re-identification”. After
removing the redundancies, we retained 5746 genes, which we
call feature genes, in matrix X (Figure 2).

The expression data (fragments per kilobase of transcript

per million mapped reads (FPKM) values) of these feature
genes were grouped into the matrix X (X1 for Taoyuan and
X2 for Jinghong) (Figure 2B). In the first step of the DCT anal-

ysis, we factorized X into W and H using our proposed
jcNMF, where one column of W represents a developmental
gene (co-expression) module or pattern among rice tissue sam-

ples, and one row of H represents the tissue-specific gene set of
each rice tissue. The computational algorithm for solving H
andW as well as its convergence proof, is shown in the Supple-

mentary material (Files S1 and S2). Different from conven-
tional approaches, the advantage of jcNMF is able to
directly represent the biological context, such as the conserved
relationships or correlations among gene modules across tis-

sues (i.e., the conserved tissue correlations W1W1
T = W2W2

T,
rather than the conserved gene module compositions
W1 = W2 in the case and control) (Figure 2C). This soft con-

https://github.com/ztpub
http://rapdb.dna.affrc.go.jp/


Figure 1 Flow chart of the identification of key genes using DCT network analysis

Briefly, raw data from transcriptomic datasets of different tissues were obtained. After filtering, the clean data were analyzed by traditional

differential expression analysis to identify DEGs. After removing any redundancies, feature genes (5746 genes in the present study),

including the DEGs with a 1.2 fold change in expression level, were obtained for further analysis. The conservation levels of different

tissues and their gene sets were then assessed, and the efficiency of different integration methods or models were evaluated. Finally, based

on the jcNMF algorithm and DENs, the DCT network analysis approach was developed to capture the key genes, key gene modules and

key gene network as well as the key tissue. DCT, dynamic cross-tissue; DEG, differentially expressed gene; NMF, non-negative matrix

factorization; SNF, similarity network fusion; TriNMF, conventional NMF-based method; WGCNA, weighted correlation network

analysis; QC, quality control.
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straint on W well characterizes the biological and developmen-
tal relatedness in the rice samples, which were also supported

by real data (see the conservation levels between tissues and
genes in Figure 3). Specifically, using the 5746 feature genes,
we assessed the conservation levels in the seven tissues and

their gene sets between Taoyuan and Jinghong. In Figure 3,
the correlations (i.e., WWT) of the tissues between the
Taoyuan and Jinghong samples (Figure 3B and C) were more
consistently conserved than those found for the genes

(Figure 3D and E). Therefore, in our DCT analysis, we set
W1W1

T = W2W2
T = R, where R is the conserved correlation

matrix for tissues obtained from Figure 3B and C, rather than

simply W1 = W2 as in the traditional methods. Clearly, the
hard constraint W1 = W2 is more restricted than the soft



Figure 2 Workflow of the DCT network analysis

The diagrammatic sketch compares the process of DCT analysis with traditional differential expression analysis. X denotes the non-

negative dataset matrix of Taoyuan or Jinghong, W and H are two factor matrices of X. W is the gene-modules (or networks) of the

samples (or individuals) (i.e., the developmental gene co-expression patterns among rice tissues), and H represents the gene-module

expressions among samples corresponding to phenotypes (i.e., the tissue-specific gene-module levels of each rice tissue). A. RNA-seq

data of different tissues from Taoyuan (case) and Jinghong (control). A1�A7, the corresponding seven tissues from Taoyuan, and

B1�B7, the corresponding seven tissues from Jinghong, which represent sample label in our deposited data. B. Traditional differential

expression analysis and gene expression comparison of Taoyuan (X1) and Jinghong (X2). C. Our new DCT analysis. Using jcNMF, we

factorize X into W (W1, Taoyuan; W2, Jinghong) and H (H1, Taoyuan; H2, Jinghong). The conserved tissue correlations

W1W1
T = W2W2

T, rather than the conserved gene module compositions W1 = W2 in the case and control were used. T represents the

matrix transpose. High-yield candidate genes were identified by jointly analyzing the DENs (see more details in Figure 4 and in the

Methods and Supplementary material). DEN, differential co-expression network; jcNMF, joint-correlation non-negative matrix

factorization.
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constraint W1W1
T = W2W2

T which is biologically meaningful
based on the observed data (Figure 2).

