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Septins are a family of eukaryotic GTP-binding proteins that associate into linear

rods, which, in turn, polymerize end-on-end into filaments, and further assemble

into other, more elaborate super-structures at discrete subcellular locations. Hence,

septin-based ensembles are considered elements of the cytoskeleton. One function of

these structures that has been well-documented in studies conducted in budding yeast

Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins,

which dictate the spatial and temporal control of certain aspects of the cell division

cycle. In particular, septin-associated protein kinases couple cell cycle progression with

cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms

that integrate a multitude of signals and coordinate key downstream networks required

for cell cycle passage. This review summarizes what we currently understand about how

the action of septin-associated protein kinases and their substrates control information

flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially

to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin

structures represent a regulatory node at the intersection of many signaling pathways. In

addition, and importantly, the activities of certain septin-associated protein kinases also

regulate the state of organization of the septins themselves, creating a complex feedback

loop.
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INTRODUCTION

Septins are a conserved family of GTPases (Pan et al., 2007; Peterson and Petty, 2010; Nishihama
et al., 2011) that serve multiple biological functions in diverse cell types (Weirich et al., 2008;
Hall and Russell, 2012; Hernandez-Rodriguez and Momany, 2012; Mostowy and Cossart, 2012;
Fung et al., 2014). All eukaryotes examined to date (except higher plants) encode multiple septin
genes, ranging from just two in the nematode Caenorhabditis elegans (John et al., 2007), to five
in Drosophila melangaster (O’Neill and Clark, 2016), to seven in Saccharomyces cerevisiae (Garcia
et al., 2016), to 13 in humans (Peterson and Petty, 2010; Hall and Russell, 2012; Fung et al., 2014).

Budding yeast (S. cerevisiae) has served as a path-finding model eukaryote in which to explore
the structure, function, and regulation of septins and septin-associated proteins. The products of
the yeast septin genes assemble into linear, apolar hetero-oligomeric rods that are the fundamental
building block of all septin-based structures (Bertin et al., 2008; Bertin and Nogales, 2012), as
has now also been shown for other organisms. These rods can self-associate end-to-end to form
filaments and can, depending in their subunit composition, also interact in other modes to form
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more elaborate super-structures, such as spirals, rings, braids,
and gauze-like lattices (Rodal et al., 2005; Garcia et al., 2011;
Oh and Bi, 2011; Bertin et al., 2012; Ong et al., 2014). Other
factors nucleate the assembly of septin structures at discrete
subcellular locations (Chen et al., 2011; Bi and Park, 2012) where
they serve as both scaffolds (Shulewitz et al., 1999; Sakchaisri
et al., 2004; Wloka et al., 2011; Bridges and Gladfelter, 2015)
and diffusion barriers (Takizawa et al., 2000; Caudron and Barral,
2009) and thereby dictate, via direct and indirect interactions, the
subcellular distribution of numerous other proteins (Gladfelter
et al., 2001;McMurray and Thorner, 2009; Finnigan et al., 2016a).
In particular, as discussed here, septin-based structures recruit,
and thereby localize (and, in some cases, regulate the activity of)
a multiplicity of protein kinases that integrate multiple inputs
into signaling pathways and ultimately initiate ensuing biological
responses (Figure 1).

Septins were first discovered in S. cerevisiae as cell division
cycle (cdc) mutants whose compromised function resulted in
abnormal growth patterns and the inability of cells to execute
cytokinesis (Hartwell, 1971; Hartwell et al., 1974). Electron
microscopy revealed a prominent set of filaments that encircle
the yeast bud neck (Byers and Goetsch, 1976) and, later, antibody
staining demonstrated that septins were constituents of those
filaments (Haarer and Pringle, 1987; Kim et al., 1991). The advent
of GFP and other genetically encoding fluorescent protein tags
to follow protein dynamics in live cells in real time revealed
further that septin organization undergoes dramatic changes
during cell cycle progression. Septins first accumulate as a patch
at the incipient site of bud emergence that rapidly resolves into a
filamentous ring (Kozubowski et al., 2005; Okada et al., 2013),
which then expands, concomitant with bud growth, into an
hourglass-shaped tube or collar composed of at least 30–40 gyres
of circumferential filaments at the bud neck (Byers and Goetsch,
1976; McMurray et al., 2011; Finnigan et al., 2015b; Patasi et al.,
2015). At the onset of cytokinesis, the collar splits into two
fllamentous bands of roughly equal size with a prominent gap in
between (Dobbelaere et al., 2003; Dobbelaere and Barral, 2004)
wherein factors needed for actomyosin contractile ring assembly
and new plasma membrane (PM) and cell wall (CW) synthesis
accumulate (Bi et al., 1998; Nishihama et al., 2009). After
cytokinesis and cell separation, each daughter cell disassembles
the half of the collar it inherited (Johnson and Blobel, 1999; Tang
and Reed, 2002) before constructing a new septin-based site for
the next bud to emerge. An N-terminal F-BAR domain—and
C-terminal Muniscin/Mu homology domain (MHD)-containing
protein Syp1 localizes prominently at the bud neck and has
been implicated in the processes required for disassembly of the
septin ring (Qiu et al., 2008). Syp1 is a highly phosphorylated
protein (Albuquerque et al., 2008; Soulard et al., 2010; Swaney
et al., 2013). In this regard, it is interesting that eight of the
phospho-sites detected in Syp1 fit the -T/S-P- consensus for the
protein kinase Cdk1/Cdc28 that is the major cell cycle driver
(Verma et al., 1997; Mok et al., 2010) and five of them fit
the consensus sequence (-R-x-x-S/T-) determined for the bud
neck-localized protein kinase Gin4 (Mok et al., 2010; Roelants
et al., 2015). However, Syp1 also localizes prominently to cortical
puncta and functions as an endocytic adaptor that is involved in

cargo selection and negative regulation of Las17 (yeast WASp)-
Arp2/3 complex activity (Boettner et al., 2009; Reider et al.,
2009) during the early stages of endocytic patch formation
(Stimpson et al., 2009). Although eukaryotic proteins with such
apparently disparate functions certainly exist, it is nonetheless a
little hard to reconcile mechanistically these two rather distinct
roles attributed to Syp1.

In S. cerevisiae, five (CDC3, CDC10, CDC11, CDC12, and
SHS1) of its seven septin genes are expressed in mitotically-
dividing haploid and diploid cells (Versele et al., 2004; Versele
and Thorner, 2004, 2005), whereas the remaining two septin
genes (SPR3 and SPR28) are expressed only in diploid cells
undergoing meiosis and sporulation (Garcia et al., 2016). The
mitotic septins assemble into two types of hetero-octameric
rods that differ only in their terminal subunit: Cdc11-Cdc12-
Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 (Bertin et al., 2008)
and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1 (Garcia
et al., 2011). In vitro the former can associate end-to-end
into paired filaments in low-salt solution and into sheets
of paired filaments on the surface of a lipid monolayer
containing phosphatidylinositol-4,5-bisphosphate (Bertin et al.,
2010). Mutagenesis studies have shown that the residues needed
for these characteristic in vitro behaviors are also essential for
viability in vivo (Bertin et al., 2008; McMurray et al., 2011;
Finnigan et al., 2015b). The Shs1-containing hetero-octamers
associate laterally in a staggered fashion, rather than end-on-end,
forming curved bundles, rings, and bird’s nest-like structures in
vitro (Garcia et al., 2011). Although cells lacking Shs1 are viable,
the septin structures formed in its absence are aberrant (Garcia
et al., 2011), most likely because, as observed in vitro (Booth
et al., 2015), Cdc11-capped rods and Shs1-capped rods are able
to form heterotypic end-on-end junctions, and likely also do so
in vivo (Finnigan et al., 2015a,b). The dynamic interplay between
these two types of hetero-octamers may facilitate the massive
reorganizations of septin architecture that occur over the course
of the cell cycle (Vrabioiu and Mitchison, 2006; Ong et al., 2014).

