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Integrating molecular, histopathological,
neuroimaging and clinical neuroscience data with
NeuroPM-box
Yasser Iturria-Medina 1,2,3✉, Félix Carbonell4, Atousa Assadi1,2,3, Quadri Adewale1,2,3, Ahmed F. Khan1,2,3,

Tobias R. Baumeister1,2,3 & Lazaro Sanchez-Rodriguez1,2,3

Understanding and treating heterogeneous brain disorders requires specialized techniques

spanning genetics, proteomics, and neuroimaging. Designed to meet this need, NeuroPM-box

is a user-friendly, open-access, multi-tool cross-platform software capable of characterizing

multiscale and multifactorial neuropathological mechanisms. Using advanced analytical

modeling for molecular, histopathological, brain-imaging and/or clinical evaluations, this

framework has multiple applications, validated here with synthetic (N > 2900), in-vivo (N=
911) and post-mortem (N= 736) neurodegenerative data, and including the ability to char-

acterize: (i) the series of sequential states (genetic, histopathological, imaging or clinical

alterations) covering decades of disease progression, (ii) concurrent intra-brain spreading of

pathological factors (e.g., amyloid, tau and alpha-synuclein proteins), (iii) synergistic inter-

actions between multiple biological factors (e.g., toxic tau effects on brain atrophy), and (iv)

biologically-defined patient stratification based on disease heterogeneity and/or therapeutic

needs. This freely available toolbox (neuropm-lab.com/neuropm-box.html) could contribute

significantly to a better understanding of complex brain processes and accelerating the

implementation of Precision Medicine in Neurology.
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Most prevalent neurological disorders are highly complex,
involving a continuum of biological alterations from the
molecular to macroscopic (system) level. For example,

Alzheimer’s disease (AD), the most common form of dementia, is
characterized by concurrent disruptions in genes, molecular
pathways, proteins, vascularity, synapses, neuronal populations,
and high-order neuronal networks1. The continuous crosstalk
between these and other factors, as opposed to a single dominant
factor, are what causes AD’s associated alterations in memory,
thinking, and behavior2. The massive failing of single-target
therapeutic interventions for AD clearly demonstrates that we
cannot understand nor eventually cure complex multilevel brain
disorders without a deeper study of their numerous interrelating
components. In keeping with the tenets of Personalized Medicine
(PM), and contrary to the one-treatment-fits-all approach,
treatments also need to be tailored to multiscale and multi-
factorial brain mechanisms as well as each individual’s capacity to
response3–6.

Over the last decades, the scientific community has moved
closer to understanding the imperative for an integrative (mul-
tilevel) analysis of both the brain’s reorganization and associated
disorders. Systems biology aims to generate spatiotemporal
mechanistic models of hierarchical biological networks and the
adaptive changes in the brain as it moves from a normal to a
pathological condition2,7.

The neuroinformatic field is similarly devoted to the develop-
ment of analytical and computational models for the sharing,
integration, and analysis of multimodal neuroscience data8–11.
However, despite their potential to provide a better understanding
of complex neuropathological processes and the individually-
tailored selection of treatments, most associated methods (e.g. for
separated or integrated molecular–neuroimaging analysis, data-
driven patients stratification, and intra-brain spreading of patho-
logical alterations) remain difficult to apply even when compu-
tational codes are shared, usually requiring advanced
programming/technical expertise and, in many cases, even the
collaboration of the developers. Simply put, vital user-friendly
open access tools for both multiscale and multifactorial brain
research are still lacking. Their absence is accentuated by the
accelerated development of innovative approaches requiring these
types of tools. This contributes to statistical inconsistencies, con-
sumes valuable research funding, and remains a major impedi-
ment to reproducibility in research.

Motivated by these concerns, we embarked on a long-term
initiative to develop, validate, and share integrative analytical
modeling of molecular, histopathological, neuroimaging, cogni-
tive/behavioral, and/or therapeutic data to advance under-
standing of brain (dis)organization mechanisms, at the individual
and group level, as well as to identify personalized therapeutic
needs. We have subsequently developed a user-friendly software
substantially improving and unifying multiple methods12–16 in a
single application: the Neuroinformatics for Personalized Medicine
toolbox (NeuroPM-box; Fig. 1 and Table 1). NeuroPM-box can be
applied to any type of neuroscience data without restrictions. For
example, each of these tools have been extensively tested and
validated in the neurodegenerative context, but they are equally
applicable to characterizing multifactorial processes in healthy
neurodevelopment and aging, or in psychological disorders. Most
of the outputs from the tools are biologically interpretable and the
4D-viewer enables the visualization of the brain’s multifactorial
spatiotemporal dynamics (e.g., tau and amyloid-β spreading
through the cortex). Moreover, NeuroPM-box is not a static
application; it was designed to be continuously expanded with
new, more integrative methods to accelerate understanding of
abnormal brain mechanisms and advancing the implementation
of personalized care in neurology.

Results
NeuroPM-box (Fig. 1) enables both the separate and combined
analysis of large-scale molecular and macroscopic data, including
molecular screening (transcriptomics, proteomics, epigenomics),
histopathology (post mortem neuropathology), molecular ima-
ging (amyloid, tau-positron emission tomography (PET)), mag-
netic resonance imaging (MRI), and cognitive/clinical
evaluations. In particularly, it focuses on clarifying crucial
mechanistic questions on how the brain functions; such as (i)
Which series of sequential molecular or macroscopic states (e.g.,
genetic and brain regional alterations, respectively) underlie
decades of neuropathological evolution16,17? (ii) Which genes (or
molecular pathways) drive dysfunction in other genes and
pathways9,16,18? (iii) How do disease agents (e.g., toxic tau and
amyloid-β proteins) spread through communicating cells in the
brain12,13,19? (iv) Which multifactorial, synergistic (causal)
interactions occur in diseased brain regions14,20? (iv) How would
each patient potentially respond to different therapeutic
interventions15?

Each of the included tools and analytical methods were
developed and successfully validated in multiple studies12–16. The
NeuroPM-box aggregates considerably improved versions of these
tools, and, notably, allows for the first time the synergistic com-
bination of the different methods and data modalities for a uni-
fying multiscale and multifactorial brain analysis. Figure 1e and
Table 1 summarizes the different algorithms and provides
examples of their potential for combined analysis. In brief, the
user has access to four main analytical frameworks, combinations
thereof, and a versatile visualization tool, described in the fol-
lowing subsections.

Trajectories in large-scale molecular, imaging, and/or clinical
data. The contrasted Trajectories Inference (cTI) algorithm16

(Fig. 2; cTI definition in “Online Methods”) uses recent advances
in artificial intelligence (AI) to explore and visualize high-
dimensional data21 to elucidate the distinctive/contrasted
underlying paths, using large-scale biological observations (e.g.,
genetics and neuroimaging data covering a biological process of
interest, such as neurodevelopment or neurodegeneration). For
example, when applied16 to post mortem microarray gene
expression (GE) data from the blood of 744 subjects on the
Alzheimer’s disease spectrum (ADNI data), the cTI algorithm
automatically identified the series of sequential molecular states
(e.g., genetic alterations) covering decades of disease progression
and, subsequently, detecting the relative ordering of individuals
aligned with these patterns. A molecular-disease score per subject
is obtained, reflecting the individual position on the identified
long-term disease “timeline”. Similarly, when evaluated in 1225
post mortem brains on the AD and Huntington’s disease (HD)
spectrums (HD; ROSMAP and Harvard Brain Tissue Resource
Center [HBTRC]), cTI strongly predicted neuropathological
severity and comorbidity (Braak, Amyloid and Vonsattel stages;
see Fig. 2d–e for results in HBTRC).

In the HBTRC data, we observed (Fig. 2e) a positive association
between the individual molecular-disease score and the levels of
neuropathologic affectation in AD and HD, which was consistent
with findings in ADNI and ROSMAP16. The GE scores
significantly associated with both the Braak stages (Fig. 2e
(top); F= 11.17, P < 0.001, FWE-corrected) and the Vonsattel
stages (Fig. 2e (bottom); F= 9.04, P < 0.001, FWE-corrected).

For characterizing disease heterogeneity, the cTI can also
assign subjects to different subtrajectories in the contrasted space.
These subtrajectories reflect different tendencies in the contrasted
data, such as different disease variants. To validate the cTI
algorithm’s capacity to distinguish between neurological
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Fig. 1 Schematic for NeuroPM-box software workflow and practical guidelines. a The primary software data inputs include molecular (e.g., RNA and
proteins concentration arrays), multimodal imaging (e.g., tau, amyloid-β and glucose metabolism PET, vascular, functional, and structural MRI), whole-
brain connectomics (e.g., structural and vascular networks), cognitive/clinical evaluations, and therapeutic interventions (e.g. medication). There is no
restriction on the number of modalities that can be analyzed. b The NeuroPM-box interface allows users to select from four analytical methods (tools),
apply auxiliary applications, and access the visualization tool (NeuroPM-viewer) and software tutorial. c Main software modules supporting the data-driven
analysis of the multimodal data. d NeuroPM-viewer enables detailed exploration of the human cortex of both real and modeled spatiotemporal brain
dynamics (see also Fig. S2). e Practical guidelines for methods users (available methods are further described in Table 1 and subsections below).
Essentially, the analytical methods belong to two main categories, empirical and mechanistic. The former is purely data driven and focus on identifying and
interpreting intrinsic patterns in the data without making strong a priori biological assumptions. Specifically, the included algorithm (see contrasted
Trajectory Inference subsection and summary on Table 1) provide individualized quantitative scores reflective of disease progression and assign each subject
to distinctive subpopulations (tentatively reflecting different disease subtrajectories). Any type of quantitative data can be used as input (e.g.
transcriptomic, proteomic, histopathological, metabolomics, multimodal imaging, clinical), while each data-feature’s contribution to the subjects’ final
stratification is quantified, revealing the most informative features (e.g. specific genes, brain regions, clinical evaluations) and associated data modalities
(e.g. RNA, imaging, clinical). However, the user should avoid performing causal interpretations based on empirical modeling, because the intrinsic limitation
to distinguish between direct and indirect biological effects. Mechanistic models, by the contrary, aims to decode cause-effects in terms of biological
factors alterations spreading through physical brain connections and/or synergistic factor–factor interactions contributing to spatiotemporal brain
reorganization. The two implemented generative models focus on uni-modal or multimodal imaging data, i.e. ESM considers the intra-brain spreading of a
unique biological factor measured with an specific imaging modality (e.g. tau-PET, or amyloid-β PET), while MCM considers the direct (causal) interactions
and concurrent intra-brain spreading of multiple biological factors’ alterations quantified with different imaging modalities (tau, amyloid-β, and glucose
metabolism PET; cerebrovascular flow, functional activity indicators, and structural atrophy measured with MRI). Notably, mechanistic approaches (ESM,
MCM, pTIF) can be informed by the empirical data-driven outputs (cTI stratification), allowing the incorporation of a wide range of possible multiscale
biological information (e.g. molecular and clinical stages and subtypes) on the imaging-based generative brain models (see “cTI→ ESM, MCM, pTIF”
method on Table 1). Finally, personalized causal brain models identified by the multimodal mechanistic approach (see MCM) can be interrogated to
identify individual therapeutic needs in terms of biological deformations required to stop/revert factor(s)-specific (imaging modalities) alterations or
clinical deterioration (see pTIF on Table 1 and subsequent subsection).
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conditions in highly heterogeneous populations, here we
separately reanalyzed the GE and histopathological data from
the HBTRC, including two disorders (late-onset AD [LOAD] and
HD) and nondemented controls (Dataset 1, N= 736; “Online
methods”). Using each data modality (GE or histopathology), the
cTI method automatically identified multiple subtrajectories
reflecting diagnosis-specific subpopulations (Fig. 2d). For
instance, based on GE, sub-trajectory 1 comprised 87% of the
nondemented controls, 18% of the AD subjects, and 2.7% of the
HD subjects; sub-trajectory 2 comprised 71% of the AD subjects,
38% of the controls, and 12% of the HD subjects; and sub-
trajectory 3 comprised 89% of the HD subjects, 32% of the
controls, and 25% of the AD subjects.