The second step of DCT is to construct the co-expression
networks of genes. We calculated the Pearson’s correlation
coefficient (PCC) between two columns/genes of either H1 or

H2. Figure 4 provides a schematic of the approach used to
obtain the gene set that will be used to construct co-
expression networks for rice in one place. A tissue can be best

characterized by a gene cluster. For example, the young pani-
cle is best characterized by the sixth cluster in matrix W, which
corresponds to the 5746 genes in the matrix H1 (Figure 4). We
selected those genes with significantly higher weights than the

mean of the sixth row, which formed a gene set accounting for
the young panicle of Taoyuan. Furthermore, we calculated the
correlation coefficients between each pair of genes, and those

gene pairs with significant correlation coefficients formed co-
expression networks. We conducted the same procedure for
the Jinghong samples, and those gene pairs that were included

in only one of the networks were used to construct DENs for a
certain tissue (Figure 4). The DENs of all the tissues compre-
hensively accounted for the difference in the gene expression
networks between Taoyuan and Jinghong rice throughout

the growth process, and they link/bridge the internal gene
expression patterns with the ultrahigh yield, i.e.,
genotypes?DEN? phenotypes, in terms of the associations.

Finally, the top candidates from the set of ultrahigh yield-
associated genes (or key genes) were selected from the DEN
of each tissue. The criterion used for this selection is the rank

of the relatedness of a gene with prior-known yield-associated
genes (i.e., the R(x) value; see ‘‘Materials and methods”). To
obtain a strong signal of high yield, in this study, we selected

genes that were ranked in the top 30 based on the R(x) values
(i.e., based on the cross-tissue co-expressed network structure
and state). We selected the top 30 candidate genes with highest
differential associations in each tissue (Table S4). Then, 24

candidate high-yield genes among the top 30 genes were found
in at least four of the seven tissues, but their expression levels
were not significantly difference between Taoyuan and Jin-

ghong rice based on the traditional differential expression
method (Figure 5A, Tables S2 and S5). In total, 112 candidate
genes were screened by DCT analysis, and only three DEGs

overlapped (Figure 5B). Particularly, nine of 24 candidate
high-yield genes were identified in the young panicle using
DCT analysis (Figure 5B).

The 24 high-yield candidate genes identified using the DCT

algorithm showed large association (network) changes but



Figure 3 Evaluation of the conservation levels of tissues and genes

between Taoyuan and Jinghong samples

A. Developmental order of tissues sampled in this study. B. Tissue

clustering analysis based on PCC for Taoyuan samples. C. Tissue

clustering analysis based on PCC for Jinghong samples. D.

Feature gene clustering analysis based on PCC for Taoyuan

samples. E. Feature gene clustering analysis based on PCC for

Jinghong samples. The colors from blue to dark red represent the

increase in the correlation coefficient in both tissue and gene

analysis. PCC, Pearson’s correlation coefficient.
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moderate expression changes with fold changes only larger
than 1.2. This explains why they would be disregarded by

the traditional differential expression analysis method that
considers only significant expression changes (mainly fold
change >2). Additionally, the key TFs were screened by the
DCT analysis to reveal their roles in the regulation network

of candidate high-yield genes (Figure S2 and Table S6). Gene
ontology (GO) enrichment analysis also showed that these 24
candidate genes were involved in ‘‘nitrogen compound meta-

bolic process” (Figure 5C and Table S7). The DEN of the 24
candidate genes showed that they exhibited more associations
with the yield-associated genes at Taoyuan than that at Jin-

ghong (Figure 5D and E, Figure S3). These results further sup-
ported that most of these 24 genes might play important roles
in the ultrahigh yield of Taoyuan rice, and are probably the

key network-hubs controlling the yield.

Comparison of jcNMF with other models

On the one hand, as the core of the DCT algorithm, jcNMF

has a similar ability to that of conventional NMF to capture
the local pattern during dimension reduction. Although the
analyzed expression data contain seven tissues and X is actu-
ally a low-rank matrix, the local pattern (i.e., tissue conserva-

tion) rather than dimension reduction (i.e., gene filtering)
would be the main target using jcNMF. On the other hand,
one main merit of jcNMF is to reflect the conserved tissue

associations during integrative data analysis based on the pro-
posed soft constraint. To evaluate the efficiency of jcNMF,
several typical integration methods have also been applied

and compared according to their influence on the tissue asso-
ciations caused by corresponding data transformations. Sim-
ply, the tissue or sample association can be directly shown
and compared as hierarchical trees, as shown in Figure 6.