Diverse protein kinases are associated with septin structures
at various points throughout progression through the cell
division cycle. However, it is still not completely clear how
many of these enzymes contribute directly to installing post-
translational modifications on septins and/or septin-associated
proteins that drive the observed dynamic changes in septin
structure during cell cycle progression and how many of these
enzymes are recruited to septin structures as “readers” of the
status of septin assembly to phosphorylate other substrates and
thereby drive subsequent downstream events. Here, we highlight
key regulatory pathways that use the septin cytoskeleton as a
signaling platform to direct other orchestrated events required
for successful passage through the cell cycle.

A MORPHOGENESIS CHECKPOINT

Eukaryotes have evolved quality control mechanisms, collectively
dubbed checkpoints (Hartwell and Weinert, 1989; Paulovich
et al., 1997; Ibrahim, 2015), by which to ensure that the
events required for successful cell division are only executed
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FIGURE 1 | Roles of multiple protein kinases in septin-mediated signaling networks in S. cerevisiae. Unless otherwise indicated, all of the gene products

shown (Cdc5, Cdc15, Cdk1/Cdc28, Cla4, Dbf2, Dbf20, Elm1, Fpk1, Fpk2, Gin4, Hsl1, Kcc4, Kin4, Rad53, and Swe1) are protein kinases that co-localize with the

septin collar at the bud neck at specific stages of the cell cycle, either very transiently or for a prolonged time period. Protein kinases that, in addition, localize at other

sites are encircled by ovals. Signaling outputs of the indicated protein kinases at their non-septin locations are depicted on the left side of the panel; signaling events

emanating from the septin collar itself are diagrammed on the right side of the panel. Solid black arrows, regulation by direct substrate phosphorylation; dashed red

arrows, regulation exerted by unknown mechanisms; solid cyan arrow, influence of the plasma membrane lipid composition on the execution of cytokinesis; dashed

cyan arrow, influence of the plasma membrane lipid composition on septin filament assembly and structural organization. See text for further details.

at the proper time and in the proper order. Virtually
all recognized checkpoint mechanisms involve regulation by
reversible protein phosphorylation mediated by protein kinases
and phosphoprotein phosphatases (Domingo-Sananes et al.,
2011; Rhind and Russell, 2012). In yeast, a checkpoint delays
the decision to pass from G2 to M phase if there is some
incompleteness (or abnormality) in cell morphogenesis that
needs time to be finished (or repaired). It was initially thought
that this control was exerted in response to defects in actin
cytoskeleton assembly and/or function (McMillan et al., 1998).
However, it was demonstrated shortly thereafter that it is the state
of septin collar assembly that is monitored by this checkpoint
(Shulewitz et al., 1999), a conclusion that was amply confirmed
subsequently (Lew, 2003; Howell and Lew, 2012). In essence,
when the septin collar is properly formed, it recruits and thereby
serves as a congregation point for information exchange among
the regulatory factors required to release the cell from cell
cycle blockade (Figure 2A, upper). This arrangement provides
a feedback circuit by which the state of septin organization
is temporally and spatially integrated with other processes
necessary for cell cycle progression. Because chromosome
segregation and cytokinesis cannot proceed productively if the
bud neck is occluded, this checkpoint delays initiation of the
G2-M transition until the septin collar has been erected properly.

In brief, the cyclin B (Clb2)-bound form of protein kinase
Cdk1 (Cdc28), which is the primary driver of mitosis, is
held in check by inhibitory phosphorylation on Tyr19 in
its P-loop, a modification installed by protein kinase Swe1
(the S. cerevisiae ortholog of mammalian Wee1) (Booher
et al., 1993). This phosphorylation is reversed, in part, by the
action of phosphoprotein phosphatase Mih1 (yeast ortholog of
mammalian Cdc25) (Russell et al., 1989). However, to lift Swe1-
mediated inhibition of Cdk1 completely, Swe1 is also degraded

in a highly regulated manner, as follows. In conjunction with the
joint actions of the protein-arginine N-methyltransferase Hsl7
(Cid et al., 2001; Sayegh and Clarke, 2008) and the protein
kinase Hsl1 (Ma et al., 1996; Barral et al., 1999; Shulewitz
et al., 1999) (closest mammalian orthologs are the AMPK-related
protein kinase family members, BRSK1, and BRSK2), Swe1 is
exported from the nucleus (Keaton et al., 2008), captured at
the bud neck, and marked there for timely cyclosome/anaphase-
promoting complex (APC) protein-ubiquitin ligase-dependent
ubiquitinylation (Simpson-Lavy and Brandeis, 2010; Lianga et al.,
2013) and proteasome-mediated destruction via phosphorylation
by protein kinase Cla4 (yeast ortholog of mammalian PAK1) and
especially by protein kinase Cdc5 (yeast ortholog of mammalian
Plk1) (Sakchaisri et al., 2004). Compared to Hsl1, two other
septin-associated protein kinases, Gin4 and Kcc4 (which are
apparent paralogs, but less related to Hsl1) have a supporting, but
less significant role, in these events (Ma et al., 1996; Barral et al.,
1999; Kusch et al., 2002). It should be appreciated that because
Clb2-Cdc28 phosphorylation of Swe1 creates phosphosites that
are docking motifs for binding the Polo boxes of Cdc5, thus
priming Swe1 for Cdc5-mediated phosphorylation (Asano et al.,
2005; Harvey et al., 2005), the Hsl7- and Hsl1-dependent
down-regulation of the nuclear pool of Swe1 partially alleviates
Clb2-Cdc28 inhibition. This initially modest increase in Clb2-
Cdc28 activity then is able to initiate a self-reinforcing burst of
autocatalytic activation of Cdk1 by targeting more and more of
the population of Swe1 molecules for even more efficient Cdc5-
mediated phosphorylation, thereby unleashing more and more
Clb2-Cdk1 activity. Thus, once initiated, these processes lead to
rapid hyper-phosphorylation and nearly complete destruction of
Swe1 (Shulewitz et al., 1999; Sreenivasan and Kellogg, 1999).

Most importantly, Hsl1 is only active in aiding the targeting
of Swe1 for destruction when Hsl1 is associated with a correctly
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FIGURE 2 | Cell cycle-dependent localization of septin-associated

protein kinases. (A) Components of the septin-monitoring morphogenesis

checkpoint localize to the septin collar at G2 where they promote Swe1

degradation, and thus full activation of cyclin B-bound Cdk1 and M phase

entry. At anaphase of mitosis, the APC protein-ubiquitin ligase terminates this

pathway by degrading its pivotal component, the protein kinase Hsl1. At this

point in the cell cycle, the protein kinases of the MEN are located at the spindle

pole bodies (SPBs) and Kin4, the protein kinase central to the spindle position

checkpoint, is localized to the mother cell cortex. Kin4 and the MEN

components act in concert to delay mitotic exit until one spindle pole body has

been properly segregated into the daughter bud. (B) Upon execution of

anaphase, spindle elongation, SPB segregation, and initiation of mitotic exit,

the MEN components relocalize to the septin rings, where these protein

kinases phosphorylate targets that help promote cytokinesis. Gin4 remains

septin collar-associated from G1 through cytokinesis.

assembled septin collar at the bud neck (McMillan et al., 1999,
2002; Shulewitz et al., 1999; Finnigan et al., 2016b). Disruption
of the septin collar using mutant septin alleles results in failure
to recruit Hsl1 and Hsl7 to the bud neck, thereby stabilizing
Swe1, which is then able to impose a pronounced cell cycle delay
that is manifest by the formation of markedly elongated buds
(Shulewitz et al., 1999; Longtine et al., 2000), a phenotype that
is not observed if cells lack Swe1 (Barral et al., 1999; McMillan
et al., 1999; McMurray et al., 2011).