Similarly, based on a limited set of histopathological data (just
25 broad atrophy metrics; see Example Dataset 1), sub-trajectory

1 comprised 91% of the controls, 28% of AD subjects, and 4.9% of
HD subjects; sub-trajectory 2 comprised 62% of the HD subjects,
57% of the AD subjects, and 40% of the controls; and sub-
trajectory 3 comprised 48% of the HD subjects, 26% of the AD
subjects, and 2.3% of the controls.

Furthermore, we used synthetic data (N > 2900) to extensively
test the cTI’s performance under different population character-
istics, specifically, with different levels of population heterogeneity
and sample sizes. A simulation study (Fig. S1 and demo provided
with software) confirmed the model’s capacity to accurately identify
individual disease stages and subtypes, as well as to recover the
biomarkers’ contributions to the predictions, in the presence of
noisy data. Altogether, the results with synthetic and real data
demonstrate that cTI is a promising technique for patient
stratification in terms of disease stages and variants, even when

Fig. 2 Schematic of cTI application to detect disease-associated patterns and patient neuropathological stages in neurodegeneration16. a In vivo blood
(N= 744; ADNI) and post mortem brain (N= 1225; ROSMAP, HBTRC) tissues, from Alzheimer’s disease (AD), Huntington’s disease (HD), and/or normal
controls (HC) subjects, are screened to measure the activity of ~40,000 transcripts. b Each population’s high-dimensional data are reduced to a set of
disease-associated components via c contrastive principal component analysis (cPCA)21,62. d This allows each subject to be represented in a reduced n-
dimensional disease-associated space where the corresponding position reflects his/her pathological state (proximity to the bottom-left corner implies a
pathology-free state; conversely, the top-right corner implies advanced pathology). For instance, when analyzing the GE data from the HBTRC’s highly
heterogeneous population (including HC, LOAD, and HD subjects, total N= 736), the high-dimensional data were reduced to seven contrasted PCs [cPCs]
capturing up to 97.5% of the population variance (and individually explaining 38.73%, 19.91%, 16.18%, 8.46%, 5.85%, 5.50%, and 2.87% of the variance,
respectively). Notice that, for visualization simplicity, here were only represented the first three cPCs, but the quantitative analysis considers all identified
components. Within this cPCs space, each subject is automatically assigned to a disease trajectory that represents a subpopulation of subjects potentially
following a common disease variant (see “Methods”). The number of subpopulations (disease trajectories) is determined automatically based on how the
subjects “cluster” together in the disease-associated space. e An individual molecular-disease score is then calculated, reflecting how advanced each subject
is in his/her disease trajectory. This score significantly predicts neuropathological deterioration. f Finally, the resulting model weights (from contrastive PCA)
allow the identification and posterior functional analysis of most influential genes/features. Panels a–c, e, f adapted with permission from ref. 16.
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comorbid neurological conditions and noisy observations are
considered. In addition, cTI can potentially be used to extract
intrinsic dynamic information from large-scale, cross-sectional data.
As described in Table 1 (Application cTI→ ESM, MCM, pTIF), this
functionality can be particularly useful in analyzing cross-sectional
neuroimaging studies as if they were longitudinal studies. That is,
individual pseudo-times and subtrajectories from cTI (or any user-
provided patient stratifications10,22) can be used to mimic
longitudinal datasets for adapting ESM, MCM, and pTIF models
to subpopulation levels (Tutorial and/or Text S1).

Epidemic spreading of pathological agents. The epidemic
spreading model (ESM) in the neurological context12 char-
acterizes the intra-brain propagation of infection-like “agents”
(e.g. misfolded proteins [tau, amyloid, alpha-synuclein, TDP-43])
through physical brain networks (e.g., anatomical, vascular,
functional). The ESM (Fig. 3a, b) estimates individual rates of
“agent” clearance and production, which can follow a linear or
sigmoid relationship with the local concentration of the modeled
infection-like “agent”.

ESM has been successfully applied to further understand the
spread of toxic amyloid and tau proteins in the neurodegenerative
human brain12,13. Importantly, the NeuroPM-box version of the
ESM model presents five main significant improvements
compared to the initial model applications12,13:

(i) Mathematical extension to work with the direct imaging
signals (e.g., SUVr values from PET) or with probabil-
istically inferred values from the images (the original model
was defined only for probabilistic values).

(ii) By considering all available time points, the improved ESM
optimization can focus on individual- and population-
based longitudinal data (the original model was evaluated
only for cross-sectional data), thereby increasing the
robustness and biological interpretably of the model’s
estimated parameters.

(iii) ESM now covers most of the possible numeric values for
parameter optimization, using a considerably more robust
algorithm (MATLAB’s MultiStart23) to solve the non-linear
differential equations. Specifically, gradient-based solvers
are applied to find local minima from multiple starting
points in search of global minima solutions (instead of
potential local minimums as with the initial implementa-
tion). This modification effectively improves robustness and
interpretably of the estimated biological parameters.

(iv) Epidemic production and clearance rates can be defined
either as linear or exponential/sigmoid functions (optional),
increasing the flexibility of the basic formulation by
considering both linear and non-linear biological processes
at the regional level (the initial model was considering only
exponential production and clearance rates).

(v) Considering the influence of different physiological factors
and/or random noise on the analyzed imaging modality
and the fact that a non-zero regional value does not
necessarily imply the presence of the studied “agent” (e.g.
amyloid or tau deposition) but just background fluctuations
on the image signal. Subsequently, for estimating the
regional epicenters, the improved ESM algorithm allows the
definition of a maximum (non-zero) value below which the
regions are still considered free of “agent” presence but with
their typical background ‘noise’ (e.g. tau and amyloid
positivity thresholds). Only regions over this value are
considered as likely epicenters. A notable improvement in
model fit has been observed for both tau- and amyloid-PET
spreading analysis.

In Fig. 3, we show the application of the improved ESM algorithm
to a healthy and diseased population of 105 participants, each having
at least two longitudinal tau-PET acquisitions (18F-AV1451 ligand,
ADNI data; “Online methods”). On average, when applied at the
individual level, this approach explained 80% (SD= 9.6, all P < 10−6)
of the variance in regional tau values across all available time points
and subjects. Figure 3c–e shows the results of the EMS for a clinically
healthy female control participant with significant memory com-
plaints and four longitudinal tau-PET evaluations (subject ID
024_S_5290 in ADNI). Starting from a pathology-free stage, the
model explained 86% (P < 10−10) of the variance in tau values
across the four available time points (Fig. 3c, d). Notice the strong
correspondence between the observed and reproduced tau deposition
patterns at the first and last PET evaluations, ages 71 (Fig. 3c,
right) and 73 (Fig. 3d, right) respectively. In addition, the ESM
automatically identified the entorhinal cortex, fusiform gyrus, caudate
anterior cingulate, and inferior parietal in the left hemisphere as the
most-likely epicenters for tau spreading in this subject, and estimated
that tau accumulation and spreading started around age 62. Figure 3e
illustrates the long-term intra-brain propagation process, starting
with the identified epicenters and diffusing, over a decade, to the
other brain regions, following a stereotypic AD-related pattern24. In
this analysis, we allowed up to a maximum of four regions as initial
epicenters and a 5% of the maximum observed SUVr for the starting
values of the non-epicenter regions at the onset time.

Multifactorial causal model of brain (dis)organization. The
multifactorial causal model of brain (dis)organization and cog-
nition (MCM14; Fig. 4a, b) accounts for: (i) first pathological
perturbation in the disease process (the brain regions and bio-
logical factors that are initially altered), (ii) regional multi-
factorial causal interactions (e.g., how toxic misfolded proteins
alter cerebral blood flow [CBF], how subsequent alterations in
CBF influence neuronal activity and gray matter atrophy, and
vice versa), (iii) concurrent propagation of perturbations through
physical networks (e.g., intra-brain propagation of misfolded
proteins, vascular or neuronal alterations across axonal and
vascular connectomes), (iv) the subsequent impact of (i) and (ii)
on cognitive/clinical integrity, and (v) the global factor-specific
effects of external inputs (e.g., how a given clinical treatment
impacts tau, amyloid and CBF). The MCM considers that once a
factor-specific event occurs in a given brain region, or set of
regions, that it can directly interact with other biological factors
to alter their states. The alterations can also spread to other brain
areas through physical connections (e.g., anatomical, vascular
connections), where similar factor-to-factor and propagation
mechanisms may occur in a continuous cycle. The MCM
has been successfully applied to the study of AD14,15, clarifying
multifactorial disease-specific mechanisms, and is currently
being applied to other neurodegenerative disorders (e.g., amyo-
trophic lateral sclerosis, frontotemporal dementia, Parkinson’s
disease).

Importantly, the MCM version included in NeuroPM-box
incorporates multiple enhancements over the initial version14,
effectively improving robustness and interpretably of the
estimated biological parameters. The two most remarkable
enhancements are (see MCM definition in “Online methods”):

(i) The ability to focus on individual longitudinal data (in addition
to group-level fitting, per the initial article) by accommodating
all available time points for each individual (Eq. 12).

(ii) The differential equations are now solved in a considerably
more robust way to cover most possible numeric values for
parameter optimization (MATLAB’s MultiStart algorithm23).
Gradient-based solvers are applied to find local minima from
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multiple starting points in search of global minima solutions
(instead of potential local minimums, as with the initial
implementation).