Obviously, jcNMF can reflect or recover the tissue associa-
tions based on the Euclidean distance or Pearson’s correlation,
e.g., two panicle samples would be clustered together; and two

leaf samples would be also clustered together (Figure 6A). By
contrast, all other methods have certain limitations: (i) the con-
ventional NMF-based method (TriNMF) ignores the associa-

tions between root and panicle samples after matrix
factorization, although leaf samples can be clustered together
(Figure 6B); (ii) mixOmics principal component analysis

(mixOmics PCA) was applied for feature reduction, but the
association between panicle samples were also missed (Fig-
ure S4A); (iii) partial least squares-discriminant analysis
(PLSDA) is a supervised method but confuses the tissue asso-

ciations due to data transformation (Figure S4B); (iv) the
batch-effect removing approach Combat would change the
association between the root or panicle samples after adjusting

data variances (Figure S4C); and (v) the pattern fusion method
similarity network fusion (SNF) clusters leaf samples well, but
it still shows some confusing associations between the root and

panicle samples (Figure 6C).
The well-known weighted correlation network analysis

(WGCNA) was also used in this study, although the number

of samples in this work was actually less than that generally
required by WGCNA. The WGCNA results were similar to
those obtained with jcNMF, but the former approach still sen-
sitive to the clustering distances used in the analysis (i.e., the

subtree among the bud and root samples showed only a slight
change when different cluster distances were used) (Figure 6D).
And its detected modules cannot be associated with the case-

control samples according to the trait-association test. Thus,
it will be difficult to perform follow-up gene selection and func-
tion analysis under this condition.

Therefore, jcNMF outperforms other existing integrative
data analysis methods to maintain the biological context
(i.e., tissue conservation) in the integrative data analysis, and
thus, the DCT algorithm is better able to discover downstream

genes, modules, networks, and functions.

Young panicles play an important role in the ultrahigh yield of

Taoyuan rice

We further evaluated the node degree of DENs in each tissue
to identify the tissue whose DEN showed the most significant

change between Taoyuan and Jinghong rice as determined
using the matched pair t-test. Interestingly, the young panicle
exhibited the lowest P value (Figure 7A), indicating that it is

the major tissue that causes the greatest changes in the gene
co-expression networks for the ultrahigh yield of rice at



Figure 4 Identification of gene sets for featuring a tissue

The diagrammatic sketch shows the process of identification, and the output from this step of the DCT analysis will be the input of the

downstream construction of DEN for a tissue. Numerical output includes a group of triple array (tissue, cluster, and gene set), and

biological output includes the genes characterized in each tissue. In this study, the rice variety 9311 seeds had the same genetic

background, indicating unidentified environmental differences could leave their imprint in the epigenome and modify gene expression and

regulatory networks. Thus, it is reasonable to assume that the tissue-related matrices W1 and W2 would also be consistent with the

conserved correlations among tissues. W1, Taoyuan; W2, Jinghong and H1, Taoyuan; H2, Jinghong. In the color key, a, b, c, and d

represent a non-negative number. [a, b] indicates the weight value range for gene, and [c, d] indicates the weight value range for tissue.
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Taoyuan. For the young panicle, the DEN of the top 30 can-
didate genes associated with yield-associated genes at Taoyuan

and Jinghong was reconstructed (Figure 7B and C). Clearly,
there are high associations between our selected candidate
genes and prior-known yield-associated genes (Table S3) in

the module-based co-expression network. In Taoyuan specific
networks, there are many module genes associated with known
yield-associated genes LOC_Os09g35980 (TAC1),

LOC_Os06g40780 (MOC1) or LOC_Os06g06050 (D3) (e.g.,
nodes with large degrees in network visualization), for exam-
ple, the candidate genes LOC_Os05g41240 (MYB),
LOC_Os06g11860 (ERF), and LOC_Os03g28990 (zinc finger)

(Figure 7B). Furthermore, the prior-known yield-associated
genes LOC_Os09g35980 and LOC_Os06g06050 also exhibited
significant associations in Taoyuan rice (Figure 7B). The

increased number of associations among candidate genes and
yield-associated genes in Taoyuan rice compared with those
in Jinghong rice can be considered to have a stronger driving

influence on ultrahigh yield (Figure 7B and C).
The importance of the young panicle can be further sup-

ported by the results of the GO enrichment analysis of the
top 30 candidate genes from the young panicles (Figures 5C,

S5, and Table S7). Compared with other tissues, the composi-
tion of GO enrichments from the young panicle is very similar
to that from the previously reported 26 yield-associated genes

(Figure S5). Many of the candidate genes in the young panicle
are involved in ‘‘nitrogen compound metabolic process”
(P = 0.000084) (Figure S5 and Table S7). Moreover, nine of
the final 24 candidate high-yield associated genes screened
from the seven tissues by the DCT analysis were found in

the young panicle, and this number was higher than those
found in the other tissues (Figure 5B, Tables S4 and S5). Thus,
these key genes in the young panicle would not only exhibit

expression associations with the known yield-associated genes,
but also functional similarity with yield-associated genes.
Functional validation of candidate genes