Directly fusing Swe1 to a septin subunit does not fully
bypass the requirement for Hsl1 and Hsl7 in Swe1 degradation
(King et al., 2012), indicating that simple tethering of Swe1
at the septin collar for subsequent phosphorylation by Cla4
and Cdc5 is not the sole function of the Hsl1 and Hsl7
enzymes. Binding of Hsl1 to septins occurs via uniquely evolved
septin-binding sequences (residues 611–950) downstream of its
N-terminal kinase domain, which, to operate efficiently, must act
in concert with a C-terminal phosphatidylserine-binding element
(KA-1 domain) (Finnigan et al., 2016a,b). Thus, Hsl1 recruitment

to the bud neck likely serves as a dual “sensor,” reporting
that both septin collar assembly and the plasma membrane
lipid composition have achieved the proper state to initiate the
destruction of Swe1 and thereby license passage from G2 to M
phase. Hsl1 catalytic activity is dispensable for its recruitment to
the septins (Finnigan et al., 2016b), but may be required, directly
or indirectly, in recruiting Hsl7 to the bud neck (Kang et al.,
2016). Hsl7 is a substrate of Hsl1 (Cid et al., 2001), and Hsl1
is also extensively autophosphorylated (Barral et al., 1999), but
the functional consequences of these modifications remain to be
determined.

Hsl1 (and the checkpoint) may have additional roles besides
sensing the state of septin organization and plasma membrane
composition. A recent study has suggested that some of these
same components, in conjunction with an additional bud neck-
localized protein kinase, Elm1, have a role in monitoring bud
size/shape prior to licensing entry into mitosis (Kang et al., 2016).
Elm1 is able to phosphorylate the activation loop in Kcc4 and
Gin4 in vitro (Asano et al., 2006), and presumably serves as their
upstream activating kinase in vivo (Koehler and Myers, 1997;
Bouquin et al., 2000). In contrast, under the same conditions,
Elm1 does not directly phosphorylate Hsl1 in vitro (Asano et al.,
2006), but there are claims that Elm1-mediated phosphorylation
is required for full Hsl1 activity in vivo (Szkotnicki et al., 2008).
It has been suggested that Elm1 interacts with Hsl7, thereby
impeding engagement of Hsl7 with Hsl1; in this way, Swe1
recruitment to the bud neck and its degradation are delayed
to allow time for sufficient bud growth (Kang et al., 2016). It
has been reported that localization of septins, Hsl7 and Elm1
all depend upon local membrane curvature (Bridges et al., 2016;
Kang et al., 2016); it is possible, therefore, that these factors serve
as sensors of cell geometry, thereby integrating this input into the
timing of the decision of when to allow passage through G2-M.
Although Gin4 and Kcc4 have been implicated in septin collar
assembly (Longtine et al., 1998) and in the Swe1 degradation
pathway (Barral et al., 1999), more recent evidence indicates
that these enzymes likely exert their effects more indirectly by
modulating the plasma membrane lipid distribution (Roelants
et al., 2015) (see further below). Indeed, like Hsl1, Gin4 and
Kcc4 also possess phosphatidylserine-binding C-terminal KA-1
domains that are required for their function in vivo (Moravcevic
et al., 2010).

MITOTIC EXIT

In addition to the role of the septin collar in integrating
signals that determine when to initiate entry into mitosis,
growing evidence implicates septin structures at the bud neck
in coordinating certain aspects of the signaling network that
regulates exit from mitosis. Mitotic exit is facilitated, in large
part, by a protein kinase signaling cascade, dubbed the Mitotic
Exit Network (MEN) (Bardin and Amon, 2001; McCollum
and Gould, 2001), that gauges successful spindle elongation by
monitoring the location and status of the spindle pole bodies
(SPBs) (Smeets and Segal, 2002; Hotz and Barral, 2014; Falk et al.,
2016). Once anaphase has been achieved, signals emanating from
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the SPB in the daughter cell initiates a pathway that serves to
reverse the actions of Cdk1 by unleashing the phosphoprotein
phosphatase Cdc14 (Mocciaro and Schiebel, 2010; Bremmer
et al., 2012). Components of the MEN regulatory circuitry in
yeast have features that suggest that it may be the antecedant
of the Hippo tumor-suppressor pathway in animal cells (Avruch
et al., 2012; Harvey and Hariharan, 2012; Rock et al., 2013).

The core components of MEN (Figure 2A, lower) are the
small Ras-related GTPase Tem1, which, in its GTP-bound state,
binds to and activates the protein kinase Cdc15, which, in turn,
is the upstream activator of two paralogous protein kinases
Dbf2 and Dbf20 that, to be activated by Cdc15 and functional,
need to associate with an essential regulatory subunit Mob1.
The primary role of activated Dbf2/Dbf20-Mob1 complexes is to
phosphorylate Cdc14, which both releases it from its inhibitory
anchor in the nucleolus (Azzam et al., 2004) and prevents its
nuclear import (Mohl et al., 2009), allowing its activity to spread
throughout the cell to inactivate Clb-bound Cdk1 and reverse
the Cdk1-dependent phosphorylation of many Cdk1 substrates
(Visintin and Amon, 2000; Meitinger et al., 2012).

Whether Tem1 is in its inactive GDP-bound state or
in its activated GTP-bound state is controlled by events at
the SPB, completely independent of the septin collar. In
brief, when no SPB has been segregated into the daughter
bud, the Tem1 GTPase-activating protein (GAP) complex,
Bfa1-Bub2, is activated by the protein kinase Kin4 located
at the cortex of the mother cell and, hence, Tem1 remains
in its inactive state (D’Aquino et al., 2005; Pereira and
Schiebel, 2005). This regulatory scheme is referred to as the
spindle positioning/orientation checkpoint (SPOC) (Caydasi
and Pereira, 2012; Ibrahim, 2015). However, there is a clear
connection to events at the septin collar. First, it was observed
that septin-defective mutants exhibited aberrations in MEN
signaling outputs (Castillon et al., 2003). Second, Kin4 (and
its paralog Frk1) are, like Gin4, Kcc4, and Hsl1, members of
the branch of yeast AMPK-like protein kinases (Rubenstein
and Schmidt, 2007); and, indeed, it has been shown that,
as for Gin4 and Kcc4, Elm1 is the upstream protein kinase
responsible for phosphorylation of T209 in the activation loop
of Kin4 and, further, that this modification is essential for
Kin4 catalytic activity (Caydasi et al., 2010; Moore et al., 2010).
Moreover, localization of Elm1 to the bud neck is critical for
its phosphorylation and activation of Kin4 (Caydasi et al., 2010;
Moore et al., 2010).

