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Background: Surface contamination has been implicated in the transmission of certain
viruses, and surface disinfection can be an effective measure to interrupt the spread of
these agents.
Aim: To evaluate the in-vitro efficacy of hydrogen peroxide vapour (HPV), a vapour-phase
disinfection method, for the inactivation of a number of structurally distinct viruses of
importance in the healthcare, veterinary and public sectors. The viruses studied were:
feline calicivirus (FCV, a norovirus surrogate); human adenovirus type 1; transmissible
gastroenteritis coronavirus of pigs (TGEV, a severe acute respiratory syndrome coronavirus
[SARS-CoV] surrogate); avian influenza virus (AIV); and swine influenza virus (SwIV).
Methods: The viruses were dried on stainless steel discs in 20- or 40-mL aliquots and
exposed to HPV produced by a Clarus L generator (Bioquell, Horsham, PA, USA) in a 0.2-m3

environmental chamber. Three vaporized volumes of hydrogen peroxide were tested in
triplicate for each virus: 25, 27 and 33mL.
Findings: No viable viruses were identified after HPV exposure at any of the vaporized
volumes tested. HPV was virucidal (>4-log reduction) against FCV, adenovirus, TGEV and
AIV at the lowest vaporized volume tested (25mL). For SwIV, due to low virus titre on the
control discs, >3.8-log reduction was shown for the 25-mL vaporized volume and >4-log
reduction was shown for the 27-mL and 33-mL vaporized volumes.
Conclusion: HPV was virucidal for structurally distinct viruses dried on surfaces, sug-
gesting that HPV can be considered for the disinfection of virus-contaminated surfaces.
ª 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Introduction

Viruses are important causes of acute and chronic diseases
in humans and animals, and frequently cause community-
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acquired and nosocomial infections. Surface contamination
with viruses is common in households, industrial settings and
healthcare facilities, and the role of these contaminated sur-
faces in the transmission of certain viruses, such as norovirus, is
recognized increasingly.1 Many viruses have a low infectious
dose and are shed at high titres from infected individuals, even
when the infection is asymptomatic.2 They can contaminate
dry surfaces, survive for extended periods and be transmitted
to susceptible hosts from surfaces.2,3 Once dried on inanimate
surfaces, viruses are less susceptible to disinfection than when
Published by Elsevier Ltd. All rights reserved.
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hydrated in suspension.4 This susceptibility is further reduced
by the presence of organic soil and viral clumping.4

Disinfection of surfaces is an effective method for reducing
the risk of exposure to viruses and interrupting their spread.5

However, some viruses, such as norovirus, are resistant to
some commonly used hospital disinfectants.6,7 In addition,
conventional manual disinfection of surfaces is labour inten-
sive, and it appears that a two-stage disinfection procedure,
including surface rehydration followed by disinfection, is
required for effective inactivation of viruses dried on sur-
faces.4,6 Reliance on an operator to ensure appropriate selec-
tion, formulation, distribution and contact time of the agent
further limits the repeatability and efficacy of the manual
disinfection process. Hence, viral contamination can persist
after standard or even enhanced manual environmental
cleaning and disinfection.6,8e10

Hydrogen peroxide vapour (HPV) is a novel ‘no-touch’
automated decontamination technology that removes the
reliance on the operator to ensure distribution, contact time
and process repeatability, and has therefore been used for
environmental decontamination in various settings to improve
the efficacy of disinfection.11 Two types of HPV are available:
non-condensing vaporized hydrogen peroxide (VHP) technology
(Steris) and condensing HPV technology (Bioquell). Condensing
systems inject hydrogen peroxide until the air in the enclosure
becomes saturated and hydrogen peroxide begins to condense
on surfaces. Non-condensing systems dry the vapour stream as
it is returned to the generator.12 Both condensing and non-
condensing systems are registered with the Environmental
Protection Agency, and have well-established efficacy against
bacterial spores and other microbes.12e14 A study published in
the 1990s evaluated the efficacy of a non-condensing VHP
system against a range of viruses.14 However, limited evidence
is available for the virucidal activity of condensing HPV sys-
tems. Recently, several studies have demonstrated the in-vitro
activity of condensing HPV systems against individual viruses,
including feline calicivirus (FCV),11 adenovirus,15 lactococcal
bacteriophages16 and MS2 coliphage.17 However, to the au-
thors’ knowledge, no studies published to date have evaluated
the efficacy of condensing HPV systems against a range of vi-
ruses exposed under the same conditions.