We firstly used qRT-PCR to validate the changes in the expres-
sion levels of eight candidate high-yield associated genes in the
young panicle samples of the rice variety 9311, including

OsMADS1 (LOC_Os03g11614) and AP2 transcription factor
(LOC_Os09g26420) (Figure S6). Interestingly, three MADS
box genes, OsMADS1 (LOC_Os03g11614), OsMADS57

(LOC_Os02g49840), and OsMADS72 (LOC_Os03g14850),
were identified as candidate high-yield associated genes by
the DCT analysis in our study. Previous studies have reported

that MADS-box genes encode TFs that are involved in repro-
ductive development, including flowering induction and flower
meristems as well as in the regulation of fruit, seed and embryo

development [15–17]. Our qRT-PCR results consistently
showed that the expression of OsMADS1 was up-regulated
in Taoyuan rice (Figure S6 and Table S5). AP2 have been
reported to be involved in rice starch biosynthesis and the

improvement of grain yield under stress [18,19]. In our study,



Figure 5 Expression analysis and associative networks of the candidate high-yield associated genes screened by DCT analysis

A. Heatmap of the expression levels of 24 candidate high-yield genes selected from all the DENs of the tissues in the rice variety 9311. B.

Venn diagram showing the overlap of DEGs and candidate genes screened by DCT analysis (total of the top 30 genes). The overlap of

candidate genes in the young panicle (top 30 genes) and the final 24 candidate genes were screened by DCT analysis. C. GO enrichment of

the top 30 genes was analyzed by DCT analysis at four developmental stages. The booting stage includes booting panicle, booting root,

and booting leaf (Table S7). D. and E. DEN of the 24 top candidate genes associated with yield in Taoyuan rice (D) and Jinghong rice (E),

respectively. Notably, more associations among genes were found in Taoyuan rice than those in Jinghong rice, indicating the genes in

Taoyuan rice would have strong expression correlations. The thicker are the lines, the higher are the network degrees and the degrees of

genes in Taoyuan rice are higher than those in Jinghong, indicating that one gene in Taoyuan rice would exhibit more interactions with

partner genes (i.e., more hub genes) than one gene in Jinghong rice on average.
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AP2 (LOC_Os09g26420) was also identified to be a candidate
high-yield associated gene by DCT analysis, and its expression

level in young panicles was validated by qRT-PCR (Figure S6).
These results showed that our transcriptome data are reliable.

To solidly validate the candidate key genes identified by

DCT analysis, we further edited the OsSPL4
(LOC_Os02g07780) gene via CRISPR/Cas9. Sequencing anal-
ysis of the targeted site revealed a 3-bp heterozygous deletion

mutation produced by CRISPR/Cas9 in the T0 plants
(Figure 8). We further obtained heterozygous, mutation-
homozygous and wild type (WT) plants in the T2 segregation
population. We compared the phenotypes between the
OsSPL4-edited (both heterozygous and homozygous) T2 lines
and WT plants (Figure 8). The plant heights of the OsSPL4-

edited lines were slightly increased (Figure 8A), and the
Cas9-edited plants exhibited longer panicles and a larger num-
ber of grains per panicle than WT plants (Figure 8B–G). Strik-

ingly, for our primary analysis, the yield of these
homozygously mutated plants was significantly higher than
that of the WT plants (Figure 8G). The expression level of

OsSPL4 was down-regulated in Taoyuan rice (Table S5) and
the rice variety 9311 at Taoyuan also exhibited a higher grain
number per panicle than that at Jinghong, implying that
OsSPL4 is a key gene for the ultrahigh yield at Taoyuan



Figure 6 Comparison of the conservation of tissue associations (Euclidean distance or Pearson correlation) using different methods

A. jcNMF. B. TriNMF. C. SNF. D. WGCNA. Comparisons with additional methods are shown in the Figure S4. jcNMF, joint-

correlation non-negative matrix factorization; TriNMF, conventional NMF-based method; SNF, similarity network fusion; WGCNA,

weighted correlation network analysis; PCC, Pearson’s correlation coefficient.
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(Figure 8 and Table 1). In addition, the association analysis
between environmental factors and LOC_Os02g07780
(OsSPL4) showed that the expression level of this gene is neg-

atively associated with the average temperature difference but
positively correlated with the average relative humidity at
Taoyuan (Figure S7C), indicating that this gene is indeed a
regulatory factor responding to environments. OsSPL4 is an