The action of phosphoprotein phosphatase PP2A bound to
one of its two, yeast, B-type regulatory subunits, Rts1, was also
implicated as a positive factor required for maintaining Kin4 at
the mother cell cortex and at mother-cell SPBs (Chan and Amon,
2009). However, it was previously shown that Rts1-bound PP2A
is required for maintenance of septin ring organization during
cytokinesis (Dobbelaere et al., 2003). Thus, the role of Rts1-PP2A
is likely indirect and simply to preserve the structure of the septin
collar and, thus, the localization of active Elm1 there, supporting
maintenance of adequate levels of activated Kin4 in the mother
cell.

The daughter cell-specific protein Lte1, despite its sequence
resemblance to other guanine nucleotide exchange factors

(GEFs), does not appear to function as the GEF for Tem1. Rather,
it appears to promote formation of GTP-bound Tem1 by binding
to and inactivating Kin4 and excluding the kinase from the
daughter SPB, thereby preventing activation of the Bfa1-Bub2
GAP (Bertazzi et al., 2011; Falk et al., 2011).

All of the MEN components, including the protein kinases
Cdc5 (Sakchaisri et al., 2004), Cdc15 (Lee et al., 2001), and
Dbf2/Dbf20 (Frenz et al., 2000), localize first to the SPB and then
to the bud neck (Figure 2). At the SPB, Cdc5 functions in MEN
by acting in concert with Tem1 to promote SPB recruitment and
activation of Cdc15 (Rock et al., 2013). Cdc5 function depends
on its cellular location, as revealed by experiments in which
Cdc5 recruitment was artificially directed primarily to the SPB
or primarily to the bud neck; at the SPB, Cdc5 was necessary
for efficient mitotic exit and, at the bud neck, Cdc5 clearly
promoted Swe1 degradation (Sakchaisri et al., 2004). The two
C-terminal polo boxes of Cdc5 are required for stable association
of this protein kinase at each of these two subcellular locations
(Song et al., 2000; Lowery et al., 2005), but the protein target
(s) at each location that carry the phospho-epitopes to which the
polo boxes bind have not been well defined. Given the role that
members of the polo family of protein kinases, including Cdc5,
play in driving multiple cell cycle events subsequent to initial
substrate phosphorylation by cyclin B-bound Cdk1 (Barr et al.,
2004; Archambault and Glover, 2009), and the role that the septin
collar plays in regulating the sub-cellular distribution of Cdc5, the
coordination between septin dynamics and Cdc5 localization, as
well as between septin dynamics and Elm1 localization (Thomas
et al., 2003), provide regulatory inputs that contribute to ensuring
that Swe1 degradation (and mitotic entry) always precedes
mitotic exit. Indeed, the septin collar is the passageway through
which any and all components segregated between a mother and
daughter cell must pass and, hence, is a cellular structure ideally
situated to monitor such cell cycle events.

CYTOKINESIS

In addition to its role in tethering of factors involved in
controlling the spatial and temporal aspects of the cell cycle,
the septin collar also has functions in regulating membrane
dynamics. At the cortex of a mother cell or its bud, where
the ER is in close apposition to the PM, there are periodic
intimate protein-and lipid-mediated connections between the
two, referred to as PM-ER junctions (Manford et al., 2012; Gatta
et al., 2015). However, at the bud neck, the septin filaments
tightly coat the cytosolic surface of the PM at this location
(Byers and Goetsch, 1976; Bertin and Nogales, 2012), preventing
sterically the formation of such ER-PM contact sites. Although
extensions of the ER can be seen to pass through the bud
neck, at the location of the septin collar per se, the ER surface
appears denuded of ribosomes and, further, that this band of
smooth ER acts as a barrier to diffusion of ER membrane
proteins (but not ER lumenal proteins) (Luedeke et al., 2005).
On the one hand, it has been reported that establishment
of this specialized ER domain and its function in restricting
diffusion depends on localized recruitment of the actin—and
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formin-associated protein Bud6 by the septin Shs1 (Luedeke
et al., 2005), whereas another more recent study claims that a
bridged interaction between Shs1 and the integral ER membrane
protein Scs2 is responsible for erecting this ER diffusion barrier
(Chao et al., 2014). The evidence in support of both claims is
not compelling for several reasons. First, more recent analysis
indicates that very little of the total cellular pool of Bni6 is
located at the bud neck [see entry for Bud6/Aip3/Ylr319c at
the Yeast Protein Localization Plus Database (YPL+) at the
Univ. of Graz, Austria; http://yplp.uni-graz.at/index.php], and
Scs2 is a demonstrated component of a major class of the
ER-PM junctions. Second, because shs11 cells are viable and
do not display severe growth and morphology defects under
most conditions (Iwase et al., 2007; Finnigan et al., 2015b), this
specialized, purportedly Shs1-mediated, domain in the trans-
bud neck ER doesn’t seem to be very important for viability
or efficient cell cycle progression. Finally, affixing the ER to the
septin collar at the bud neck, and thereby risking impeding the
passage of chromosomes and other cellular organelles, would
not seem to make much sense physiologically for efficient cell
division.

In any event, to complete each cell cycle, the spindle midbody
remnant must be removed, the plasma membranes resealed, and
the CW septa deposited between them, to create two, separate
and independent yeast cells. In S. cerevisiae, cytokinesis and
cell separation proceed via the concerted action of actomyosin
ring (AMR) formation and contraction (Bi et al., 1998) with
concomitant synthesis of the chitinaceous primary septum
(Nishihama et al., 2009). To permit these events to happen
following anaphase, the septin collar is split into two gasket-
like bands via a mechanism that is still completely unknown
(McMurray and Thorner, 2009; Bi and Park, 2012; Wloka and
Bi, 2012; Juanes and Piatti, 2016). However, after septin collar
assembly and release from the morphogenesis checkpoint, the
elevation of Clb2-Cdc28 activity commences the process of
promoting AMR formation early in M phase and, once localized
to the septin collar, Cdc5 generates a local pool of activated (GTP-
bound) Rho1 at the bud neck via phosphorylation and activation
of one of the primary Rho1 GEFs (Tus1) (Yoshida et al.,
2006). Activated Rho1, in turn, is known to stimulate formin-
dependent assembly of the cytokinetic AMR and type II myosin
contractility (Yoshida et al., 2006; Ramkumar and Baum, 2016).
In addition, activated Rho1 also binds directly to and stimulates
protein kinase Pkc1 (Kamada et al., 1996), which controls the
transcription of genes needed for CW synthesis (Jung and Levin,
1999) and other events needed for cell cycle completion (Darieva
et al., 2012), as well as two enzymes required for CW production
(the 1,3-β-D-glucan synthase Fks1 and its paralog Gsc2/Fks2)
(Mazur and Baginsky, 1996). In this way, the septins provide
a platform by which the cell cycle machinery is linked to both
the cytoskeletal machinery and the CW synthesis machinery that
each contribute to the successful execution of yeast cytokinesis.
Difficult to reconcile with these findings (and the evidence
discussed earlier for its role in septin ring disassembly), however,
is the claim that F-BAR andMHDprotein Syp1 is phosphorylated
in a Rho1- and Pkc1-dependent manner to promote septin collar
assembly (Merlini et al., 2015).

