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  Titanium is widely used in biomedical materials, particularly in dental implants, because of its excellent bio-
compatibility and mechanical characteristics. However, titanium implant failures still remain in some cases, 
varying with implantation sites and patients. Improving its overall performance is a major focus of dental im-
plant research. Equal-channel angular pressing (ECAP) can result in ultrafine-grained titanium with superior me-
chanical properties and better biocompatibility, which significantly benefits dental implants, and without any 
harmful alloying elements. Lanthanum (La) can inhibit the acidogenicity of dental plaque and La-containing hy-
droxyapatite (La-HA) possesses a series of attractive properties, in contrast to La-free HA. Micro-arc oxidation 
(MAO) is a promising technology that can produce porous and firmly adherent hydroxyapatite (HA) coatings 
on titanium substrates. Therefore, we hypothesize that porous La-containing hydroxyapatite coatings with dif-
ferent La content (0.89%, 1.3% and 1.79%) can be prepared on ultrafine-grained (~200–400 nm) titanium by 
ECAP and MAO in electrolytic solution containing 0.2 mol/L calcium acetate, 0.02 mol/L b-glycerol phosphate 
disodium salt pentahydrate (b-GP), and lanthanum nitrate with different concentrations to further improve the 
overall performance of titanium, which are expected to have great potential in medical applications as a den-
tal implant.
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Background

Commercial pure titanium and its alloys are widely used as 
biomedical materials, particularly in dental implants, because 
of their exceptional biocompatibility, low elastic modulus, ex-
cellent corrosion resistance, and high strength-to-density ra-
tio. Within the last decade, the success rate of dental implants 
made of titanium has been reported to be 90–95% in medical-
ly healthy patients [1]. However, titanium implant failures still 
remain in some cases, varying with implantation sites and pa-
tients [2]. With the aging population, the incidence of implant 
failure will be high in patients with severe alveolar bone ab-
sorption and/or poor bone quality [3,4]. Hence, modification 
in design as well as the surface of implants is essential to im-
prove the biocompatibility of titanium implants, especially 
with respect to bone cell response, to improve osseointegra-
tion of the implants and minimize the risk of implant failures. 
This may be achieved by surface modification and titanium 
refinement, which are able to actively interact with the sur-
rounding tissues.

Latest	Development	of	Titanium	Refinement	
and	Bioactive	Coatings	on	Titanium	Surface

Grain refinement is an effective method to enhance mechani-
cal strength without the need to add a potentially harmful al-
loying element [5,6]. Ultrafine-grained (UFG) metals processed 
by equal-channel angular pressing (ECAP) show superior me-
chanical properties, such as high strength and improved ductil-
ity, as well as lower temperature and higher strain rate super-
plasticity [7,8]. The microstructure of coarse-grained titanium 
can be significantly refined through the ECAP process, and the 
resulting strength is enhanced from 463 to 1050 MPa, which 
is even higher than that of the commercial Ti6Al4V alloys (950 
MPa) used for implants [8]. Furthermore, very recent studies 
reveal that the grain refinement of titanium has superior os-
teoblast cell compatibility [9] and shows better cell adherence 
and cell proliferation compared to the coarse-grain grade 2 ti-
tanium [10]. Thus, ultrafine-grained pure titanium, with bet-
ter mechanical properties and extraordinary biocompatibility, 
seems to be a perfect candidate for use as dental implants.

Grain boundaries may act as fast atomic diffusion channels, 
and various kinds of non-equilibrium structural defects can ac-
celerate the chemical activity of the UFG materials [11]. Thus, 
the use of ECAP-treated titanium as a substrate for bioactive 
coatings may represent an additional advantage over its con-
ventional coarse-grained counterpart.

Rare earth elements (REE) are an important strategic resource 
widely used in various fields, including industry, agriculture, 
medicine, and daily life, but eventually accumulated in the 

human body. In particular, lanthanum (La) is one of the most 
important REE widely researched in recent years. La is found 
to have potential value in treatment and prevention of dental 
root caries [12,13]. La3+ promotes the formation of osteoclast-
like cells and significantly increases the number and surface 
area of the resorption pits at the concentration of 1×10–8 mol/L, 
but inhibits bone resorption activity at higher concentrations 
[14]. Moreover, La has been recognized as a “bone-seeking” el-
ement due to the analogy between La3+ and Ca2+ in ionic radii 
and coordination tendency [15]. A recent study indicates that 
the La3+ ion can be incorporated into the crystal lattice of hy-
droxyapatite, resulting in the production of La-containing ap-
atites. La content plays important roles in both the physico-
chemical properties and biocompatibilities of the La-containing 
apatites. In contrast to La-free apatite, La-containing apatites 
possess a series of attractive properties, including higher ther-
mal stability, higher flexural strength, lower dissolution rate, 
greater alkaline phosphatase activity, preferable osteoblast 
morphology, and comparable cytotoxicity [16]. Thus, the in-
troduction of La at controlled doses into some biomedical ma-
terial could become an effective way to improve biomateri-
al properties. The La-containing apatite possesses application 
potential in developing a new type of bioactive coating mate-
rial for dental implants.