SBP-box gene and previous studies have shown that some
SBP-box genes were involved in panicle development and yield
in rice [20–23]. This study provides the first demonstration that

OsSPL4 is a key regulatory gene in the ultrahigh yield of
Taoyuan rice, and shows that our DCT is an effective method
to identify key genes and networks affecting the formation of a

complex trait.
Discussion

To our knowledge, this is the first systematic analysis of the
multiple tissues of rice across developmental stages, and we
attempted to integrate the transcriptomic data with the aim
to identify key genes and networks for agronomic traits in
plants. The environment affecting the same genome with dif-

ferent characteristics has been widely documented in many
organisms, such as twins [24], yet the mechanisms in plants
have not been well elucidated. As an interesting case, we
observed the ultrahigh yield of rice at Taoyuan, which was

found to be at least 70% higher rice yield than that in the con-
trol area under the same cultivation management over the
4 years of field experimentation.

To reveal the internal key genes and their modules underly-
ing the ultrahigh yield at the network level, we developed a
dynamic meta-analysis framework across tissues and develop-

mental stages, i.e., the DCT algorithm with jcNMF, which can
construct the associations of tissues and gene modules to a
specific phenotype (ultrahigh yield in this study) by integrating

gene expression profiles within the biological context. Notably,
we identified the gene-modules by conducting the study on the
cross-tissue and multi-developmental stages. Based on our
model, the gene compositions of those gene-modules were



Figure 7 The young panicle plays an important role in the ultrahigh yield at Taoyuan

A. Degree of gene co-expression network changes for each tissue between Taoyuan and Jinghong rice. P values were obtained using the

matched pair t-test. B. and C. DEN between the young panicle highly ranked top 30 genes and six reported yield-associated genes

(LOC_Os11g12740, LOC_Os02g05880, LOC_Os09g35980, LOC_Os07g42410, LOC_Os06g40780, and LOC_Os06g06050) (See Table S3)

in the young panicle. Structure of the co-expression network in Taoyuan rice (B). Structure of the co-expression network in Jinghong rice

(C). In the networks, the red nodes represent the up-regulated genes, and the green nodes represent the down-regulated genes. Notably,

more associations were identified between genes in Taoyuan rice than between those in Jinghong rice, indicating that the genes in Taoyuan

rice would exhibit strong expression correlations. Additionally, the network degrees of genes in Taoyuan rice were high compared with

those in Jinghong rice, indicating that one gene in Taoyuan rice would have more interactions with partner genes (more hub genes) than

that in Jinghong.
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conserved across tissues, but their expression levels were gener-
ally different depending on the tissues. Indeed, as a matrix

decomposition based approach, jcNMF can not only capture
the local pattern from expression data (i.e., capturing gene
modules) in a standard manner, but also maintain the global
pattern in a biological context (i.e., reserving tissue conserva-

tions) in a new way, which is implemented as Figure 4 and sup-
ported by the comparisons shown in Figure 6. In addition, the
follow-up differential network analysis of gene modules can

reveal molecular details of key genes at the network level
rather than at the expression level, which would be more effi-
cient than the conventional WGCNA method (Figures 5 and

6). Overall, the DCT algorithm is a powerful computational
method for cross-tissue biological data analysis. It could be
extended to other general integrative analysis by considering
various types of fundamental matrix decomposition models

and categories of temporal-spatial contexts/constraints.
Supporting the DCT analysis here, the panicle size and

branch number in a panicle are directly associated with the rice

productivity. A previous study reported that OsSPL14 which



Figure 8 CRISPR/Cas9 experimental validation of a previously functionally unknown gene (OsSPL4) identified as a key high-yield

associated gene by our DCT analysis

The 3-bp deletion mutation heterozygous and homozygous plants were produced by CRISPR/Cas9, and these plants are shown as Hetero

and Homo in the figures, respectively. The following phenotypes were compared between the OsSPL4-edited (Hetero and Homo) and WT

plants. A. Plant architecture, scale bar = 10 cm. B. Panicle phenotype, scale bar = 5 cm. C. Panicle phenotype showing the grain number,

scale bar = 5 cm. D.–G. Different agronomic trait results between the OsSPL4-edited (Hetero and Homo) and WT plants: panicle length