As such, this study evaluated the in-vitro virucidal efficacy
of a condensing HPV system against a number of structurally
distinct viruses of importance in the healthcare, veterinary and
public sectors. These included a small non-enveloped RNA virus
(FCV, a norovirus surrogate), a larger non-enveloped DNA virus
(human adenovirus) and three enveloped RNA viruses: trans-
missible gastroenteritis coronavirus (TGEV, a severe acute
respiratory syndrome coronavirus [SARS-CoV] surrogate), avian
influenza virus (AIV) and swine influenza virus (SwIV).
Materials and methods

Viruses

The following five viruses were used: FCV (strain 255) as a
surrogate of human norovirus, TGEV (Purdue strain) as a sur-
rogate for SARS (severe acute respiratory syndrome) virus,
human adenovirus type 1 (hADV-1), AIV (A/chicken/Maryland/
2007[H9N9]) and SwIV (A/swine/Minnesota/2010 [H3N2]). FCV,
TGEV and hADV-1 were grown in CRFK, ST and A-549 cells,
respectively, while AIV and SwIV were grown in MDCK cells. The
cells were grown in Eagle’s MEM (Mediatech, Herndon, VA, USA)
supplemented with 150 IU/mL penicillin, 150 mg/mL strepto-
mycin, 50 mg/mL neomycin, 1 mg/mL fungizone and 8% foetal
bovine serum. Viruses were harvested from infected cells by
three freezeethaw cycles followed by centrifugation at 2000 g
for 20 min. The supernatant was aliquoted and stored at�80 �C
until use.

HPV exposure

Sterile 10-mm-diameter 18/8 stainless steel (grade 304)
discs (Mesa Labs, Lakewood, CO, USA) were inoculated with
20 mL of virus suspension of FCV, hADV-1 and TGEV. For AIV and
SwIV, 40 mL of virus suspension was used because their initial
titres were lower than those of the other three viruses. No
additional soiling was added, apart from the 8% foetal bovine
serum in the culture medium. After virus application, the discs
were placed inside a biosafety cabinet to dry for 30min. After
drying, the discs were placed in 24-well tissue culture plates
(one disc per well) without lids. For each experiment, three
inoculated discs were exposed to HPV in an environmental
chamber and one disc was kept in a separate control plate,
which was kept outside the environmental chamber at room
temperature for the duration of the test. Three independent
tests were performed for each vaporized volume of hydrogen
peroxide.

HPV was produced using a Clarus L generator (Bioquell,
Horsham, PA, USA). The Clarus L generator, which is situated
outside the enclosure, converts 35% w/w liquid hydrogen
peroxide into HPV using a vaporizer heated to 120 �C, and
circulates the HPV through the environmental chamber via a
supply and return hose. Hydrogen peroxide was injected at
2 mL/min for 1, 2 or 5 min followed by 1.5 mL/min for 15 min
equating to three different volumes: 25, 27 and 33 mL. The
concentration of HPV and temperature in the environmental
chamber during the cycle was not measured. Following HPV
injection, the air in the environmental chamber was routed
through an activated carbon filter to break down the
hydrogen peroxide to oxygen and water vapour. When the
concentration of HPV in the environmental chamber reached
<1 ppm, as determined by a hydrogen peroxide hand-held
sensor through a sampling port, all test discs were
removed. The total exposure time, including injection and
aeration (the breakdown of hydrogen peroxide), was
approximately 2e3 h, varying with the amount of hydrogen
peroxide being vaporized. After completion of each run,
discs were removed from the environmental chamber and
titrated to determine the amount of surviving virus along
with the control disc.

In addition to the virus test discs, four Tyvek-packaged
Geobacillus stearothermophilus biological indicators (BIs)
(Mesa Labs) with a certified population of >6-log10 spores/disc
were placed in the corners of the environmental chamber in
alternating high and low locations and used as a standard in-
dicator for the HPV decontamination cycles.18 BIs were
removed from the environmental chamber following HPV
exposure, transferred into test tubes containing trypticase soy
broth, incubated at 65 �C, and examined for bacterial growth
daily for seven days. An unexposed BI was transferred into
trypticase soy broth and incubated with each batch as a posi-
tive control.
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Virus titration