Here, the improved MCM algorithm was applied to a healthy
and diseased population of 504 participants (ADNI data, “Online
methods”), each having 4–6 different imaging modalities and at
least four longitudinal evaluations. The imaging modalities

included tau-PET, amyloid-PET, FDG-PET (for quantifying
glucose metabolism), resting-fMRI (for neuronal activity at rest),
ALS-MRI (for cerebral blood flow), and structural-MRI (for gray
matter density). For all subjects, the average longitudinal time
window was 5.1 years (SD= 3.6). The MCM numerical
optimization successfully converged in 98.4% of the population
(496 subjects out of 504). Starting from a pathology-free state at
the individual level, on average the MCM explained 92% (SD=

Fig. 3 ESM approach and prediction of intra-brain tau spreading. a Changes in the presence of a given infection-like “agent” factor (e.g., amyloid, tau
misfolded proteins [MP]) at a specific brain region, “i”, are modeled as a function of the incoming “agent” from each connected region, “j” (i.e. spread
effects through communicating cells), minus the local “agent” clearance. b This dynamic cause–effect model can be mathematically translated to a non-
linear system of differential equations, which is dependent on the individual “agent” production rate, the clearance rate, and the inter-region brain-
connectivity matrix. In the NeuroPM-box, both the production and clearance rates can be optionally modeled as time-dependent sigmoid functions12 or as
global constant values. The connectivity matrix can be estimated via diffusion MRI tractography63,64 or an alternative technique65–67. c Shows ESM results
reproducing the tau deposition patterns at the first 18F-AV1451 PET evaluation (age= 71 years) of a clinically healthy female control with significant
memory complaints (ADNI data, subject ID 024_S_5290). d ESM results in the same participant at the fourth time point evaluation (age= 73 years).
Starting from a pathology-free stage, the model explained 86% (P < 10−10) of the variance in tau values across the four available time points. e ESM
simulation of the whole-brain intra-brain tau spreading process from the estimated onset time of tau appearance/propagation (age= 62 years) to the last
observed time point. In c–e, tau values are cortical-to-cerebellum standardized uptake value ratio (SUVr).
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4.7, all P < 10−6) of the first and 71% (SD= 15.1, all P < 10−6) of
the last multimodal observations for all individuals, respectively.
Figure 4c illustrates the novel MCM-based analysis of concurrent
intra-brain changes in tau, amyloid, and gray matter atrophy on a
clinically healthy female control with significant memory
complaints (ADNI data, subject ID 024_S_5290). This is the
same subject who was previously analyzed with ESM [Fig. 3c–e]
but here is characterized from a multifactorial perspective (i.e.,

going for the first time from a univariate tau analysis to an
integrative multimodal characterization). In this subject, for the
first (at 67 years) and last observed time points (at 73 years), the
model explained 94.6 and 51.9% of the variance, respectively,
across the six data modalities. Illustrating the capacity of the
MCM algorithm to predict future disease progression, data
simulation (Fig. 4c) is extended for three additional years after the
last time point (from 73 to 76 years). In this specific case (Fig. 4c),

Fig. 4 MCM definition and prediction of concurrent tau, amyloid, and structural brain changes in preclinical AD. a Changes in a given biological factor
(e.g., amyloid, tau deposition) at a specific brain region are modeled as a function of the local multifactorial synergistic interactions (e.g., how dysregulation
of the cerebrovascular flow influences amyloid and tau depositions), the intra-brain alterations spreading through communicating cells, and external inputs
(e.g., treatments). b This dynamic cause–effect model can be mathematically translated into a system of differential equations. Similar to previously
proposed causal models of brain functioning12,68–70, in MCM, causality is intrinsic to its differential equations. Beyond traditional single-factor modeling
approaches (commonly neuronal activity or misfolded proteins), MCM equations also describe: (i) how the present state of a given biological factor, in a
given brain region, causes new fluctuations to itself or to other biological factors in the same or a different brain region, via multifactorial local interactions
or by spreading through brain connections, and (ii) how the brain’s dynamic physical system could change due to the influence of external inputs (e.g.,
cognitive/sensory stimulus, therapeutic interventions, environmental influences). c MCM-simulated concurrent intra-brain changes in tau, amyloid, and
gray matter (GM) density in a clinically healthy female participant with significant memory complaints (ADNI data, subject ID 024_S_5290). The resulting
MCM simulation is based on the participant’s actual parameters (collected from 67 to 72 years). Then, for prediction purposes, we calculated an additional
time window (from 73 to 76 years) of multifactorial data. Note the prominent increase in tau brain deposition in parallel to a substantial reduction in gray
matter density in the brain. In a, FUNC refers to functional activity at rest (e.g., from fMRI); METB refers to glucose metabolism (e.g., from FDG-PET).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02133-x

8 COMMUNICATIONS BIOLOGY |           (2021) 4:614 | https://doi.org/10.1038/s42003-021-02133-x | www.nature.com/commsbio

www.nature.com/commsbio


we see a prominent increase in tau brain deposition in parallel to
a substantial reduction in gray matter density in the brain.

Imaging-based therapeutic fingerprints. The personalized
Therapeutic Intervention Fingerprint (pTIF15; Fig. 5) assumes that
patients in a heterogeneous population require different treat-
ments, depending on both the unifactorial alterations in their
brain (e.g., tau/amyloid deposition or not, cerebrovascular
alterations or not, atrophy or not) and their multifactorial brain
dynamics: How different biological factors interact and would
potential respond (at the individual level) to clinical perturba-
tions. Based on spatiotemporal analysis of multimodal imaging
data (PET, MRI, SPECT), pTIF values are a set of multivariate
metrics that reflect the biological changes required to stop a
specific brain-reorganization process or to revert the condition to
a normal state. In other words, the pTIF can integrate large
amounts of data (e.g., thousands of multimodal brain imaging
measurements) into a simplified, patient profile—the fingerprint
—representing the quantitative modifications of the biological
factors that are needed to control the reorganization process (e.g.,
disease evolution) in that individual. Results using aging and late-
onset AD data (ADNI) demonstrate how the pTIF algorithm can
categorize patients into distinct therapy-based subtypes that
correspond strongly with differential RNA profiles15. The mul-
timodal imaging-derived pTIF vastly outperforms cognitive and
clinical evaluations when predicting individual GE alterations.
Furthermore, pTIF-identified patient subgroups present dis-
tinctively altered molecular pathways in the blood, supporting the
identification of dissimilar pathological subtypes and therefore
therapeutic needs in the studied population (Fig. 5c).

Visualizing observed and modeled spatiotemporal brain
dynamics. Deeper understanding of the brain processes under
study requires visualization of both acquired and simulated brain
data. NeuroPM-box includes a versatile, user-friendly interface for
visualization of all the analyzed brain factors and their dynamic
changes (Fig. S2). Time is one of the most important variables for
both modeling and visualization; consequently, the NeuroPM-
viewer allows to adjust time variables (among many other set-
tings) according to specific visualization needs.

Versions control and stability. Following standard-practices for
sharing computational neuroscience software25, we employ
advanced source code management tools for version control
(GitHub, https://github.com/). In addition, modifications per-
formed to each software version are annotated and made avail-
able to the user in a .doc file on the software’s webpage, including
intuitive and technical explanations. Associated biological impli-
cations are also discussed. Furthermore, it is not only important
to count with advanced informatic techniques, but also that they
provide stable results. The stability of the implemented methods
(cTI, ESM, MCM, pTIF) has been successfully confirmed across
multiple computational workstations with both different cap-
abilities and operational systems (Linux, macOS, Windows).

NeuroPM-Box tutorial. The software’s user guide provides an in-
depth explanation of all features and options available. It includes
step-by-step instructions for installation (for Linux, macOS, and
Windows systems), data organization-standardization, models-
specific inputs and optimization, outliers’ correction, data visua-
lization, and outputs description and interpretation. The tutorial
is available from NeuroPM-box (“Theory and Help” icon), and as
a PDF from https://www.neuropm-lab.com/neuropm-box.html.
See also Text S1 for easy-to-follow instructions.

Additionally, synthetic data for cTI testing/evaluation (Fig. S1)
and a practical demo script are provided.

Discussion
To the best of our knowledge, NeuroPM-box is the single cross-
platform, open access, user-friendly software for integrating large-
scale molecular, macroscopic, and clinical data using advanced
mathematical modeling existing at the moment. NeuroPM-box
allows separated and combined analysis of data derived from
molecular screening (transcriptomics, proteomics, epigenomics),
histopathology (post mortem neuropathology), molecular ima-
ging (amyloid, tau-PET), macroscopic MRI, and cognitive/clinical
evaluations. Most available packages focus exclusively on
molecular26–28 or brain imaging29–33 analysis, not on their
combined analysis, which NeuroPM-box is specifically designed
to address. Moreover, no other user-friendly software includes
models for characterizing the intra-brain spreading of alteration
effects (e.g., connectome-mediated tau and amyloid propagation
as characterized by ESM and MCM) or for identifying individual
therapeutic needs based on dynamical system analysis and con-
trol theory (e.g., pTIF). Although some validated computational
codes for biomarkers-based patient stratification in the neurolo-
gical context have been shared10,22, the user requires program-
ming or technical skills to apply them. NeuroPM-box’s user-
friendly implementation combined with recent enhancements to
the methods included will accelerate the comparison, and
potential integration, with several recently developed methods
published by other teams10,22,26,34.

Importantly, no advanced mathematical and/or computational
knowledge is required to use the NeuroPM-box, as each model is
described in intuitive biological terms. However, it is deliberately
designed to be a post-processing analytic software, not a pre-
processing package, for which many excellent free software
already exist (e.g., GEPAS, Bioconductor, SPM, FSL, ANTS,
CIVET, FreeSurfer, MRtrix3, DSI studio, BrainSuite). Conse-
quently, basic molecular and imaging preprocessing (imaging
registration, brain parcellation, quality control) should be com-
pleted beforehand. NeuroPM-box users should have basic exper-
tise in writing/reading numerical data to text files and, when
using a large-scale population, be able to organize the data into
the required formats (see Text S1).

NeuroPM-box is a long-term, ongoing initiative. All of the tools
included are under continuous development, particularly in terms
of improving their numerical optimization (an open-ended field
in research) and the interpretation/visualization of results. New
tools and methods are also under development, with the goal of
further integrating multiscale and multimodal neuroscience
research. Future methodological additions will focus on continue
bridging molecular, brain macroscopical factors (e.g.
neuroimaging-derived biomarkers) and clinical data. For
instance, we are in the process of incorporating a novel GE
informed MCM approach35,36, which proposes a general for-
mulation that integrates whole-brain transcriptomic data of
hundreds of landmark genes with multiple neuroimaging-derived
biological factors (i.e. amyloid, metabolic, and tau-PET; vascular,
functional, and structural MRI) and individual cognitive/clinical
information. This unifying method, successfully validated on
healthy aging and AD populations, concurrently accounts for the
direct (causal) influence of hundreds of genes on regional mac-
roscopic multifactorial effects, the pathological spreading of the
ensuing aberrations (tau, amyloid) across axonal and vascular
networks, and the resultant effects of these alterations on cogni-
tive/clinical integrity. A similar multiscale brain model integrat-
ing neurotransmitter receptor densities with multimodal
neuroimaging is also under development37. Similar that for the
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Fig. 5 From multimodal imaging to therapeutic fingerprints and altered molecular pathways (ADNI data). a Imaging for amyloid, tau, CBF, functional
activity at rest, glucose metabolism, and gray matter density. Based on a network-based approach14, pTIF enables individual characterization of the direct
factor-to-factor intra-brain biological interactions and the multifactorial spreading mechanisms through vascular/anatomical connections. Inverting its
fundamental equation provides an estimation of the changes required to produce a desired state (e.g., healthy); hence, the pTIF is defined as the set of
changes required for each patient. b Dissimilar pTIF patterns for three participants with the same diagnosis. Patient 1 requires low-cost vascular and
metabolic interventions and Patient 2 requires low-cost interventions for anti-Aß and anti-tau interventions, suggesting different single-target therapies
could benefit both patients (e.g., physical exercise and aducanumab, respectively). However, Patient 3 requires multiple single-target interventions,
suggesting that a high-cost combinatorial treatment, as opposed to a single-target treatment, would be more beneficial for this patient. c The altered
molecular pathways (blood data) underlying the distinct single-target therapeutic needs. Starting at 12 o’clock and moving counter-clockwise, the pathways
for each of the single-target subgroups were sorted according to prevalence. Each link between a given pair of pathways corresponds to the percentage of
subgroups for which molecular pathways were found to be affected. Images (a–c) adapted with permission from ref. 15.
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MCM approach, inclusion of spatial molecular information and
estimation of external inputs effects in the ESM are planned to be
incorporated in future software versions.

Our goal in sharing NeuroPM-box is threefold: (i) to accelerate
research and clinical use, (ii) to seek feedback on any limitations
and translational gaps that need to be addressed, and (iii) to
further validate the NeuroPM-box tools, thereby increasing their
applicability. It is important to emphasize that, although the cTI
results presented in this article are based on specific data types
(bulk transcriptomics, histopathological data), there are not
restrictions in the kind and number of data modalities that can be
used with this technique. Single-cell transcriptomic analysis is
equally feasible with the current cTI implementation, potentially
allowing the direct comparison with several trajectory
inference methods originally proposed for such data type38–41.
Furthermore, in complementary analyses, we are investigating the
cTI’s capacity to concurrently integrate different data modalities
(molecular multi-omics, multimodal neuroimaging, and/or sev-
eral cognitive/behavioral/clinical evaluations), which will be the
main focus of our next studies in neurodegeneration.