(cm) (D), grain number per panicle (E), 1000-grain weight (g) (F), and yield per plant (g) (G). Significant difference between WT, Hetero,

and Homo plants was determined using ANOVA. Groups carrying the same letter of a, b, or c show no significant difference while

significant difference is found between groups carrying the different letter of a, b, or c (P < 0.05).
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is highly expressed in the young panicle can increase the pri-
mary branches of panicle, leading to a high yield in rice
[20,21]. In the present study, the candidate yield associated

gene OsSPL4, which is another SPL gene, confirmed that this
gene also increases the grain number of panicle and grain yield
(Figure 8). The OsSPL4 should be the key gene for ultrahigh
yield observed in Taoyuan rice due to its contribution of the

large number of panicles and grain number per panicle (Fig-
ure 8 and Table 1). In addition, Taoyuan has different climates
with large temperature differences after heading and slightly

low humidity throughout the growing period (Table S1). In
the present study, OsSPL4 was identified with significant asso-
ciations with these environmental factors (Figure S7).

In our systematic study, both of our selected 24 candidate
genes and 26 prior-known yield-associated genes were enriched
in two significant pathways with the GO terms as ‘‘nitrogen

compound metabolic process” and ‘‘nucleic acid metabolic
process”. Particularly, many of the candidate genes discovered
in the young panicle are involved in ‘‘nitrogen compound
metabolic process” (P = 0.000084) (Figure S5 and
Table S7), implying that these candidate genes are involved
in nitrogen metabolism. It has been documented that nitrogen
is actually a major driving force for crop yield improvement,

and nitrogen absorption and metabolism can affect rice
growth and production [25]. In our study, one candidate gene
LOC_Os11g02480, which encodes WRKY46, was identified as
the key gene (Table S5). It has been reported that OsWRKY46

is involved in the iron stress response and the promotion of
leaf development, whereas excess Fe may cause yield loss due
to leaf bronzing in rice [26]. Another study has reported that

the expression level of WRKY46 was induced in the rice leaf
sheath under N-starvation [27]. Therefore, the 24 candidate
genes identified in our study should be the key genes for the

ultrahigh yield of Taoyuan rice. Further studies on these genes
may provide more genetic resources for a high yield of rice.

Lately, OsMADS1 has been identified to be a key gene of

the rice grain yield quantitative trait locus qLGY3, which is a
key downstream effector of G-protein. The alternatively
spliced protein OsMADS1lgy3 was confirmed to be associated
with the formation of long grains, which results in an increase
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in the grain yield of rice [28]. In rice, the overexpression of
OsMADS57 can increase tillers, and the expression level of
OsMADS57 in Taoyuan rice was higher than that of Jinghong

rice at the tillering stage, suggesting that OsMADS57 is one of
the key yield-associated genes for Taoyuan rice (Table S5) [17].
As one of the targets of miR444, the expression level of

OsMADS57 was decreased under N- or P-starvation, which
indicates that OsMADS57 plays a role in rice nitrate-
signaling pathway [29].

In summary, this study developed a systems biology
approach to identify both the key tissue and high-yield associ-
ated genes, and to elucidate the associations between the gene
expression network and the ultrahigh yield of rice at Taoyuan.

The results shed novel light on our understanding of the genet-
ics of the ultrahigh yield of rice, or even all Gramineae crops.
The DENs and key candidate high-yield genes provided rich

information to achieve a much higher yield in rice and other
Gramineae crops by artificially regulating or perturbing the
identified gene networks. In this work, we mainly considered

network information for the identification of high-yield genes,
and as one future topic, we can further explore dynamic infor-
mation, such as dynamic network biomarker (DNB) [30–35],

from time-course data to improve the approach in terms of
effectiveness and efficiency. Importantly, the DCT analysis
approach could also be applied to other plant or animal sys-
tems if different phenotypes under various environments with

the common genome sequences of the examined sample, such
as twins or plants exposed to stress conditions.
Materials and methods

Plant materials and field experiments

Field experiments using the rice variety 9311 were conducted in
2010, 2011, 2013, and 2014 at Taoyuan and Jinghong, Yunnan

in China (Figure S1F and Table 1). We chose Jinghong, which
is a typical indica rice plating region, as the control place. The
same crop management practice was strictly used, such as the

same plot area, planting density and fertilized nitrogen use
(225 kg�N�ha�1) at the two places. We set up 3–4 replicates
of 15 m2 plots and conducted careful phenotyping throughout

the growth period. Water, weeds, insects, and disease were
controlled because their control is needed to avoid yield loss.