Surviving virus from HPV-exposed and unexposed (control)
discs was eluted with 0.5 mL of an elution buffer (3% beef
extract, 0.05 M glycine, pH 7.2) followed by vigorous pipetting
to aid virus elution. Serial 10-fold dilutions of the eluates were
prepared in Eagle’s MEM followed by inoculation of appropriate
cells grown in 96-well microtitre plates (using four wells/dilu-
tion). The inoculated plates were incubated at 37 �C and
examined daily for four days for the appearance of virus-
induced cytopathic effects. Log virus reductions were calcu-
lated by comparing the titres of the exposed discs with those of
the control discs.
Results

All BIs (G. stearothermophilus) exposed to HPV were inac-
tivated, while all control BIs had visible growth following
overnight incubation. The results of virus inactivation are
summarized in Table I. The log reductions in virus titres were
calculated by comparing the HPV-exposed and control discs. All
viruses were inactivated completely after HPV exposure in the
25-, 27- and 33-mL cycles. HPV was virucidal (>4-log reduction)
against FCV, adenovirus, TGEV and AIV at the lowest vaporized
volume of hydrogen peroxide tested (25 mL). For SwIV, due to
low virus titre on the control discs, a >3.8-log reduction was
shown for the 25-mL volume and >4-log reduction was shown
for the 27-mL and 33-mL vaporized volumes. As no virus was
detected on any of the HPV-exposed discs, it is not possible to
comment on the relative susceptibility of the viruses.
Discussion

A carrier test method was used to evaluate the virucidal
efficacy of HPV against a number of structurally distinct viruses
of importance in the healthcare, veterinary and public sectors.
These included a small non-enveloped RNA virus (FCV), a larger
non-enveloped DNA virus (adenovirus) and three enveloped
RNA viruses (TGEV, AIV and SwIV). HPV was virucidal (>4-log
reduction) at the lowest dose tested against all viruses.

Virucidal susceptibility testing of disinfectants is often
performed in suspension tests. These can overestimate the
virucidal activity of chemical agents compared with carrier
methods because viruses are more resistant on surfaces than in
suspension.4,19 This study tested the virucidal efficacy of HPV
in a surface carrier test with viruses dried on stainless steel
Table I

Virucidal efficacy of hydrogen peroxide vapour (HPV) against viruses d

Virus (strain) Log10 reduction in virus titre (TCID50

25mLb

Human adenovirus (type 1) >5.61 (0.19)
Feline calicivirus (strain 255) >5.94 (0.51)
TGEV (Purdue, type 1) >5.05 (0.19)
Avian influenza virus (H9N9) >4.08 (0.58)
Swine influenza virus (H3N2) >3.83 (0.14)

TCID50, transmission culture infective dose; TGEV, transmissible gastroe
a Log10 reduction calculated by comparing the virus titre recovered fro
b No virus particles were detected on the test discs.
discs, as this was considered to resemble real environmental
conditions more closely.

Norovirus is the most common cause of gastroenteritis in
humans worldwide.20 It has a low infective dose, is shed at high
concentrations and causes considerable environmental
contamination, which has been implicated in its trans-
mission.1,2 Thus, cleaning and disinfection of contaminated
surfaces is important in the control of this virus in hospital and
community outbreaks.1,21 A range of disinfectants, including
chlorine-based agents, are active against norovirus surrogates
in vitro.22 However, the virus is resilient in the environment,
able to survive for days on dry surfaces,3 and can persist
despite bleach disinfection.6,8 In the absence of a simple cell
culture system to culture human norovirus, surrogate viruses
such as FCV have been used in disinfection studies.23 Bentley
et al.11 investigated the efficacy of HPV against FCV strain F9
dried on materials representative of a hospital setting (stain-
less steel, glass, vinyl flooring, ceramic tile and PVC plastic
cornering). They reported that HPV reduced the viral titre by 4-
log on all surfaces tested within 20min of exposure in a
microbiological safety cabinet. The present finding that HPV
was virucidal against FCV [>5-log reduction in tissue culture
infective dose (TCID50)] is similar to the results of Bentley
et al.,11 despite recovery of a lower inoculum from the control
discs (>5-log compared with >7-log) and the fact that a
different strain of the virus was tested.