The “split” septin collar appears to have two main roles. For
certain proteins needed for AMR assembly, e.g., Bni5 (Lee et al.,
2002), the septins continue to serve their scaffold function by
mediating direct physical association with these factors, thereby
anchoring and concentrating them at the bud neck (Patasi
et al., 2015; Finnigan et al., 2015a, 2016a). For other proteins,
e.g., Sec3 involved in localized deposition of secretory vesicles
(Dobbelaere and Barral, 2004) and Chs2 involved in septum
construction (Foltman et al., 2016), the two septin bands of the
split collar seems to act like corrals and barriers to diffusion,
thereby physically trapping these factors between them and thus
confining them at this location indirectly (Dobbelaere and Barral,
2004; McMurray et al., 2011; Finnigan et al., 2016a).

In addition to Cdc5, the other two protein kinases of
the MEN cascade, Cdc15 and Dbf2/Dbf20-Mob1 complexes,
are recruited to the split septin rings during late anaphase,
shortly after Cdk1 inactivation (Frenz et al., 2000; Song et al.,
2000; Xu et al., 2000; Luca et al., 2001; Figure 2B). At this
location, these enzymes recruit and phosphorylate many factors
directly involved in the coordination of AMR contraction and
primary septum formation. In particular, at the bud neck, Dbf2-
Mob1 phosphorylates another F-BAR protein, Hof1 (Meitinger
et al., 2011), which also contains a C-terminal SH3 domain
important for its function (Oh et al., 2013). Hof1 associates with
septin structures throughout G1-S phase and while the AMR is
assembled between the rings of the split septin collar primarily
via direct interaction with Cdc10 (and Cdc12) (Vallen et al.,
2000; Oh et al., 2013; Finnigan et al., 2016a). Association of Hof1
with the septins is mediated by a coiled-coil element in Hof1,
and phosphorylation at a single Ser within this region by bud
neck-localized Dbf2-Mob1 (an event that requires priming by
prior phosphorylation of Hof1 by Cdk1 and Cdc5) promotes
disassociation of Hof1 from the septin rings (Meitinger et al.,
2013). This displacement then allows Hof1 to associate with the
AMR and initiate contraction, but the mechanism by which it
does so has not been elucidated yet.

In addition to its binding to the AMR, Hof1 also forms
a complex with Inn1 and Cyk3 at the septin ring in late
anaphase (Sanchez-Diaz et al., 2008; Nishihama et al., 2009).
Recruitment of these three components to the bud neck
requires MEN signaling activity (Meitinger et al., 2010), and
thus presumably their phosphorylation, and all are required
for efficient cytokinesis because they contribute to coordinating
AMR contraction with primary septum formation (Meitinger
et al., 2012; Wloka and Bi, 2012; Juanes and Piatti, 2016). As
mentioned above, formation of the primary septum requires the
localized activity of chitin synthase Chs2 between the bands of
the split septin collar. After Chs2 has been sequestered at this
position, Dbf2-Mob1 translocates to the split rings and directly
phosphorylates and activates Chs2 (Oh et al., 2012). The dynamic
relocation of the protein kinases of the MEN cascade to the split
septin collar provides an elegant solution to help ensure that cell
division only occurs after successful chromosome segregation.
However, the mechanisms that promote recruitment of these
kinases to the septins are unknown. Moreover, the SPOC protein
kinase Kin4 also localizes to the septin rings late in anaphase, yet
its function at the bud neck is not understood.
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Finally, cytokinesis cannot be completed unless and until
two intact and separable PMs have been generated. In this
regard, there is evidence that two types of septin-associated
protein kinases spatially and temporally modulate the PM
lipid bilayer assymmetry at the bud neck. At sites of
polarized growth, the protein kinase Fpk1 (and its paralog
Fpk2) phosphorylate and stimulate two PM-localized flippases
(Dnf1 and Dnf2), which translocate phosphatidylethanolamine
(PtdEth) and phosphatidylserine from the outer to the inner
leaflet of the PM (Nakano et al., 2008; Roelants et al., 2010).
However, at the bud neck, septin-anchored protein kinase Gin4
phosphorylates and inhibits Fpk1 (and Fpk2) function (Roelants
et al., 2015). Thus, flipping of aminoglycerophospholipids is
prevented in a highly localized manner. Preventing flipping of
aminoglycerophospholipids in this way contributes to enhancing
the efficiency of cell division because alterations that compromise
flippase function suppress the inviabiity phenotype of a variety
of mutations (hof1, inn1, cyk3, and myo1, the type II myosin
of the AMR) known to cause defects in cytokinesis (Roelants
et al., 2015). Moreover, Gin4 is released from the septin
collar just before it splits and the AMR contracts, whereas
the bulk of Fpk1 remains (Roelants et al., 2015), presumably
fine-tuning the timing of transbilayer lipid flipping necessary
for the completion of PM scission and cell separation. The
mechanisms responsible for the cell cycle-coupled ejection of
Gin4 and the recruitment of Fpk1 are not known, although Gin4
is phosphorylated and activated in a cell cycle-dependent manner
at the G2-M transition, apparently by Clb2-Cdc28 (Altman and
Kellogg, 1997) and, conversely, the septins are required for
the mitosis-specific activation of Gin4 (Carroll et al., 1998). In
any event, by the spatio-temporal control that Gin4 exerts on
Fpk1 activity, it is clear that the septins at the bud neck are
critical for protein kinase-mediated regulation of localized PM
remodeling.

REGULATION OF SEPTIN ORGANIZATION

The actions of several septin-associated protein kinases also
seem to regulate septin organization. The Cdc42-stimulated
protein kinase Cla4 (yeast ortholog of mammalian PAKs) directly
phosphorylates septins Cdc3 and Cdc10 both in vitro and in vivo,
and Cla4 is necessary for both the formation of the septin collar
and the regulation of septin dynamics at specific points in the cell
cycle (Dobbelaere et al., 2003; Schmidt et al., 2003; Versele and
Thorner, 2004).

Septin subunit Shs1 is the most extensively phosphorylated
septin and is a substrate of Gin4 (Mortensen et al., 2002), as
well as of the G1 cyclin-dependent protein kinases Cdc28/Cdk1
and Pho85 (yeast ortholog of mammalian Cdk5) (Egelhofer
et al., 2008). The latter marks are removed at the end of
mitosis via bud neck recruitment of Rts1-bound PP2A, an
event thought to aid in initiating splitting of the septin
collar (Dobbelaere et al., 2003), and which is coincident with
Gin4 phosphorylation of Shs1 on a distinct subset of residues
(Mortensen et al., 2002; Asano et al., 2006). These data suggest
that cell cycle-dependent phosphorylation states of Shs1 are

key in regulating septin dynamics. However, arguing against
this hypothesis, strains expressing Shs1 alleles with most of
the residues phosphorylated by Cdks mutated to either to
Ala or phosphomimetic Asp displayed no discernible septin-
defective phenotype (Finnigan et al., 2015b). Furthermore, most
of these phosphorylation sites are within a poorly conserved
segment of Shs1, and deletion of this entire region does not
lead to any loss of Shs1 function in vivo (Finnigan et al.,
2015b). Perhaps phosphorylation of Shs1 by Cdks and Gin4
is redundant with additional mechanisms that regulate septin
assembly, but the precise consequence of these phosphorylation
events on septin structure and/or function remains unclear.
In marked contrast, Shs1 is phosphorylated at a single site
by the protein kinase Rad53 in response to DNA damage
and replication stress (Smolka et al., 2006, 2007) and a
phosphomimetic mutation of this single residue displays a
prominent growth defect (Finnigan et al., 2015b), suggesting
that this direct phosphorylation might represent a checkpoint
whereby cell cycle progression can be delayed (via perturbation
of the septin collar) to permit time for repair of the DNA
damage.