RNA-sequencing and data processing

Tiller buds, tiller roots, young panicles, booting panicles, boot-
ing leaves, booting roots, and flag leaves of the rice variety
9311 from Taoyuan and Jinghong were collected, immediately

frozen in liquid nitrogen and then kept at �80 �C. Total RNA
of the tissues was extracted and determined using the Nano-
Drop ND-2000 system (Thermo Scientific, Waltham, MA),

followed by sequencing using an Illumina HiSeq 2500 plat-
form. Raw reads were filtered by in-house Perl script, and then
clean reads were used for further analysis. The clean reads

were performed using the TopHat and Cufflinks package
[36,37]. The transcript levels were qualified as FPKM gener-
ated by Cufflinks [36]. Then, bioinformatics analysis in this

study was conducted, and the work routine is shown in the
flow chart as Figure 1.
DCT network analysis

To integratively analyze the factors affecting the high yield of
rice at Taoyuan, we developed a computational algorithm of
the DCT network analysis to study multiple tissues and

multi-developmental stages of rice as described below (File
S1 and File S2).

Using RNA sequencing techniques, transcriptome data
analysis produced the numeric matrix of FPKM values of rice

genes, where X denotes the dataset of Taoyuan or Jinghong,
xmn denotes the FPKM value, n is the number of genes, and
m is the number of sampled tissues:

X ¼
x11 � � � x1n

..

. . .
. ..

.

xm1 � � � xmn

0
BB@

1
CCA ð1Þ

The first step of DCT is matrix factorization. Because the
FPKM and many other types of biological data are non-
negative, NMF is widely used [38,39] to analyze such data,

and W and H are two factor matrices of X:

X ¼ W �H;

where the solution is in the following format:

W ¼
w11 � � � w1k

..

. . .
. ..

.

wm1 � � � wmk

0
BB@

1
CCA H ¼

h11 � � � h1n

..

. . .
. ..

.

hk1 � � � hkn

0
BB@

1
CCA

ð2Þ
Here, the biological meaning of W is the gene-modules (or

networks) of samples (or individuals) (i.e., the developmental
gene co-expression patterns among rice tissues), and the bio-
logical meaning of H represents the gene-module expressions

among samples corresponding to phenotypes (i.e., the tissue-
specific gene-module levels of each rice tissue). Note that X
is the observed data, whereas W and H are unknown variables
to be solved.

Many algorithms based on NMF were developed to solve
W and H, typically, joint non-negative matrix factorization
(jNMF) [9,10,40], which prescribes the same W of two or more

NMF equations as a hard-constraint:

X1 ¼ W1 �H1

X2 ¼ W2 �H2

W1 ¼ W2

8><
>: ð3Þ

where note that W1 ¼ W2, implying the conserved tissue com-
positions in terms of gene-modules in case samples W1 and
control samples W2.

In contrast, in DCT, we used a new jcNMF to factorize X
into W and H:

X1 ¼ W1 �H1

X2 ¼ W2 �H2

W1W
T
1 ¼ W2W

T
2

8><
>: ð4Þ

The advantage of jcNMF is to make the relationships

between each lines (tissues) in W1 be the same as those in
W2, so that tissues more closely related are presented by lines,
more similar to each other in each W. The biological meaning

of this soft-constraint is that W should be consistent with



268 Genomics Proteomics Bioinformatics 18 (2020) 256–270
biological and developmental relatedness. Clearly, the hard
constraint W1 = W2 is stronger (or more restricted) than the
soft constraintW1W1

T =W2W2
T which is biologically meaning-

ful based on the observed data (Figure 3). In this way, jcNMF
indicates that the conservation of expression correlation
between tissues should be carefully considered rather than

the conservation of the expression levels of tissues during the
cross-tissue integrative analysis. The jcNMF algorithm resolv-
ing this equation and its convergence proof are shown in the

File S1 and S2, respectively.
Then, the second step of DCT is to construct the co-

expression networks of genes. We calculated the PCC between
each two columns/genes of either H1 or H2:

PCC A;Bð Þ ¼ 1

k� 1

Xk

i¼1

ai � �a

ra

:
bi � �b

rb

� �
ð5Þ

where ai belongs to column A, and bi belongs to column B of
H, respectively. ra and rb are the standard deviations of col-
umn A and column B, respectively. If two columns/genes are

significantly correlated (P < 0.05), they are placed in the gene
co-expression network. Eventually we constructed the gene co-
expression networks of H1 and H2 for the case and control

samples, named C(H1) and C(H2), respectively. The difference
sets C(H1) � C(H2) and C(H2) � C(H1), named Diff1 and
Diff2, respectively, represent the case/control specific gene co-

expression network, i.e., the DEN [11,12,41].
The final step involves the selection of the potentially

phenotype-associated genes (or so-called key genes). The main

criterion used in this selection is the rank of the relatedness of a
gene with prior-known to be phenotype-associated genes (here
the phenotype is just the yield of rice):

R uð Þ ¼ Rv2SPCC u; vð Þ
Sj j ð6Þ

S is the set of the known yield associated genes, v is a gene in

set S, and u is the gene of interest. We selected genes whose R
(x) value in the top 30 as the final results of the DCT analysis
based on integrative consideration of each sample/tissue, and

they can be further ranked by the product rank of R(x),
expression fold-change and co-expression network degree.