Influenza A viruses (including AIV and SwIV) are associated
with annual epidemics and occasional pandemics, and have
recently been the focus of serious global public health concerns
in humans.24 Contaminated environmental surfaces are known
to contribute to the spread of these viruses,2 and various
physical and chemical disinfection processes have been shown
to inactivate influenza virus on surfaces25 including aerosolized
and vapour-phase hydrogen peroxide.14,26,27 Many of these
studies, however, were limited by the relatively low titre of
virus recovered on the controls after the process because of low
initial virus titre and loss of viability due to long exposure times
and exposure to ambient environmental conditions.14,26 Due to
the relatively short drying and exposure time in this experi-
ment, it was possible to achieve a higher titre on the control
discs at the end of the process than in previous studies.14,26 No
AIV or SwIV was detected after exposure to HPV, and a >4-log
reduction was achieved for the 27-mL and 33-mL doses.

Adenovirus is an important human pathogen, and recombi-
nant adenoviruses are used widely in biomedical and industrial
settings as a gene transfer tool.15 Adenoviruses are capable of
survival when dried on to surfaces for up to three months.3 As
ried on stainless steel discs

)a (SD) after exposure to vaporized volumes of hydrogen peroxide

27mLb 33mLb

>5.61 (0.51) >4.83 (0.33)
>6.28 (0.39) >6.16 (0.00)
>4.94 (0.19) >5.28 (0.69)
>4.50 (0.25) >4.83 (0.29)
>4.92 (0.63) >4.75 (0.50)

nteritis coronavirus; SD, standard deviation.
m the control and HPV-exposed discs.
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such, implementation of effective decontamination procedures
in these settings is critical to minimize the risk of human expo-
sure to the virus and to prevent product cross-contamination.15

Various liquid chemical disinfectants are capable of inactivating
adenovirus.28,29 A previous study has shown thatHPV is effective
(>8-log reduction in TCID50) against a high titre of recombinant
adenovirus (Ad5GFP) dried on surfaces.15 Similarly, in this study,
HPV was virucidal (>4-log reduction in TCID50) against a clini-
cally significant human adenovirus.

TGEV is a porcine pathogen causing lethal enteric infections
for suckling piglets. It has serious financial implications for the
pig industry, and is often used as a surrogate for SARS-CoV.7,30

TGEV has been shown to survive for days on surfaces under
ambient conditions.30 Studies have shown that various physical
and chemical disinfectants are effective against TGEV, but ef-
ficacy varies.7,31 This study found HPV to be virucidal (>4-log
reduction) against TGEV type 1 dried on stainless steel surfaces.

The strengths of this study include the use of carrier tests
rather than suspension tests to determine the efficacy of HPV.
Most previous studies of the Bioquell system (condensing) have
tested efficacy against a single virus.11,15,17 This study
extended previous findings by testing a range of structurally
distinct viruses with varied susceptibility levels to disinfection
tested under the same conditions, and found that that they
were equally susceptible to HPV. The drying and exposure
times in this study were relatively short, and the log reductions
were calculated from control discs enumerated at the same
time as the test samples. This helped to reduce the impact of
ambient conditions on the viability of the viruses, and gave a
more accurate measure of HPV-attributed inactivation of the
viruses.

This study has some limitations. Simulated soiling was not
applied to the virus samples, although the presence of foetal
bovine serum in the medium used to grow the viruses can be
taken as a ‘soil load’ in this test. HPV is designed to be used on
clean surfaces, so soiling and organic matter would be cleaned
before the process was used. However, further studies
including higher levels of organic soiling are warranted.
Stainless steel discs were used as the substrate in this study.
These only mimic one type of material that HPV could be used
to decontaminate. Several studies have indicated that the ef-
ficacy of HPV is not significantly different on a range of hard
surfaces commonly used in health care.11,13 However, future
studies should address the efficacy of HPV for the inactivation
of viruses on a range of materials.

In summary, respiratory and enteric viruses can be shed at
high concentrations, and contaminate and survive for long
periods on environmental surfaces; this has been shown to play
a role in their transmission. Effective disinfection of the envi-
ronment is key for interrupting transmission from the envi-
ronment, especially as many of these viruses have a very low
infective dose. However, this is not always achieved by con-
ventional cleaning and disinfection techniques due to inherent
limitations in the process and variation in viruses’ resistance to
the disinfectant. HPV, a vapour-phase disinfection method,
was virucidal on structurally distinct viruses dried on surfaces,
and hence HPV can be considered for the disinfection of virus-
contaminated surfaces.
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