To facilitate quality control when using large-scale datasets,
NeuroPM-box currently includes specific outlier detection meth-
ods (e.g., the three sigma rule) as well as data correction and
completion via imputation42. A common concern when applying
advanced neuroscience computational techniques is runtime
efficiency. Most of NeuroPM-box’s optimization algorithms have
been implemented to minimize computational time. For instance,
cTI can analyze thousands of subjects and large-scale omics data
in just a few minutes. However, the differential equation-based
methods (ESM, MCM) are more computationally expensive,
particularly when applied at the individual level. The “default”
optimization for these methods can significantly reduce the
computational time, without compromising accuracy, in com-
parison to other available techniques (e.g. trust-region-reflective
algorithm43). However, analyzing hundreds of subjects with
multimodal longitudinal imaging data from a regular workstation
could take a few days (depending on the number of modalities,
brain regions, and time points; see Text S1). We are planning to
upload the software to popular High-Performance Computing
(HPC) portals, such as The Neuroscience Gateway (NSG, http://
www.nsgportal.org) and CBRAIN (http://www.cbrain.ca). Finally,
to increase the software’s generalizability, we are also working to
extend data input to popular organizational formats, including
the Brain Imaging Data Structure (BIDS) standard44.

Online methods
Data
Ethics statement. The study was conducted according to Good
Clinical Practice guidelines, the Declaration of Helsinki, US 21CFR
Part 50—Protection of Human Subjects, and Part 56—Institutional
Review Boards, and pursuant to state and federal HIPAA regula-
tions (adni.loni.usc.edu). Study subjects (Table S1) and/or
authorized representatives gave written informed consent at the
time of enrollment for sample collection and completed ques-
tionnaires approved by each participating site Institutional Review
Board (IRB). The authors obtained approval from the ADNI Data
Sharing and Publications Committee for data use and publication,
see documents http://adni.loni.usc.edu/wp-content/uploads/how_
to_apply/ADNI_Data_Use_Agreement.pdf and http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_
Manuscript_Citations.pdf, respectively.

Example Dataset 1. Seven hundred and thirty-six individual post
mortem tissue samples from the dorsolateral prefrontal cortex
BA9 of LOAD patients (N= 376), HD patients (N= 184), and

nondemented subjects (N= 173) were collected and analyzed18.
All autopsied brains were collected by the Harvard Brain Tissue
Resource Center (HBTRC; GEO accession number GSE44772),
and include subjects for whom both the donor and the next of kin
had completed the HBTRC informed consent (http://www.
brainbank.mclean.org/). Correspondingly, tissue collection and
the research were conducted according to the HBTRC guidelines
(http://www.brainbank.mclean.org/). Post mortem interval (PMI)
was 17.8 ± 8.3 h, sample pH was 6.4 ± 0.3, and RNA integrity
number (RIN) was 6.8 ± 0.8 for the average sample in the overall
cohort. As described in ref. 18, RNA preparation and array
hybridizations applied custom microarrays manufactured by
Agilent Technologies consisting of 4720 control probes and
39,579 probes targeting transcripts representing 25,242 known
and 14,337 predicted genes. Arrays were quantified on the basis of
spot intensity relative to background, adjusted for experimental
variation between arrays using average intensity over multiple
channels, and fitted to an error model to determine significance45.
Braak stage, general and regional atrophy, gray and white matter
atrophy, and ventricular enlargement were assessed and cataloged
by pathologists at McLean Hospital (Belmont, MA, USA). In
addition, the severity of pathology in the HD brains was deter-
mined using the Vonsattel grading system46.

Example Dataset 2. This study used a total of 911 individual data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). The participants underwent multimodal brain
imaging evaluations, including amyloid-PET, tau-PET, and/or
structural MRI. The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.

In a subset of 744 participants, the Affymetrix Human Genome
U219 Array (www.affymetrix.com) was used for GE profiling
from blood samples. Peripheral blood samples were collected
using PAXgene tubes for RNA analysis47. The quality-controlled
GE data includes activity levels for 49,293 transcripts. Molecular
PET and MRI images quantifying seven different biological
properties were mapped in vivo using the following techniques:
structural MRI (for structural tissular properties; N= 911),
fluorodeoxyglucose PET (for glucose metabolism; N= 799),
Florbetapir PET (for Aβ deposition; N= 906), Arterial Spin
Labeling (ASL, for cerebral blood flow; N= 341), resting
functional MRI (for neuronal activity at rest; N= 186), 18F-AV-
1451 PET (for tau deposition; N= 266), and diffusion weighted
MRI (for structural brain connectivity; N= 128). The preproces-
sing of the imaging data have been previously described in ref. 15.
For the first six mentioned imaging modalities, representative
regional values were calculated for 78 regions covering all the gray
matter48. The diffusion weighted MRI data were employed for
whole-brain region–region structural connectivity (connectome)
mapping. All the participants were also characterized cognitively
using the mini-mental state examination (MMSE), a composite
score of executive function (EF), a composite score of memory
integrity (MEM)49, and Alzheimer’s Disease Assessment Scale-
Cognitive Subscales 11 and 13 (ADAS-11 and ADAS-13,
respectively). Also, they were clinically diagnosed at baseline as
healthy control (HC), early mild cognitive impairment, late mild
cognitive impairment, or probable Alzheimer’s disease patient
(LOAD).

Example Dataset 3. Finally, we simulated three datasets (see data
and demo script included at the NeuroPM-box’s downloading
page). Data were generated using a previously validated
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method10, with Matlab codes are available at https://github.com/
ucl-mig/SuStaInMatlab). We set the number of subtypes to be
three (results in Fig. S1A–C, with two “diseased” subpopulations
and a control subgroup) and four (results in Fig. S1D–F, with
three “diseased” subpopulations and a control subgroup). The
number of subjects for each case was set to be 500 (results in Fig.
S1A–F) or 1000 subjects (results included only in the demo). To
each dataset, the number of informative biomarkers was set to be
50, adding other 50 randomly distributed biomarkers, for a total
of 100 features (i.e. 50 informative, 50 non-informative). For each
dataset, the subjects’ stages were simulated using a uniform dis-
tribution, and the progression pattern of each subtype was
defined according to a linear z-score model, parameterized by a
sequence of z-score events with a random monotonic ordering
(see original publication10).

See Table S1 for the corresponding demographic characteristics
(Datasets 1 and 2).

Methods
cTI definition. The inference of contrasted pseudotemporal trajectories (and
characterizing disease progression and heterogeneity) consists of five main steps16:

(i) Optional data adjustment for confounding factors. This step is strongly
recommended for experimental data in which different conditions (e.g.
technical procedures) may affect the quantitative comparison of observa-
tions and subsequent identification of relevant biological components. For
instance, in this study before applying the cTI approach, each gene
transcript’s activity was adjusted for relevant covariates using robust
additive linear models with pair-wise interactions50. Specifically, Dataset 1
GE and histopathological data (HBTRC) were adjusted for PMI in hours,
age, gender, and educational level. Dataset 2 GE (ADNI) was controlled for
RIN, Plate Number, age, gender, and educational level.

(ii) Optional initial selection of features most likely to be involved in a trajectory
across the entire population (recommended for high-dimensional data). The
unsupervised method proposed by Welch et al.40 is applied, scoring features
by comparing sample variance and “neighborhood variance”.

(iii) Data exploration and visualization via contrastive Principal Component
Analysis (cPCA21). This technique identifies low-dimensional patterns that
are enriched in a target dataset (e.g. a diseased population) relative to a
comparison background dataset (e.g. demographically matched healthy
subjects). By controlling the effects of characteristic patterns in the
background, cPCA allows visualizing specific data structures missed by
standard data exploration and visualization methods (e.g. traditional PCA,
Kernel PCA). Specifically, if Ctarget and Cbackground are the covariance
matrices of the target and background data, the directions returned by cPCA
are the singular vectors of the weighted difference of the covariance
matrices: Ctarget− α·Cbackground. The contrast parameter α represents the
trade-off between having the high target variance and the low background
variance. Multiple values of α are used (i.e. 100 logarithmically equally
spaced points between 10−2 and 102). Instead of choosing a single α, the
resulting subspaces for all the α-values are clustered (based in their
proximity in terms of the principal angle and spectral clustering51,52) in a
few subspaces. The data are then projected onto each of these few subspaces,
revealing different trends within the target data. While the original cPCA
algorithm proposes to select the final subspace via visual examination, we
chose automatically the subspace that maximize the clustering tendency in
the projected target data, relative to the clustering tendency in the
background population.

(iv) Individual pseudo-time calculation and subtyping according to the
proximity to the background population in the contrasted principal
components space (cPC). For this, we first calculate the Euclidean Distance
Matrix among all the subjects and the associated minimum spanning tree
(MST). The MST is then used to calculate the shortest trajectory/path from
any subject to the background subjects. Each specific trajectory consists of
the concatenation of relatively similar subjects, with a given behavior in the
data’s dimensionally reduced space. The position of each subject in his/her
corresponding shortest trajectory reflects the individual proximity to the
pathology-free state (the background) and, if analyzed in the inverse
direction, to advanced disease state. Thus, to quantify the distance to these
two extremes (background or disease), an individual pseudo-time score is
calculated as the shortest distance value to the background’s centroid,
relative to the maximum population value (i.e. values are standardized
between 0 and 1). Finally, spectral clustering52 is performed over the cPC-
based Euclidean Distance Matrix to identify subjects subtrajectories in the
contrasted space. Note that, due to similar probabilities, some subjects may
be assigned to multiple subtrajectories, thereby implying that the
subtrajectories may overlap. Assignment to multiple subtrajectories is

particularly possible in the early stages of a disease, either due to the
algorithm being unable to distinguish between different disease paths, or
due to real biological effects (e.g., two disease variants with a common or
similar starting process).

(v) Estimation of features relevance/influence. The total contribution Ci of each
data feature i to the obtained reduced representation space (and the
pseudotemporal trajectories) is quantified as53

Ci ¼ 100 ∑
NcPC

j¼1
λnormj

ω2
i;j

∑
Ngenes

k¼1
ω2
i;j

0
BBB@

1
CCCA; ð1Þ

where λnormj ¼ ðλj �min λÞ=∑N total
k¼1 ðλk �min λÞ is the normal-

ized eigenvalue of the contrasted principal component j, min λ is
the minimum obtained eigenvalue, N total is the original number of
contrasted principal components, NcPC is the number of
contrasted principal components with λnormj over a predefined
cut-off value (i.e. 0.025), ωi;j is the loading/weight of the feature i
on the component j, and N features is the total number of features
considered in the dimensionality reduction analysis.