In addition, to evaluate the structural changes in the tissue-

specific co-expression network between Taoyuan and Jin-
ghong, the P values of the degree changes of the genes in co-
expression network are calculated. For each tissue, given a
kind of feature genes (e.g., TFs, yield-associated genes or

DEGs), their degrees in the co-expression network from
Taoyuan (i.e., a degree vector DTaoyuan) should be different
from those in the co-expression network from Jinghong (i.e.,

a degree vector DJinghong). This difference is evaluated by the
P value of the matched-pair t-test on two numeric vectors
DTaoyuan and DJinghong. The matched-pair t-test to evaluate

the degree of differential DENs in each tissue was performed
using MATLAB 2012a [42]. And the formula for a paired t-
test:

t ¼
P

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

d2ð Þ� P
dð Þ2

n�1

r ð7Þ

where d = sum of the differences in the vector elements. For
the young panicle, such degree changes are significantly
observed in all three types of feature genes. Particularly, com-

pared with other tissues, significant network-degree changes of
the reported yield genes and yield-associated genes in DEN are
only observed in the young panicle. Thus, it would be a high

priority to further investigate the associations among tran-
scription factors, yield-associated genes and DEGs to identify
the candidate key genes driving the ultrahigh yield observed in
Taoyuan rice.

Functional enrichment analysis

Functional annotations of the DEGs and candidate genes were

performed to search against the GO database [43]. The top 30
candidate high-yield genes of each tissue from DCT network
analysis were also analyzed by GO enrichment analysis. The

results of GO annotations were submitted to AgriGO for
enrichment analysis, and GO terms with corrected
FDR < 0.05 were considered to be significantly enriched [44].

qRT-PCR validation

The expression levels of eight high-yield candidate genes were
randomly selected to be verified by qRT-PCR using the same

RNAs that was used for RNA-seq [45]. Rice gene actin1 was
used as the internal control for qRT-PCR analysis
(Table S8). And then real-time RT-PCR was performed on

an ABI StepOne Real-Time PCR System (Applied Biosystems,
Foster City, CA) with three replicates using a FastStart Univer-
sal SYBR Green Master (Roche, Mannheim, Germany). The

relative expression level was normalized and quantified using
the 2�44CT method [46]. Significant differences of the expres-
sion levels between Taoyuan and Jinghong samples were eval-
uated using Student’s t-test (*, P < 0.05; **, P < 0.01).

CRISPR/Cas9 editing of OsSPL4

To edit OsSPL4, a 20-bp sequence (50-AGGTGAGGTGC

CAGGTGGAA-30) in the exon of the gene was selected as
the target of the guide RNA (gRNA) using the CRISPR-P tool
(http://rice.hzau.edu.cn/cgi-bin/rice/CRISPR_rice) [47]. Syn-

thetic oligonucleotides containing the target and adaptor
sequences were annealed and then subcloned into the AarI
restriction sites of the gRNA cloning vector (Table S8). The

construct was introduced into the Agrobacterium tumefaciens
strain EHA105 by electroporation, and positive agrobacteria
were used to infect rice Nipponbare callus as previously
described [48]. After the regeneration of plants, the target

region was sequenced to screen for mutants, and T2 homozy-
gous, heterozygous and wild type of OsSPL4 lines were iden-
tified for phenotyping.

Data availability

The sequencing data for this project have been deposited in the
Genome Sequence Archive [49] at the National Genomics
Data Center, Beijing Institute of Genomics, Chinese Academy
of Sciences / China National Center for Bioinformation (GSA:

(CRA002804), and are publicly accessible at http://bigd.big.ac.
cn/gsa. The data are also at the NCBI Sequence Read Archive
(SRA: SRP213003).

http://rice.hzau.edu.cn/cgi-bin/rice/CRISPR_rice
https://bigd.big.ac.cn/gsa/browse/CRA002804
http://bigd.big.ac.cn/gsa
http://bigd.big.ac.cn/gsa
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Code availability

DCT can be downloaded from https://github.com/ztpub/
DCT.
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