The purported role that Gin4 has in proper septin collar
assembly at the bud neck has very low penetrance (Longtine
et al., 1998) and appears to represent only a kinetic delay
(McMurray and Thorner, 2009). Given the close apposition of
septin structures with the PM in the cell (Byers and Goetsch,
1976; Bertin et al., 2012) and the effect of lipids on the state
of septin assembly in vitro (Bertin et al., 2010; Bridges et al.,
2014), the phenotype exhibited by gin41 mutants might be
explained by the lack of proper control of Fpk1 function and the
ensuing effects on local PM lipid composition. A consequence
of Gin4-mediated inhibition of flippase function (via inhibition
of the flippase-activating protein kinase Fpk1) is a pronounced
reduction in the inner leaflet concentration of PtdEth in the
PM (Roelants et al., 2015). A low inner leaflet PtdEth level
leads to activation of Cdc42 by suppressing the function of
Cdc42-specific GAPs (Saito et al., 2007; Das et al., 2012), and
activated Cdc42 plays a significant role in localized tethering of
the factors needed for initial recruitment of septins to the site
of incipient bud emergence (Iwase et al., 2006; Okada et al.,
2013).

OUTLOOK AND PROSPECTUS

Depending on their assembly state, septin-based structures
provide dynamic platforms from which the action of a
significant number of protein kinases can be directed both
spatially and temporally. Moreover, as observed for other
protein kinase-scaffold interactions (Ferrell, 2000; Good et al.,
2011; Langeberg and Scott, 2015), signaling emanating from
septin-associated kinases can be channeled to particular co-
localized targets conferring specificity and can be insulated
from improper substrates to ensure fidelity. Moreover, where
necessary, co-recruitment of multiple protein kinases permits
signal propagation in the appropriate sequence and enables
cross-talk to elicit coincident and combinatorial outputs.
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Moreover, these septin structures serve as sensors that transmit
upstream cues, such as cell cycle timing and membrane
curvature, to their associated kinases. Certain of these kinases
also regulate septin structure and organization, establishing
an extremely complex feedback system which is yet to be
fully understood. As highlighted through the course of the
above discussion, there are still many mechanistic aspects of
the control of septin-associated protein kinases that remain
to be delineated. Hence, this area of cell biology and
biochemistry remains a fertile area for exploring the role of
cellular structures in regulating signaling enzymes, and vice
versa.

AUTHOR CONTRIBUTIONS

AP, GF, and FR prepared the draft and JT edited and submitted
the final version of the manuscript.

ACKNOWLEDGMENTS

This work was supported by a postdoctoral fellowship from the
Adolph C. and Mary Sprague Miller Institute for Basic Research
in Science (to GF), and National Institutes of Health R01
Research Grants GM101314 (to JT and colleague Eva Nogales)
and GM21841 (to JT).

REFERENCES

Albuquerque, C. P., Smolka, M. B., Payne, S. H., Bafna, V., Eng, J., and

Zhou, H. (2008). A multidimensional chromatography technology for in-

depth phosphoproteome analysis. Mol. Cell. Proteomics 7, 1389–1396. doi:

10.1074/mcp.M700468-MCP200

Altman, R., and Kellogg, D. (1997). Control of mitotic events by Nap1 and the Gin4

kinase. J. Cell Biol. 138, 119–130. doi: 10.1083/jcb.138.1.119

Archambault, V., and Glover, D. M. (2009). Polo-like kinases: conservation and

divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10,

265–275. doi: 10.1038/nrm2653

Asano, S., Park, J. E., Sakchaisri, K., Yu, L. R., Song, S., Supavilai, P., et al. (2005).

Concertedmechanism of Swe1/Wee1 regulation bymultiple kinases in budding

yeast. EMBO J. 24, 2194–2204. doi: 10.1038/sj.emboj.7600683

Asano, S., Park, J. E., Yu, L. R., Zhou, M., Sakchaisri, K., Park, C. J., et al.

(2006). Direct phosphorylation and activation of a Nim1-related kinase

Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281, 27090–27098. doi:

10.1074/jbc.M601483200

Avruch, J., Zhou, D., Fitamant, J., Bardeesy, N., Mou, F., and Barrufet, L. R. (2012).

Protein kinases of the Hippo pathway: regulation and substrates. Semin. Cell

Dev. Biol. 23, 770–784. doi: 10.1016/j.semcdb.2012.07.002

Azzam, R., Chen, S. L., Shou, W., Mah, A. S., Alexandru, G., Nasmyth,

K., et al. (2004). Phosphorylation by cyclin B-Cdk underlies release of

mitotic exit activator Cdc14 from the nucleolus. Science 305, 516–519. doi:

10.1126/science.1099402

Bardin, A. J., and Amon, A. (2001). MEN and SIN: what’s the difference? Nat. Rev.

Mol. Cell Biol. 2, 815–826. doi: 10.1038/35099020

Barr, F. A., Silljé, H. H., and Nigg, E. A. (2004). Polo-like kinases and the

orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440. doi:

10.1038/nrm1401

Barral, Y., Parra, M., Bidlingmaier, S., and Snyder, M. (1999). Nim1-related

kinases coordinate cell cycle progression with the organization of the peripheral

cytoskeleton in yeast. Genes Dev. 13, 176–187. doi: 10.1101/gad.13.2.176

Bertazzi, D. T., Kurtulmus, B., and Pereira, G. (2011). The cortical protein Lte1

promotes mitotic exit by inhibiting the spindle position checkpoint kinase

Kin4. J. Cell Biol. 193, 1033–1048. doi: 10.1083/jcb.201101056

Bertin, A., McMurray, M. A., Grob, P., Park, S. S., Garcia, G. III, Patanwala, I.,

et al. (2008). Saccharomyces cerevisiae septins: supramolecular organization of

heterooligomers and the mechanism of filament assembly. Proc. Natl. Acad. Sci.

U.S.A. 105, 8274–8279. doi: 10.1073/pnas.0803330105

Bertin, A., McMurray, M. A., Pierson, J., Thai, L., McDonald, K. L., Zehr, E. A.,

et al. (2012). Three-dimensional ultrastructure of the septin filament network

in Saccharomyces cerevisiae.Mol. Biol. Cell 23, 423–432. doi: 10.1091/mbc.E11-

10-0850

Bertin, A., McMurray, M. A., Thai, L., Garcia, G. III, Votin, V., Grob, P.,

et al. (2010). Phosphatidylinositol-4,5-bisphosphate promotes budding yeast

septin filament assembly and organization. J. Mol. Biol. 404, 711–731. doi:

10.1016/j.jmb.2010.10.002

Bertin, A., and Nogales, E. (2012). Septin filament organization in Saccharomyces

cerevisiae. Commun. Integr. Biol. 5, 503–505. doi: 10.4161/cib.21125

Bi, E., Maddox, P., Lew, D. J., Salmon, E. D., McMillan, J. N., Yeh, E., et al. (1998).

Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae

cytokinesis. J. Cell Biol. 142, 1301–1312. doi: 10.1083/jcb.142.5.1301

Bi, E., and Park, H. O. (2012). Cell polarization and cytokinesis in budding yeast.