ESM definition. The brain is modeled as a system with Nrois structurally inter-
connected gray matter regions12 covering the brain’s whole gray matter (in this
study, Nrois= 78 based on a known anatomical brain parcellation48), where each
region i (i ¼ 1::N rois) is characterized by its temporal value (Si) of infection-like
“agent” (inf-A) accumulation (e.g. misfolded protein [MP] burden). Notice that S
can also be defined in probabilistic terms (see NeuroPM-box tutorial). The dynamic
of this system, in terms of inf-A propagation and accumulation, will depend on the
interactions between the inf-A “infected” and “non-infected” regions, with tem-
poral changes in the regional Si values described by the non-linear differential
equation:

dSi
dt

¼ 1� Si tð Þ=maxS
� �

εi tð Þ � δi tð ÞSi tð Þ ð2Þ
The first term on the right side of Eq. (2) represents the regional likelihood (or

probability) of receiving infectious-like “agents” (εi tð Þ) if region i is “non-infected”,
where maxS is the maximum possible S value (defined across all the population).
The second term corresponds to the likelihood (or probability) of being clean of
inf-A at time t (δi tð Þ) if region i was “infected” before. To consider the fact that a
particular “infected” sub-region in brain region i can potentially “infect”
neighboring sub-regions, εi tð Þ is modeled as the accumulation of exogenous and
endogenous infectious-like factors:

εi tð Þ ¼ ∑j≠iPaj!iβ
ext
j tð ÞSj tð Þ þ Pai!iβ

int
i tð ÞSi tð Þ; ð3Þ

where Paj!i is the weighted anatomical connection value between the regions j and

i, βextj tð Þ is the extrinsic “infection” rate of region j, and βinti tð Þ is the intrinsic
“infection” rate. We assume that inf-A diffuse from regions of higher concentration
to regions of lower concentration. With a high inequality in the inf-A accumulation
levels of all the regions causing an increase in the extrinsic propagation across the
entire brain, and a decrease in the intrinsic fraction that stays in each seed region.
These effects are modeled as

βexti ðtÞ ¼ gðtÞβiðtÞ; ð4Þ

βinti ðtÞ ¼ ð1� gðtÞÞβiðtÞ;
where g(t) is a global tuning variable (Gini coefficient54) that quantifies the
temporal inf-A accumulation inequality among the different brain regions, and
βi ¼ βexti þ βinti is the total “infection” rate of the region i. A value of 0 for g reflects
perfect equality across all regions, and a value of 1 corresponds to a complete
inequality.

In the NeuroPM-box, clearance and production rates can be modeled as
constant values (βo , δo) across all regions or as sigmoid functions depending on the
local S values. When opting for a sigmoid relationship, βi is defined as

βi tð Þ ¼ βi Pi; βo
� � ¼ 1� e�βoSiðtÞ=maxS; ð5Þ

being βo 2 ½0;þ1� an unknown constant parameter. Notice that a high inf-A
accumulation at region i will imply a high probability of producing new infectious-
like factors. Similarly to βiðtÞ, the regional clearance rate after “infection” (δi tð Þ) is
expressed as a function of Si tð Þ and a constant parameter. However, the regional
capacity to clear/remove infectious-like agents will decrease with the increase in
inf-A accumulation, following a decreasing exponential relationship:

δi tð Þ ¼ δi Pi; δo
� � ¼ e�δoSiðtÞ=maxS; ð6Þ

where δo 2 ½0;þ1� is also an unknown constant parameter. We hypothesize that
βo and δo will depend on the specific MP under study, as well as on the individual
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characteristics (e.g. genetic properties, lifestyle, environmental conditions). In sum,
the ESM approach depends on two main unknown parameters (βo ,δo), which
control the continuous competition between the infectious-like agents and the
system’s clearance response.

For optimizing the model, each participant’s multimodal and longitudinal data
are used to identify the ESM’s fundamental Eq. (2). The following optimization
function is used in combination with MATLAB’s MultiStart algorithm23:

Lð+Þ ¼ ∑
Nt

k¼1
∑
Nrois

i¼1
Si tk
� �� Ŝi tk ;+

� �� �2
; ð7Þ

where Nt is the number of available longitudinal time points for the participant,
and Ŝi tk;+

� �
is the corresponding estimated value at the time point tk for the set

of model parameters +.

MCM definition. The brain is modeled as a dynamic multifactorial causal
system14, where (i) each system node models a relevant biological factor (quantified
via an imaging modality) at a given brain region and (ii) alterations in each
biological factor are caused by direct factor–factor interactions and/or external
inputs. For example, in the presented results (MCM subsection), we considered
Nfactors= 6 different biological factors (i.e. vascular flow, Aß deposition, tau
deposition, glucose metabolism, functional activity at rest, and gray matter den-
sity), each measured at Nrois= 78 brain gray matter regions48. Each node, corre-
sponding to a given biological factor m and region i, is characterized by its
alteration/disequilibrium level, Smi 2R, reflecting the distance to an initial baseline
state (Smi ¼ 0, Smi <0, or S

m
i >0 for non-alteration, decrease, or increment, respec-

tively). In general, this system is defined by the [NfactorsNrois × 1] state space vector

S tð Þ ¼ S11 tð Þ; S12 tð Þ; ¼ ; Smi tð Þ; ¼ ; SN factors
Nrois tð Þ

h iT
and AðtÞ, the dynamic multifactorial

direct interaction network, where each directed edge corresponds to a factor–factor
or a region–region interaction.

The dynamic behavior of the proposed brain system will depend on (i) the local
direct interactions among all the biological factors, constrained within each brain
region, (ii) the potential propagation of factor-specific alterations through
“physical” networks (i.e. anatomical and/or vascular networks), and (iii) the
influence of external inputs. These processes can be described by the differential
equation model:

dS
dt ¼ A tð ÞSþBu;

Cog ¼ βS;

(
ð8Þ

where AðtÞ is a [NfactorsNrois ×NfactorsNrois] asymmetric network/matrix
characterizing all the multifactorial interactions at time t. It depends on model
parameters that are estimated during model fitting, and on the brain’s connection
properties, estimated a priori. B is an [NfactorsNrois ×M] input matrix (M ≤
NfactorsNrois) that identifies M nodes (brain regions of any specific biological factor
or factors) controlled by an outside controller55,56. u tð Þ ¼ u1 tð Þ¼ uM tð Þ� �

is the
associated time-dependent input signal. Cog is a cognitive variable of interest
modeled by additive linear relationships, considering the brain’s multifactorial
alterations as modulators (with weights defined by the vector β, estimated a priori
at the population level).

The optimum input signal to control the described brain system can be
estimated as57

u
S0!Sf
opt tð Þ ¼ �BTeA

T tf �tð ÞW�1D; ð9Þ

where W is the controllability gramian matrix58:

W t0; tf
� �

¼
Z tf

t0

eA t0�tð ÞBBTeA
T t0�tð Þdt: ð10Þ

D ¼ eA tf �tð ÞS t0
� �� S tf

� �� �
is the difference between the final and desired

final state space vector under the free and controlled evolution, respectively.
Finally, the cost-energy function associated to the set of nodes B with optimum

strategy u
S0!Sf
opt is calculated as14

J B; uopt
� �

¼
Z tf

t0

uopt tð Þ
� �T

uopt tð Þdt: ð11Þ

For optimizing the model, each participant’s multimodal and longitudinal data
is used to identify the MCM’s fundamental Eq. (8), in the absence of external
signals (i.e. u tð Þ ¼ 0). For each participant, the following optimization function is
used in combination with MATLAB’s MultiStart algorithm23:

Lð+Þ ¼ ∑
Nt

k¼1
∑

N factors

m¼1
∑
Nrois

i¼1
Smi tk

� �� Ŝ
m
i tk ;+
� �� �2

; ð12Þ

where Nt is the number of available longitudinal time points for the participant,
Smi tk

� �
is the observed alteration level for factor m and brain region i, at the time

point tk , and Ŝ
m
i tk;+
� �

is the corresponding estimated value for the set of model
parameters +.

pTIF definition. To evaluate at the individual level the effectiveness of all possible
one-target or combinatorial therapies, for each biological factor or combination of
factors, expressions (9–11) are used to estimate the optimum input signal and
associated cost-energy for stopping each patient’s brain deterioration (i.e. keeping
the patient’s brain properties at a stationary state) and also for conducing each
patient from its current state to a typically healthy state (i.e. the mean pattern
observed for HC subjects). For a single-target intervention (i.e. based on a unique
driving biological factor) the input matrix B (Eq. 8) is constructed with one for all
the nodes/regions corresponding to this factor, and zero for all the other nodes/
regions. Similarly, for a combinatorial-target intervention, the matrix B contains
one for all the nodes/regions associated with the selected driving factors and zero
for the rest15. Finally, for each subject, the individual pTIF is defined as the
numeric multivariate vector with the estimated factor(s)-specific cost-energy values
for all possible tested interventions (i.e. with a unique energy/deformation value for
each hypothetical single target or combinatorial intervention). Note that, for
Nfactors= 6, the number of all possible single target or combinatorial interventions
(up to a maximum of 6 factors) is 63.

Statistics and reproducibility. Three different data populations were used (total
N > 4547), including post mortem (N= 736; see “Example Dataset 1” in the section
“Data”) and in vivo (N= 911; “Example Dataset 2”) neurodegenerative individuals,
and synthetic subjects (N > 2900; “Example Dataset 3”). We performed five inde-
pendent analysis on different datasets to validate the reproducibility of the con-
trastive Trajectories Inference (cTI) method, obtaining highly consistent results for
the different scenarios/data. The datasets included HBTRC GE, HBTRC histo-
pathology, and three generated synthetic datasets. Similarly, ESM and MCM were
extensively tested with the in vivo data from ADNI (see corresponding “Results”
subsections). For the population-based cTI analysis, the GE and histopathological
data from HBTRC were adjusted for PMI in hours, age, gender, and educational
level. GE from ADNI was controlled for RIN, plate number, age, gender, and
educational level. Neuroimaging data from ADNI were not adjusted, because the
corresponding analyses were performed at the individual level. Traditional blinding
was not relevant to our study. All our analyses were unsupervised, i.e. not requiring
any a priori training/fitting on cognitive and/or behavioral variables.

Using NeuroPM-Box in practice. Installation (timing 5–10min): To run
NeuroPM-box on Windows, Linux (or OS X), or macOS systems, you will need
MATLAB’s f Runtime 2019b. Please ensure the Runtime version corresponds to the
MATLAB version used by NeuroPM-box (i.e. 2019b). MATLAB Runtime can be
downloaded for free from https://www.mathworks.com/help/mps/qs/download-
and-install-the-matlab-compiler-runtime-mcr.html.

(a) Download the software from https://www.neuropm-lab.com/neuropm-box.
html

(b) For Windows: Run the provided NeuroPM_box_installer.exe file to install
the software.

(c) For Linux: Call the startup script with the path to MATLAB or the Runtime
root folder as an argument:
MATLAB installed:./run_NeuroPM_box.sh /*matlabroot*/matlab19b
Runtime installed:./run_NeuroPM_box.sh /*mcrroot*/matlab19b_runtime/
v94
The root folder can be found in MATLAB by checking the variable
“matlabroot”. Also, in some cases, depending on your system’s configura-
tion, before installing you may need to provide appropriate permissions:
chmod u+x NeuroPM_box
chmod u+x run_NeuroPM_box.sh

(d) For macOS: Run the provided NeuroPM_box_installer.app file to install the
software.

Executing cTI algorithm (timing 5–15min):
Input data should be:

(a) a .txt file, with row values representing observations and columns
representing features.

(b) an ESM file. For each subject, a pseudo-time value (and trajectory position)
will be calculated based on her/his baseline data (the unifactorial data; e.g.
amyloid, tau). Regional values at baseline will be considered the features on
the cTI analysis.

(c) a MCM file. Unless specified, all the biological factors (imaging modalities)
available will be considered on the cTI (the user can specify if, by the
contrary, would like to focus on only one factor/modality).