The application of hydroxyapatite (HA) coatings on dental im-
plant devices offers the advantage of a combination of me-
chanical properties of the metal and the favorable bioactivity 
of the ceramics. To coat HA on the surface of titanium im-
plants, many surface treatment techniques, including plasma 
spraying, immersion in physiological fluid, sol-gel method, ca-
thodic deposition, ion-beam techniques, and plasma nitriding 
have been used [17–22]. However, there are many concerns 
and controversy as to their long-term effectiveness and perfor-
mance. MAO is a promising technology that can produce po-
rous, rough, and firmly adherent inorganic lanthanum-contain-
ing hydroxyapatite (La-HA) coatings on titanium substrates. It 
has large-scale fabrication capability, and the amount of lan-
thanum incorporated into the coatings can be optimized by 
altering the electrolyte composition [23–25].

Hypothesis	and	Evaluation	of	the	Hypothesis

Fabrication	of	ECAP-treated	Ti	specimen

On the basis of the above analyses, we propose the hypothe-
sis that ultrafine-grained commercially pure titanium sample, 
which has various advantages over its conventional coarse-
grained counterpart, prepared by ECAP, can be used as a sub-
strate for bioactive coatings. Pure Ti billets, 20 mm in diameter 
and 100 mm in length, will be processed by ECAP for 8 passes 
at a rate of 6 mm s–1 at 450 [6]. These processing parameters 
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are optimized for the best combination of ductility and ef-
ficiency in grain refinement. The deformed microstructures, 
mechanical properties, and biocompatibility of pure titanium 
that are influenced by varied technological parameter will be 
investigated. Then the UFG (~200–400 nm) titanium samples 
will be coated by porous lanthanum-contained hydroxyapa-
tite layer via the MAO process.

Synthesis	of	La-HA	coatings	by	MAO

A 2 kW alternating current MAO device will be used to fab-
ricate La-HA coatings. A mixed aqueous solution containing 
0.2 mol/L calcium acetate, 0.02 mol/L b-glycerol phosphate di-
sodium salt pentahydrate (b-GP), and lanthanum nitrate with 
different concentrations (0, 0.3 g/L, 0.7 g/L, and 1.0 g/L) will 
be used as the electrolyte system.

Because no upper limit has been defined for the amount of 
lanthanum that should be incorporated into the hydroxyapa-
tite coatings, it has to be optimized to provide enough to fa-
vor bone formation without having deleterious effects on bone 
mineralization. In addition, the optimal dosage of La depends 
on a complicated environment, not only crystal itself, but also 
the adjacent tissue fluid in vivo. Therefore, in this study, a se-
ries of La-HA coatings are produced on UFG titanium samples 
using MAO, with the different substitution degrees.

In previous studies, the oxide coating included Ca- and 
P-containing phases such as CaTiO3, a-Ca3(PO4)2, b-Ca2PO7, 
CaCO3, CaO, or amorphous apatite [26–29]. Further work is 
needed on hydrothermal treatment, heat treatment, or a sim-
ulated body fluid (SBF) incubation treatment of the coatings 
[26,27,30,31] to improve its bioactivity [32]. Now we can cre-
ate lanthanum-containing hydroxyapatite coatings directly 
through the MAO process by controlling the parameters of 
MAO and adding La element in the electrolytic solutions, get-
ting rid of the additional treatment of titanium coatings, and 
thus improving efficiency and affordability.

Coating characterization and bioactivity evaluation

The surface topography, thickness, phase, composition morphol-
ogy, surface roughness, and adhesion strength of the coatings 

will be characterized by field emission scanning electron mi-
croscope (FESEM), scanning electron microscope (SEM), X-ray 
diffraction (XRD), electron probe microanalysis (EPMA), scan-
ning electron microscopy (SEM) with energy dispersive X-ray 
spectrometer (EDS), atomic force microscope (AFM), and na-
no-indentation testing system.

Then, based on the above preliminary analyses of coating, 
in vitro biological responses at the bone-implant interface and 
in vivo osteoblast/osteoclast responses to the La-HA coating will 
be investigated and the optimal La content to substitute in hy-
droxyapatites (HA) coatings can be clarified as well. Especially, 
studies will be performed to answer the question “What will 
happen to the structure and properties of La-containing hy-
droxyapatite coatings after La is incorporated into its crystal 
lattice via MAO process?”

It will be found that the thickness of La-HA coatings decreas-
es and the contents of La on the coatings and the adhesion 
strength of coatings increase as the concentrations of La in 
electrolyte increasing. The XRD and EDS results will show that 
the porous coating is made of La-containing HA film and La 
content in La-containing hydroxyapatite coating are 0.89%, 
1.3% and 1.79%, respectively.

Conclusions

Based on the thorough understanding of the latest develop-
ments in titanium refinement and surface modification, po-
rous La-containing hydroxyapatite coatings with different La 
content (0.89%, 1.3%, and 1.79%) can be prepared on ultra-
fine-grained titanium by MAO. This strategy could possess ap-
plication potential in developing an easy to perform surface 
modification method with low production costs and a new 
type of bioactive coating material for titanium implants with 
an optimized combination of mechanical properties and effec-
tive osseointegration function.
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