Genetics 191, 347–387. doi: 10.1534/genetics.111.132886

Boettner, D. R., D’Agostino, J. L., Torres, O. T., Daugherty-Clarke, K., Uygur, A.,

Reider, A., et al. (2009). The F-BAR protein Syp1 negatively regulates WASp-

Arp2/3 complex activity during endocytic patch formation. Curr. Biol. 19,

1979–1987. doi: 10.1016/j.cub.2009.10.062

Booher, R. N., Deshaies, R. J., and Kirschner, M. W. (1993). Properties of

Saccharomyces cerevisiae Wee1 and its differential regulation of p34CDC28 in

response to G1 and G2 cyclins. EMBO J. 12, 3417–3426.

Booth, E. A., Vane, E. W., Dovala, D., and Thorner, J. (2015). A Förster resonance

energy transfer (FRET)-based system provides insight into the ordered

assembly of yeast septin hetero-octamers. J. Biol. Chem. 290, 28388–28401. doi:

10.1074/jbc.M115.683128

Bouquin, N., Barral, Y., Courbeyrette, R., Blondel, M., Snyder, M., and Mann, C.

(2000). Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces

cerevisiae. J. Cell Sci. 113, 1435–1445.

Bremmer, S. C., Hall, H., Martinez, J. S., Eissler, C. L., Hinrichsen, T. H., Rossie,

S., et al. (2012). Cdc14 phosphatases preferentially dephosphorylate a subset of

cyclin-dependent kinase (Cdk) sites containing phosphoserine. J. Biol. Chem.

287, 1662–1669. doi: 10.1074/jbc.M111.281105

Bridges, A. A., and Gladfelter, A. S. (2015). Septin form and function at

the cell cortex. J. Biol. Chem. 290, 17173–17180. doi: 10.1074/jbc.R114.

634444

Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P., and Gladfelter, A. S.

(2016). Micron-scale plasma membrane curvature is recognized by the septin

cytoskeleton. J. Cell Biol. 213, 23–32. doi: 10.1083/jcb.201512029

Bridges, A. A., Zhang, H., Mehta, S. B., Occhipinti, P., Tani, T., and Gladfelter, A.

S. (2014). Septin assemblies form by diffusion-driven annealing onmembranes.

Proc. Natl. Acad. Sci. U.S.A. 111, 2146–2151. doi: 10.1073/pnas.1314

138111

Byers, B., and Goetsch, L. (1976). A highly ordered ring of membrane-associated

filaments in budding yeast. J. Cell Biol. 69, 717–721. doi: 10.1083/jcb.69.3.717

Carroll, C. W., Altman, R., Schieltz, D., Yates, J. R., and Kellogg, D. (1998). The

septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell

Biol. 143, 709–717. doi: 10.1083/jcb.143.3.709

Castillon, G. A., Adames, N. R., Rosello, C. H., Seidel, H. S., Longtine, M. S.,

Cooper, J. A., et al. (2003). Septins have a dual role in controlling mitotic exit in

budding yeast. Curr. Biol. 13, 654–658. doi: 10.1016/S0960-9822(03)00247-1

Caudron, F., and Barral, Y. (2009). Septins and the lateral compartmentalization

of eukaryotic membranes. Dev. Cell 16, 493–506. doi: 10.1016/j.devcel.2009.

04.003

Caydasi, A. K., Kurtulmus, B., Orrico, M. I., Hofmann, A., Ibrahim, B., and Pereira,

G. (2010). Elm1 kinase activates the spindle position checkpoint kinase Kin4.

J. Cell Biol. 190, 975–989. doi: 10.1083/jcb.201006151

Caydasi, A. K., and Pereira, G. (2012). SPOC alert–when chromosomes

get the wrong direction. Exp. Cell Res. 318, 1421–1427. doi: 10.1016/

j.yexcr.2012.03.031

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 November 2016 | Volume 4 | Article 119

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Perez et al. Protein Kinases at the Yeast Bud Neck

Chan, L. Y., and Amon, A. (2009). The protein phosphatase 2A functions in the

spindle position checkpoint by regulating the checkpoint kinase Kin4. Genes

Dev. 23, 1639–1649. doi: 10.1101/gad.1804609

Chao, J. T., Wong, A. K., Tavassoli, S., Young, B. P., Chruscicki, A., Fang, N. N.,

et al. (2014). Polarization of the endoplasmic reticulum by ER-septin tethering.

Cell 158, 620–632. doi: 10.1016/j.cell.2014.06.033

Chen, H., Howell, A. S., Robeson, A., and Lew, D. J. (2011). Dynamics of septin ring

and collar formation in Saccharomyces cerevisiae. Biol. Chem. 392, 689–697. doi:

10.1515/BC.2011.075

Cid, V. J., Shulewitz, M. J., McDonald, K. L., and Thorner, J. (2001). Dynamic

localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell

cycle.Mol. Biol. Cell 12, 1645–1669. doi: 10.1091/mbc.12.6.1645

D’Aquino, K. E., Monje-Casas, F., Paulson, J., Reiser, V., Charles, G. M.,

Lai, L., et al. (2005). The protein kinase Kin4 inhibits exit from mitosis

in response to spindle position defects. Mol. Cell 19, 223–234. doi:

10.1016/j.molcel.2005.06.005

Darieva, Z., Han, N., Warwood, S., Doris, K. S., Morgan, B. A., and Sharrocks, A.

D. (2012). Protein kinase C regulates late cell cycle-dependent gene expression.

Mol. Cell. Biol. 32, 4651–4661. doi: 10.1128/MCB.06000-11

Das, A., Slaughter, B. D., Unruh, J. R., Bradford, W. D., Alexander, R., Rubinstein,

B., et al. (2012). Flippase-mediated phospholipid asymmetry promotes fast

Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell Biol. 14,

304–310. doi: 10.1038/ncb2444

Dobbelaere, J., and Barral, Y. (2004). Spatial coordination of cytokinetic events

by compartmentaliza-tion of the cell cortex. Science 305, 393–396. doi:

10.1126/science.1099892

Dobbelaere, J., Gentry, M. S., Hallberg, R. L., and Barral, Y. (2003).

Phosphorylation-dependent regulation of septin dynamics during the cell cycle.

Dev. Cell 4, 345–357. doi: 10.1016/S1534-5807(03)00061-3

Domingo-Sananes, M. R., Kapuy, O., Hunt, T., and Novak, B. (2011). Switches and

latches: a biochemical tug-of-war between the kinases and phosphatases that

control mitosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3584–3594. doi:

10.1098/rstb.2011.0087

Egelhofer, T. A., Villen, J., McCusker, D., Gygi, S. P., and Kellogg, D. R. (2008).

The septins function in G1 pathways that influence the pattern of cell growth

in budding yeast. PLoS ONE 3:e2022. doi: 10.1371/journal.pone.0002022

Falk, J. E., Chan, L. Y., and Amon, A. (2011). Lte1 promotes mitotic exit by

controlling the localization of the spindle position checkpoint kinase Kin4.

Proc. Natl. Acad. Sci. U.S.A. 108, 12584–12590. doi: 10.1073/pnas.1107784108

Falk, J. E., Tsuchiya, D., Verdaasdonk, J., Lacefield, S., Bloom, K., and Amon, A.

(2016). Spatial signals link exit from mitosis to spindle position. Elife 5:e14036.

doi: 10.7554/eLife.14036

Ferrell, J. E. J. (2000). What do scaffold proteins really do? Sci. STKE 2000:pe1. doi:

10.1126/stke.2000.52.pe1

Finnigan, G. C., Booth, E. A., Duvalyan, A., Liao, E. N., and Thorner, J. (2015a).