Dimensionality reduction method: in cTI, data exploration and visualization are
performed via cPCA21. By controlling the effects of characteristic patterns in the
background (e.g. pathology free and spurious associations, noise), cPCA and its
non-linear version cKernel PCA21 allow visualizing specific data structures missed
by popular data exploration and visualization methods (e.g. PCA, Kernel PCA, t-
SNE, UMAP). The user can select between “cPCA”, “cKernel PCA”, or “cPCA after
applying a smoothing Kernel” to the data (which may reduce the influence of
outliers). Of note, before the contrasted dimensionality reduction, all the data
features will be ‘boxcox’ transformed (see https://www.ime.usp.br/~abe/lista/
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pdfQWaCMboK68.pdf), centered to have mean 0 and scaled to have standard
deviation 1.

Features preselection: For high-dimensional datasets (e.g. considerably more
features than observations), it is necessary to perform an initial selection of features
most likely to be involved in a trajectory across the entire population. By default,
we apply the unsupervised method proposed by40, which does not require prior
knowledge of features involved in the process. Features are scored by comparing
sample variance and neighborhood variance. A threshold is applied to select those
features with higher score, e.g. you can keep the features with at least a 0.95
probability of being involved in a trajectory (i.e. around 5% of your features
dimensionality). Please select the fraction of features that should be used by the cTI
algorithm.

Background population: The cTI algorithm detects enriched patterns in the
population of interest while adjusting by confounding components in the
background population (i.e. subjects free of the main effect of interest). To define
the background population, the user should provide the list of corresponding IDs,
which can be entered by just copying the IDs in the interface, or by loading a “.txt”
file in which each row have an ID. Importantly, if the cTI-data is entered as a “.txt”
file, we will take as ID the subject’s position on the data (e.g. subject number 10 in
the data, at the row 10 of the data matrix, will have ID= 10). If, by the contrary, the
cTI-data is coming from ESM/MCM data structures, the Background IDs must
correspond with names of the individual folders in the main ESM/MCM folder.

Target population (optional): By default, all the other subjects not defined as
background are taken as the target population. However, the user may be interested
in to defining the target with a particular subset of subjects (e.g. individuals notably
advanced in a disease process). The algorithm will only use then the defined
background and target to estimate the model parameters, while the corresponding
transformations will be still applied to all the subjects in the data. To define the
optional target population, the user should provide the list of corresponding IDs
(following same format that for background population), which can be entered by
just copying the IDs in the interface, or by loading a “.txt” file in which each row
have an ID. Of note, this option is not valid when using the “cKernel PCA”
method.

Δ CRITICAL STEP. Background and target populations have a strong
influence on the cTI method21. We recommend defining these taking in to account
the biological process of interest. For instance, when studying a given neurological
disorder, ensure that the background subjects are free of the studied pathology and
with similar demographic characteristics that the target population. The target may
be constituted by an heterogenous population, but, if a subset of subjects with
highly similar pathological stages/variants is considerably more abundant than
subjects at other stages/variants, this subset could statistically dominate (and bias)
the contrasted dimensionality reduction technique. In such cases, we recommend
pre-defining the target with an equilibrated compendium of disease stages/variants.

Adjusting by Covariables (optional): covariates can be included for linear data
adjustment before the feature preselection (if selected) and the trajectories
inference analysis. The covariables should be entered as a.txt file, where rows
correspond to observations in the main data, the first column to subjects/
observations IDs, and the other columns to different covariables. Of note: If a
covariable has less than seven unique values, it will be considered as categorical,
and it will be divided in an equivalent number of variables (e.g. for gender
information, where one input variable typically has two unique values [female or
male], we will replace this variable by two predictor variables, i.e. one for each
gender).

Additional parameters: The user can define the maximum number of features
obtained from the contrasted dimensionality reduction algorithm. Also, the
algorithm allows to identify subsets of subjects following potentially different
contrasted subtrajectories. The user can define the maximum number of possible
subtrajectories.

cTI Outputs (saved in the input data’s folder):

(a) ‘cTI_IDs_pseudotimes_pseudopaths_’data_name‘.txt’: file containing the
main cTI outputs. First column corresponds to subjects’ IDs. Second
column to individual pseudo-time values (a value per subject). From the
third to the last column (as many columns as different contrasted
subtrajectories identified), the sub-trajectory or subtrajectories to which
each subject belongs to. As mentioned, each subject can belong to more than
one sub-trajectory (e.g. when two disease variants overlap at their
beginning). In such cases, individual subtrajectories are sorted from
maximum to minimum probability.

(b) ‘cTI_cPCs_’ data_name ‘.txt’: obtained contrasted principal components.
(c) ‘cTI_weights_’ data_name ‘.txt’: loadings/weights (one column per initial

feature).
(d) ‘cTI_features_contributions_’ data_name ‘.txt’: total features contribution

on the final contrasted space (a value for each feature included on the
analysis).

(e) ‘cTI_features_preselected_’ data_name ‘.txt’: When feature preselection is
performed, this file contains the indices of those features most likely to be
involved in a trajectory across the entire population, which is subsequently
used in the cTI analysis. Of note, if the features are preselected, the saved
feature loadings/weights and total contribution values will correspond only
to the preselected features.

Executing ESM (timing 5–25min per subject):
Organizing your data for ESM: The software provides an automatic tool to

import all the needed data for ESM evaluation (on the main interface, click
“Complementary_tools”). The data should be organized individually, with a folder
per subject. For compatibility across different models in the toolbox, the images can
be organized in the same way that for the multimodal models (e.g. MCM). In case
the software detects multiple imaging modalities, the user will be asked about
which one should be used for ESM. Each subject’s folder should include (see Fig. 6):

(a) Brain images (.nii or.mnc) corresponding to each biological factor of
interest, e.g:
factor_1_t0.nii, factor_1_t1.nii, factor_1_t2.nii, factor_1_t3.nii
factor_2_t0.nii, factor_2_t1.nii, factor_2_t2.nii,
factor_3_t0.nii, factor_3_t1.nii, factor_3_t2.nii, factor_3_t3.nii…
Include as many factors and time points as available. Of note, t1, t2, t3…
should be numeric values.

(b) Gray matter parcellations images (.nii or.mnc), e.g.:
GM_parcellation_t0.nii, GM_parcellation_t1.nii, GM_parcellation_t2.nii,
GM_parcellation_t3.nii…
Importantly, if there is only a common population parcellation at the group
level (e.g. coming from other study/template), the parcellation files can be,
alternatively, saved at the root folder containing all the subject’s folders. In
any case, please be sure to include at least one parcellation image for each
subject or for the whole population.

(c) Connectomes (mandatory, e.g. anatomical and/or vascular networks) files:
Multiple (.txt or.csv) files (one for each available time point, with rows and
columns corresponding to brain regions), for example:

‘connectome1_t0.txt’, ‘connectome1_t1.txt’, ‘connectome1_t2.txt’…
Importantly, if the connectivity information is only available at the group level

(e.g. coming from other study/template), the connectome files can be, alternatively,
saved at the root folder containing all the subjects’ folders. In any case, please be
sure to include at least one connectome matrix, with same number of rows and
columns (i.e. regions) that your parcellation.

Data standardization (optional): The voxel or regional values can be
standardized at the individual level using user-defined reference regions (e.g.
cerebellum). When using this option, the user should define:

(a) labels of reference regions, corresponding with the regions’ numeric values
in the provided parcellation images.

(b) if the reference regions should NOT be removed for the posterior modeling
analysis (by default, the references are removed).

Probabilistic data standardization (optional): the original ESM version was
defined in probabilistic terms. Although the current implementation can work with
raw data values (default), the user can opt to convert the raw voxel values to
probabilities, by comparing each voxel with the distribution of maximum in the
reference regions.

Reversing scale (optional): by default, it is considered that higher signal values in
the images will be more reflective of the process of interest (e.g. misfolded proteins
deposition quantified with PET imaging). However, for some data modalities (e.g.
gray matter density), a lower value would imply a stronger effect (e.g. structural
atrophy). For those cases, the user can opt to reverse the data’s scale via a linear
scaling (the numerical scale will runs in the opposite direction).

Input file for ESM optimization: After using “Organizing input for ESM” in
“Complementary Tools”, input the file named “Input_data_…_ESM.mat”, which
should be saved in the folder “ESM_data_results” inside your data’s initial
directory. All optimization results will be also saved in this file as well as in
text files.

The ESM can be optimized at:

(a) the individual level (only if longitudinal data are available). A minimum of
three time points is required (subjects without enough data will not be
analyzed). Individual parameters (clearance, production, onset time) will be
saved as a.txt file where rows are subjects and columns are IDs, effective
clearance, effective production and onset time (if required). Additionally, for
visualization purposes, these variables will be saved in the original “_ESM.
mat” file.

(b) the population level. Δ CRITICAL STEP First, use the “contrastive
Trajectories Inference (cTI)” algorithm, where a pseudo-time value will be
obtained for each subject based on his/her baseline data (see instructions
about). Alternatively, use your own subjects’ stratification, coming from
using cTI on a different data modality (e.g. molecular, clinical) or from a
different computational method (for using this option, see “Adding new
stratification to ESM/MCM files” in “Complementary Tools”). Then, the
subjects will be ordered according to their characteristic pseudo-path and
pseudo-time, constituting a pseudo-longitudinal data for ESM optimization.
Subgroup parameters (clearance, production, onset time) will be saved in a.
txt file, where rows will be subgroups (each corresponding to subjects
belonging to a characteristic pseudo-path), and columns will have: subject(s)
ID, effective clearance, effective production and onset time (if required).
Additionally, for the visualization purposes, these variables will be saved in
the original “_ESM.mat” file.
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Production and clearance factors can be defined as follows:

(a) Sigmoidal (default): following sigmoid functions that depend on global
production, or clearance rates, and on the current regional value. In this
case, each brain region has its own effective production or clearance rate,
which may change with time. The effective regional production is assumed
to increase with the local signal (e.g. the more amyloid a region has, the
higher chance that it will produce and spread more amyloid seeds).
Contrary, effective clearance is assumed to decrease with the local signal (i.e.
more “infected” regions are less able to clean the accumulated “agents”).

(b) Constants, with same rate across all the spreading process.

Epicenters identification: The spreading process under study is assumed to start
in a set of specific brain regions, from which the “agent” propagates across physical
brain connections. If the epicenter regions are known, they can be predefined by
the user and the optimization algorithm will continue from these. Otherwise, the
epicenter(s) will be estimated as the region[s] with the highest value[s] at the onset
time. Both backward and forward integration procedures will be used for
estimating the most likely epicenter(s), using the maximum number of allowed
epicenter regions defined by the user.

Δ CRITICAL STEP. When working with some imaging modalities (e.g. SUVr
PET), a non-zero regional value does not necessarily implies the presence of the
studied “agent” (e.g. amyloid or tau deposition) but just background fluctuations
on the image signal (determined, for example, by different physiological factors
and/or random noise). Commonly, in literature, a positivity threshold is applied to
detect “agent” presence or not. Consequently, for estimating the regional
epicenters, our algorithm allows to predefine a maximum (non-zero) value below
which the regions are still considered free of “agent” presence but with their typical
background “noise”. Only regions over this value will be considered as likely
epicenters (and, correspondingly, all regions below are considered non-epicenters).
The user may see some improvement in model fit when using a non-zero value,
due to the non-epicenters will not be forced to be zero at the onset time (i.e.,
increasing correspondence with reality, in which regions may never have an exact
zero value, depending on the imaging modality used).

Of note, increasing “too much” the maximum value for non-epicenters may
result in data overfitting, because the non-epicenters may have a large enough
range, and the corresponding numerical flexibility, to adapt to the studied process.
That is, if the “agent” positivity threshold is not conservative enough (i.e. too high),
all brain regions can potentially behave as epicenters. We suggest a value about or

below the 5% of the typical maximum value in the analyzed imaging modality (or
about/below 0.05 if working with probabilistic values).

Estimating onset time: this measure should be interpreted as the time at which
the intra-brain spreading process under study started (e.g. the age at which amyloid
and tau proteins appeared and started propagating in the brain). If known, the user
can provide the onset time. Otherwise, it will be estimated by the optimization
algorithm. In such a case, the user would need to provide the minimum possible
value (default: zero).

ESM Outputs (saved as.txt files in the folder “ESM_data_results” inside your
data’s initial directory, and as MATLAB variables in the ESM’s.mat file):

(a) ‘ESM_subject_…_ACCURACY.text’: model accuracy (in %).
(b) ‘ESM_subject_…_resnorm.text’: 2-norm of the residuals.
(c) ‘ESM_subject_…_parameters.text’: obtained model parameters (production

and clearance, respectively) in their original numeric scale.
(d) ‘ESM_subject_…_effective_production.text’: production and clearance

model parameters may be difficult to interpret in the original numeric
scale. To facilitate parameter comparability across subjects, the individual
production parameter’s marginalized across all possible “agent” concentra-
tion/probability values, obtaining the effective individual production rate.

(e) ‘ESM_subject_…_effective_clearance.text’: similarly, the individual clear-
ance parameter’s marginalized across all possible regional concentration/
probability values, obtaining the effective individual clearance rate.

(f) ‘ESM_subject_…_sorted_most_likely_epicenters.text’: when the epicenter
regions are not provided by the user, a list of most likely epicenters will be
provided, based on the model’s optimization.

(g) ‘ESM_subject_…_S0.text’: obtained “agent” concentration/probability
values at the estimated onset time, i.e. initial perturbation triggering the
spreading process. Notice that the solution is not necessarily sparse (i.e. all
regions could have a non-zero value), but those regions with highest values
(over a positivity threshold) should be considered the most likely
propagation epicenters.

(h) ‘ESM_subject_…_onset_time.text’: estimated (or provided) time at which
start the intra-brain “agent” spreading process.

(i) ‘ESM_subject_…_simulated_data.text’: by default, the optimized model
parameters will be used to generate/simulate 30 data points, equally
positioned in time from: the estimated (or provided) onset time, until the
last available time point plus the half of the longitudinal time window of the

Fig. 6 Schematic for data organization in an ESM study. As mentioned, if the brain parcellation(s) and/or connectivity information are only available at
the group level (e.g. coming from a template or another study), the parcellation(s) and/or connectome files can be, alternatively, saved at the root folder
containing all the subjects. Please be sure to include at least one connectome matrix for the first modality, with same number of rows and columns (i.e.
regions) that your parcellation.
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subject’s real data. In addition, the model will generate the data at the
observed time points, simulating a total of Ntimes= 30+ subject time points.
This simulated data (saved here as a [Nregions*Nmodalities ×Ntimes] matrix)
can be of particular interest to visualize spatiotemporal brain changes in a
continues time scale. Also, the generated data at the observed time points
can be used for model validation, comparing with the real observed data.

(j) ‘ESM_subject_…_simulated_times.text’: corresponding time values to the
generated/simulated data.

For the case when the model is applied at the population level (after using the
pseudo-times and subtrajectories from cTI), all the same model outputs will be
saved for each previously identified sub-trajectory/subgroup, e.g.
‘ESM_Subgroup_1_ACCURACY.text’ and ‘ESM_Subgroup_2_ACCURACY.text’.

Executing MCM (timing 5–25min per subject):
Organizing your data for MCM: The software provides an automatic tool to

import all the needed data for MCM evaluation (on the main interface, click
“Complementary_tools”). The data should be organized individually, with a folder
per subject, each subject’s folder including (see Fig. 7):

(a) Brain images (.nii or.mnc) corresponding to each biological factor of
interest, e.g.:
factor_1_t0.nii, factor_1_t1.nii, factor_1_t2.nii, factor_1_t3.nii
factor_2_t0.nii, factor_2_t1.nii, factor_2_t2.nii,
factor_3_t0.nii, factor_3_t1.nii, factor_3_t2.nii, factor_3_t3.nii
Include as many factors and time points as available. t1, t2, t3… should be
numeric values.

(b) Gray matter parcellations images (.nii or.mnc):
GM_parcellation_t0.nii, GM_parcellation_t1.nii, GM_parcellation_t2.nii,
GM_parcellation_t3.nii…
Importantly, if there is only a common parcellation at the group level (e.g.
coming from another study/template), the parcellation files can be,
alternatively, saved in the root folder containing all the subjects’ folders.
In any case, please be sure to include at least one parcellation image for each
subject or for the whole population.

(c) Connectomes (mandatory, e.g. anatomical and/or vascular networks) files:
Multiple (.txt or.csv) files (one for each connectome modality and each time
point, with rows and columns corresponding to brain regions), named for
example:
connectome1_t0.txt, connectome1_t1.txt, connectome1_t2.txt…

Optionally, if a second connectome modality is available, name it as:
connectome2_t0.txt, ‘connectome2_t1.txt, connectome2_t2.txt…
Importantly, if the connectivity information is only available at the group
level (e.g. coming from other study/template), the connectome files can be,
alternatively, saved at the root folder containing all the subjects’ folders. In
any case, please be sure to include at least one connectome matrix for the
first modality, with same number of rows and columns (i.e. regions) that
your parcellation.

(d) Output variables file (optional, e.g. cognitive/clinical evaluations):
In each subject’s folder, include a file named ‘outputs_variables.txt’, with as
many rows as time points, and organized as
value_variable1 value_variable2 (…) value_variableN evaluation_t0
value_variable1 variable2 (…) value_variableN evaluation_t1
Include as many time points as available. For each missing value, use a ‘NaN’.

(e) External Inputs file (optional, e.g. drugs intake): In each subject’s folder,
include a file named ‘input_variable.txt’, with as many rows as time points
or inputs presented, and organized as
starting_time1 finishing_time1 value_input_intensity (constant value if not
changing) specific_target_regions (numbers in GM parcellation, leave empty if
all regions)
starting_time2 finishing_time2 value_input_intensity specific_target_regions
starting_time3 finishing_time3 value_input_intensity specific_target_regions
Include as many time points as available. All entrances should be numeric
values. value_input_intensity should be a constant value reflecting the
intensity of the stimulus in the specified time window. specific_target_regions
should be the numbers of the targeted regions in the GM parcellation, leave
empty if all regions were targeted.
Δ CRITICAL STEP. When working with longitudinal imaging data, it is
common to have subjects with missing time points and/or imaging
modalities. During the data’s organization, the user can opt to impute the
missing data via the trimmed scores regression algorithm42. We strongly
recommend using this option, particularly when the subjects may have
different acquired time points and imaging modalities (e.g. ADNI data).
Otherwise, be sure to have a complete dataset for each subject. If imputation
is not selected, subjects with missing imaging modalities will be removed
from the analysis.
Input file for MCM: an MCM file. After using “Organizing input for MCM”
in “Complementary Tools”, you should have a file for MCM evaluation/

Fig. 7 Schematic for data organization in an MCM study. As mentioned above, if the brain parcellation(s) and/or connectivity information are only
available at the group level (e.g. coming from a template or another study), the parcellation(s) and/or connectome files can be, alternatively, saved at the
root folder containing all the subjects. Please be sure to include at least one connectome matrix for the first modality, with the same number of rows and
columns (i.e. regions) that your parcellation.
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optimization, termed “Input_data_…_MCM.mat”, and saved in the folder
“MCM_data_results” inside your initial data’s directory. All optimization
results will be also saved in this file as well as in text files.
The MCM can be optimized at:

(f) the individual level (only if longitudinal data is available). A minimum of
three time points is required (subjects without enough data will not be
analyzed). Individual parameters (e.g. factor-to-factor causal interactions)
will be saved as a.txt file where rows are subjects and columns are subject ID
and parameters. Additionally, for visualization purposes, these variables will
be saved in the original “_MCM.mat” file.

(g) the population level. Δ CRITICAL STEP. First, use the “contrastive
Trajectories Inference (cTI)” algorithm, where a pseudo-time value will be
obtained for each subject based on his/her baseline data16. Alternatively,
enter your own subjects’ stratification, coming from using cTI on a different
data modality (e.g. molecular, clinical) or from a different computational
method (for using this option, see “Adding new stratification to ESM/MCM
files” in “Complementary Tools”). Then, the subjects will be ordered
according to their characteristic pseudo-path and pseudo-time, constituting
a pseudo-longitudinal data for MCM optimization. Subgroup parameters
(e.g. factor-to-factor causal interactions) will be saved in a.txt file where
rows are subgroups (each corresponding to subjects belonging to a
characteristic pseudo-path) and columns are subject ID, and model
parameters. Additionally, for visualization purposes, these variables will be
saved in the original “_MCM.mat” file. Please see also the “contrastive
Trajectories Inference (cTI)” interface.

Estimating initial system perturbation before baseline: Use this option if you
consider that the subjects may have an underlying “alteration” process started before
their first imaging evaluation (e.g. a long-term neurodegenerative process started years
time before the baseline). Importantly, do you know the clinical state of the subjects
before the first “alteration”? Does any of the subjects in the current population is
“free” of relevant dynamic changes (at least until their first evaluation)? If so, those
subjects can be considered “controls” and, by specifying their IDs in a.txt file, you can
help the model to have an approximation of the data’s typical distribution before the
potential perturbation under study occurred. If this information is available, we
strongly recommend loading their IDs (i.e. the corresponding folder names of those
subjects). Otherwise, the first evaluation will be taken as reference for quantifying
potential brain alterations/perturbations, for each subject.

Estimating initial system perturbation after baseline: If you have information on
the time when an external event/input perturbed the brain system, we recommend
including this information in the data’s organization. For MCM optimization, use
then the “Known event(s) or input(s)” option, which will consider the
corresponding information. If not, select “Unknown event(s) or input(s)”. If
“Estimate S0” is also selected in the “Optimization” panel, the algorithm will
estimate the initial system perturbation.

Δ CRITICAL STEP. By default, we use a spline-based optimization method to
solve the system of differential equations59,60. This results in a very fast
optimization, without needing to propose initial parameters. Alternatively, if this
option is not active, we will use a conventional gradient-based optimization
method (trust-region-reflective algorithm43,61), which is started at multiple seed
points for avoiding local minimum solutions. The former method takes from
seconds to a few minutes per subject, while the latter method results in a
significantly larger computational time, in the order of hours per subject. In our
data, both methods provided comparable results.

Considering external inputs (optional): Select this option to estimate the effects
of any known external input on the brain system. For this, you should have
previously included information about the external input in the data’s organization
process (see details above). The optimization algorithm will estimate a global
measure of the impact that the input has on each considered biological factor.

Estimate S0 (optional): Use this option if you would like to obtain an estimate of
the initial perturbation on the brain system (i.e. what may have caused the initial
propagation of biological alterations on the system).

Regularization (optional): If you are using the “trust-region-reflective”
algorithm (and not the spline smoothing), a Tikhonov regularization will be used
during the parameters’ optimization. The regularization may significantly improve
the parameters, its robustness and biological interpretability, although it will also
require a considerably larger computational time.

Parallel calculus (optional): When using the “trust-region-reflective” algorithm
(and not the spline smoothing), use this option if you would like to use your PC’s
multiple cores during model optimization. It may result in a significant reduction
of the computational time.

Number of iterations (optional): In order to refine the output parameters, the
MCM is optimized multiple times. The higher the number of iterations, the longer
the computational time, but potentially better results.

MCM Outputs (saved as.txt files in the folder “MCM_data_results” inside your
data’s initial directory, and as MATLAB variables in the MCM’s.mat file):

Of note, here we will refer to Nregions and Nmodalities as the number of brain
regions and imaging modalities considered, respectively. Each biological factor
corresponds to a given imaging modality.

(a) ‘MCM_subject_’ subject_ID ‘_accuracy_resnorm.txt’: obtained model accu-
racy (in %) and 2-norm of the residuals, respectively.

(b) ‘MCM_subject_’ subject_ID ‘_parameters.txt’: obtained model parameters
in their original numeric scale. All parameters are also saved as different
outputs according their specific role and biological interpretation on the
model (see descriptions below). First Nmodalities*Nmodalities corresponds to
direct factor-to-factor interactions (rows are seeds, columns are targets; see
Effective causality below). Second Nmodalities elements correspond to factor-
specific scaling/weighting values associated to the intra-brain spreading
processes (a high value for factor m suggesting an strong role of the intra-
brain spreading process for this factor; however, for post hoc analysis, we
recommend to use instead the Effective spreading output described below).
Next Nmodalities elements reflect the fraction [0,1] of factor/modality specific
alterations spreading through the first brain network specified (e.g. if the
user provided both anatomical and vascular brain connectomes, these
output parameters would be reflecting the factor-specific fraction of
spreading via the anatomical network, while the difference with 1 would
reflect the fraction of spreading by the vascular network). Finally, if external
input information’s specified, the last Nmodalities parameters will correspond
to the global direct influence of the input signal on each factor/modality
considered (see also ‘intervention_effects’ and ‘relative_intervention_effects’
outputs, described below).

(c) ‘MCM_subject_’ subject_ID ‘_Effective_causality.txt’: relative direct factor-
to-factor influences (effective causal effects). Square matrix of size
[Nmodalities ×Nmodalities], where the element n,m corresponds to the relative
direct effect of factor n over m (n→m) while accounting for all other factors
interactions and intra-brain spreading, that is, the percent of regional
changes in factor m that are caused by the direct influence of factor n. It is
calculated as 100 multiplied by the sum of the direct effects of n over m,
across all brain regions, relative to the sum of direct effects of all the
biological factors over m (including itself) and spreading effects.

(d) ‘MCM_subject_’ subject_ID ‘_Effective_X_initial.txt’: initial estimation of the
relative factor-to-factor influences (effective causal effects), obtained before the
model’s optimization via a regression analysis and only used as a priori input
for model estimation (not recommended to be used in post hoc analysis).

(e) ‘MCM_subject_’ subject_ID ‘_Effective_spreading.txt’: relative spreading of
considered factors, where the element m reflects the percent of the
spatiotemporal changes in factor m that are presumably caused by its
spreading through brain physical connections (and not by factor-to-factor
interactions or external inputs).

(f) ‘MCM_subject_’ subject_ID ‘_Effective_incoming.txt’: relative incoming
influences for considered factors. Similar to the in-strength measure in a
directed network, element m reflects the percent of regional changes in
factor m that are caused by the direct influences of all the other biological
factors, excluding self-effects. This measure allows the identification of the
most vulnerable and influenced biological factors (reflected in imaging
modalities) during a given brain process.

(g) ‘MCM_subject_’ subject_ID ‘_Effective_outgoing.txt’: relative outgoing
influences for considered factors. Similar to the out-strength measure in a
directed network reflects the percent of regional changes in all the
considered biological factors that are caused by the direct influence of a
given biological factor n, excluding self-effects. This measure can be
particularly useful to detect the most influential biological factors during a
brain process.

(h) ‘MCM_subject_’ subject_ID ‘_A_networks_optimum.txt’: identified multi-
factorial causal network (matrix A in ref. 14), with parameters controlling
regional multifactorial causal interactions and effects propagation through
physical networks (e.g. axonal and vascular connectomes). Matrix of size
[Nregions*Nmodalities ×Nregions*Nmodalities].

(i) ‘MCM_subject_’ subject_ID ‘_initial_perturbation.txt’: estimated (or pro-
vided by the user if external input information’s specified) initial system
perturbation, i.e. a vector of size [Nregions × Nmodalities], where first Nregions

elements correspond to perturbations in imaging modality/factor 1, second
Nregions elements to perturbations in modality/factor 1, and so on, until.

(j) ‘MCM_subject_’ subject_ID ‘_perturbation_time.txt’: estimated (or pro-
vided by the user if external input information’s specified) time at which
happens the initial system perturbation.

(k) ‘MCM_subject_’ subject_ID ‘_intervention_effects.txt’: if external input
information’s specified, this output consist of Nmodalities parameters corre-
sponding to the estimated global direct influence of the input signal on each
factor/modality considered (see also ‘relative_intervention_effects’ below).

(l) ‘MCM_subject_’ subject_ID ‘_relative_intervention_effects.txt’: same that
‘intervention_effects’, but after normalizing each factor m’s corresponding
value by the sum of direct effects of all the biological factors over m
(including itself), spreading- and input effects.

(m) ‘MCM_subject_’ subject_ID ‘_est_data_before_perturbation.txt’: vector with
Nregions*Nmodalities elements corresponding to estimated multifactorial
regional values at the time that the initial perturbation occurred.

(n) ‘MCM_subject_’ subject_ID ‘_simulated_data.txt’: by default, the optimized
model parameters will be used to generate/simulate 30 multifactorial data
points, equally positioned in time from: the estimated (or provided) onset
time, until the last available time point plus the half of the longitudinal time
window of the subject’s real data. In addition, the model will generate the
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data at the observed time points, simulating a total of Ntimes= 30+subject
time points. This simulated data (saved here as a [Nregions*Nmodalities ×
Ntimes] matrix) can be of particular interest to visualize spatiotemporal brain
changes in a continues time scale. Also, the generated data at the observed
time points can be used for model validation, comparing with the real
observed data.

(o) ‘MCM_subject_’ subject_ID ‘_simulated_times.txt’: corresponding time
values to the generated/simulated data.

For the case when the model is applied at the population level (after using the
pseudo-times and subtrajectories from cTI), all the same model outputs will be
saved for each previously identified sub-trajectory/subgroup, e.g.
‘MCM_Subgroup_1_ACCURACY.text’ and MCM_Subgroup_2_ACCURACY.
text’.

Executing pTIF (timing 5–25 min per subject):
Input data for pTIF estimation: the MCM’s.mat file after optimization. See

“Organizing input for MCM” in “Complementary Tools”, and Executing MCM
subsection.

The pTIF can be estimated when:

(a) having individual longitudinal data. Firstly, the MCM approach should be
optimized at the individual level, using the available longitudinal data. Then,
each individual multifactorial causal network will be analyzed, depending on
the selected options (see below) to provide an individual pTIF (a vector with
the required energy deformations to move a subject’s state at the time of
her/his final evaluation to a desired state). The corresponding pTIF values
(and the chosen options) will be saved as “…pTIF.txt” in the MCM data/
results folder.

(b) having cross-sectional data for a relatively large population. Δ CRITICAL
STEP First, use the “contrastive Trajectories Inference (cTI)” algorithm with
your MCM file. Then, the subjects will be ordered according to their
characteristic pseudo-path and pseudo-time, constituting a pseudo-
longitudinal data for MCM optimization. Once the (sub)population MCM
is optimized, the group’s multifactorial causal network will be analyzed,
depending on the selected options (see below), to provide an individual pTIF
(a vector with the required energy deformations to conduce a subject’s state
at the time of the evaluation to a desired state). The temporal analysis will be
based on the pseudo-time scale. All the individual pTIF values (and the
chosen options) will be saved as “…pTIF.txt” in the MCM data/results folder.
Control brain factors or output variables: The MCM can be used as in silico
evaluator of external inputs, which can focus on obtaining a desired state
following two different control strategies:

(a) Full control: focuses on controlling all considered brain factors and
regions.

(b) Output control: focuses on controlling cognitive/behavioral states,
without necessarily modifying all the studied brain properties, and
focusing on a specific output variable (e.g. a given cognitive metric).

Desired system state: When estimating the optimum signal to conduce the brain
system or its outputs from a current state (last time point) to a desired state, the
user should specify the final desired state, opting to:

(a) keeping stable the observed alterations (desired state is equal to initial state).
(b) reducing the current state’s alterations to a given percent (provide a value

between 0 [reducing all alterations to zero level] and 100 [causing no
change]).

(c) reducing the current state’s alterations to the mean level of the control
subjects, which is the reference for calculating the alterations (this analysis
can only be performed if control subjects were defined before MCM
optimization).

Intervention duration: Time window of the hypothetical brain intervention. Δ
CRITICAL STEP It must be in the same scale that the reported time in the observed
data. However, if using a pseudo-time metric instead, be sure to always enter a value
between 0 and 1. In this case, it is important to consider that the interval 0 to 1 may
be equivalent to the whole time that takes the studied process (e.g. a disease covering
years of progression). We recommend using a conservative number, for example, if a
disease under study usually takes 10 years to develop, and you would like to simulate
a 1-year intervention, define an intervention duration equal to 1/10.

Targeting combinations of factors: Define the number of factors (imaging
modalities) that are going to be targeted during the hypothetical external
intervention. For combinatorial interventions, we recommend combinations of as
many biological factors as available imaging modalities.

pTIF outputs (saved as.txt in the input data’s folder and as variables in the
MCM’s.mat file). Here we will refer to Nsubjects, Nregions and Nmodalities as the
number of subjects, brain regions, and imaging modalities considered, respectively.
Each biological factor corresponds to a given imaging modality.

(a) ‘Results_Input_data_(…)_MCM_OPTIONS_for_pTIF.txt’: options selected
by the user for pTIF estimation (e.g. control strategy, input duration,
combinations of factors).

(b) ‘Results_Input_data_(…)_MCM_pTIF.txt’: global pTIF matrix of size
[Nsubjects ×NpTIF]. The individual pTIF corresponds to a numeric

multivariate vector with dimensionality determined by all possible “tested”
interventions. The number of pTIF elements (NpTIF) depend on the number
of imaging modalities/factors considered and the number of factors
combined (see Targeting combinations of factors option above). For
instance, for Nmodalities= 6, the number of all possible single-target or
combinatorial interventions (up to a maximum of 6 factors) is 63, which
finally defines the individual pTIF vector.

(c) ‘Results_Input_data_(…)_MCM_regional_pTIF.txt’: regional pTIF matrix
of size [Nsubjects × Nregions*NpTIF]. For each “tested” intervention, the global
pTIF value (reported in the described global pTIF matrix, above)
corresponds to the sum of all the energy-cost regional values required to
cause the desired change. Contrary, the regional pTIF matrix include all the
regional values before adding them, which provides a detailed characteriza-
tion of the estimated factor(s)-specific changes for each brain region.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All synthetic data used are available at the software’s downloading page. All real data
used are publicly available at the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.
gov/geo, accession number GSE44772) and the Alzheimer’s Disease Neuroimaging
Initiative (ADNI; www.adni.loni.usc.edu). For reproducibility purposes, anonymized IDs
of the studied ADNI subjects will be provided upon request, as well as detailed
information of the imaging modalities and time points analyzed for each subject.

Code availability
NeuroPM-box software and its PDF tutorial are freely available at neuropm-lab.com/
neuropm-box.html. User-friendly standalone applications for Linux, macOS, and
Windows systems are provided (importantly, MATLAB license and/or programming
expertise are not required). Additionally, a demo script for testing/evaluation is provided,
including a user guide to reproduce all results presented in Fig. S1.
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