The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding

factor Bni5 to the bud neck in Saccharomyces cerevisiae. Genetics 200, 821–840.

doi: 10.1534/genetics.115.176495

Finnigan, G. C., Duvalyan, A., Liao, E. N., Sargsyan, A., and Thorner, J. (2016a).

Detection of protein-protein interactions at the septin collar in Saccharomyces

cerevisiae using a tripartite split-GFP system.Mol. Biol. Cell 27, 2708–2725. doi:

10.1091/mbc.E16-05-0337

Finnigan, G. C., Sterling, S. M., Duvalyan, A., Liao, E. N., Sargsyan, A., Garcia,

G. R., et al. (2016b). Coordinate action of distinct sequence elements localizes

checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces

cerevisiae.Mol. Biol. Cell 27, 2213–2233. doi: 10.1091/mbc.E16-03-0177

Finnigan, G. C., Takagi, J., Cho, C., and Thorner, J. (2015b). Comprehensive

genetic analysis of paralogous terminal septin subunits Shs1 and

Cdc11 in Saccharomyces cerevisiae. Genetics 200, 841–861. doi:

10.1534/genetics.115.176495

Foltman, M., Molist, I., Arcones, I., Sacristan, C., Filali-Mouncef, Y., Roncero,

C., et al. (2016). Ingression progression complexes control extracellular matrix

remodelling during cytokinesis in budding yeast. PLoS Genet. 12:e1005864. doi:

10.1371/journal.pgen.1005864

Frenz, L. M., Lee, S. E., Fesquet, D., and Johnston, L. H. (2000). The budding yeast

Dbf2 protein kinase localises to the centrosome and moves to the bud neck in

late mitosis. J. Cell Sci. 113, 3399–3408.

Fung, K. Y., Dai, L., and Trimble, W. S. (2014). Cell and molecular biology

of septins. Intl. Rev. Cell Molec. Biol. 310, 289–339. doi: 10.1016/B978-0-12-

800180-6.00007-4

Garcia, G. III, Bertin, A., Li, Z., Song, Y., McMurray, M. A., Thorner, J., et al.

(2011). Subunit-dependent modulation of septin assembly: budding yeast

septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195, 993–1004. doi:

10.1083/jcb.201107123

Garcia, G. III, Finnigan, G. C., Heasley, L. R., Sterling, S. M., Aggarwal, A.,

Pearson, C. G., et al. (2016). Assembly, molecular organization, andmembrane-

binding properties of development-specific septins. J. Cell Biol. 212, 515–529.

doi: 10.1083/jcb.201511029

Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderón-Noreña, D. M., Cockcroft, S.,

Menon, A. K., et al. (2015). A new family of StART domain proteins at

membrane contact sites has a role in ER-PM sterol transport. Elife 4:e07253.

doi: 10.7554/eLife.07253

Gladfelter, A. S., Pringle, J. R., and Lew, D. J. (2001). The septin cortex at the

yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681–689. doi: 10.1016/S1369-

5274(01)00269-7

Good, M. C., Zalatan, J. G., and Lim, W. A. (2011). Scaffold proteins: hubs

for controlling the flow of cellular information. Science 332, 680–686. doi:

10.1126/science.1198701

Haarer, B. K., and Pringle, J. R. (1987). Immunofluorescence localization of

the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the

10-nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678–3687. doi:

10.1128/MCB.7.10.3678

Hall, P. A., and Russell, S. E. (2012). Mammalian septins: dynamic heteromers

with roles in cellular morphogenesis and compartmentalization. J. Pathol. 226,

287–299. doi: 10.1002/path.3024

Hartwell, L. H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes

controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276. doi:

10.1016/0014-4827(71)90223-0

Hartwell, L. H., Culotti, J., Pringle, J. R., and Reid, B. J. (1974). Genetic

control of the cell division cycle in yeast. Science 183, 46–51. doi:

10.1126/science.183.4120.46

Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the

order of cell cycle events. Science 246, 629–634. doi: 10.1126/science.2683079

Harvey, K. F., and Hariharan, I. K. (2012). The hippo pathway. Cold Spring Harb.

Perspect. Biol. 4:a011288. doi: 10.1101/cshperspect.a011288

Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P., and Kellogg, D. R. (2005). Cdk1-

dependent regulation of the mitotic inhibitor Wee1. Cell 122, 407–420. doi:

10.1016/j.cell.2005.05.029

Hernandez-Rodriguez, Y., and Momany, M. (2012). Post-translational

modifications and assembly of septin heteropolymers and higher-order

structures. Curr. Opin. Microbiol. 15, 660–668. doi: 10.1016/j.mib.2012.

09.007

Hotz, M., and Barral, Y. (2014). The mitotic exit network: new turns on old

pathways. Trends Cell Biol. 24, 145–152. doi: 10.1016/j.tcb.2013.09.010

Howell, A. S., and Lew, D. J. (2012). Morphogenesis and the cell cycle. Genetics

190, 51–77. doi: 10.1534/genetics.111.128314

Ibrahim, B. (2015). Toward a systems-level view of mitotic checkpoints. Prog.

Biophys. Mol. Biol. 117, 217–224. doi: 10.1016/j.pbiomolbio.2015.02.005

Iwase, M., Luo, J., Bi, E., and Toh-e, A. (2007). Shs1 plays separable roles in

septin organization and cytokinesis in Saccharomyces cerevisiae. Genetics 177,

215–229. doi: 10.1534/genetics.107.073007

Iwase, M., Luo, J., Nagaraj, S., Longtine, M., Kim, H. B., Haarer, B. K., et al. (2006).

Role of a Cdc42p effector pathway in recruitment of the yeast septins to the

presumptive bud site.Mol. Biol. Cell 17, 1110–1125. doi: 10.1091/mbc.E05-08-

0793

John, C. M., Hite, R. K., Weirich, C. S., Fitzgerald, D. J., Jawhari, H., Faty, M., et al.

(2007). The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26,

3296–3307. doi: 10.1038/sj.emboj.7601775

Johnson, E. S., and Blobel, G. (1999). Cell cycle-regulated attachment of the

ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.

doi: 10.1083/jcb.147.5.981

Juanes, M. A., and Piatti, S. (2016). The final cut: cell polarity meets cytokinesis

at the bud neck in S. cerevisiae. Cell. Mol. Life Sci. 73, 3115–3136. doi:

10.1007/s00018-016-2220-3

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 November 2016 | Volume 4 | Article 119

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Perez et al. Protein Kinases at the Yeast Bud Neck

Jung, U. S., and Levin, D. E. (1999). Genome-wide analysis of gene expression

regulated by the yeast cell wall integrity signalling pathway.Mol. Microbiol. 34,

1049–1057. doi: 10.1046/j.1365-2958.1999.01667.x

Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y., and Levin, D. E.

(1996). Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem.

271, 9193–9196. doi: 10.1074/jbc.271.16.9193

Kang, H., Tsygankov, D., and Lew, D. J. (2016). Sensing a bud in the yeast

morphogenesis checkpoint: a role for Elm1.Mol. Biol. Cell 27, 1764–1775. doi:

10.1091/mbc.E16-01-0014

Keaton, M. A., Szkotnicki, L., Marquitz, A. R., Harrison, J., Zyla, T. R., and Lew, D.

J. (2008). Nucleocytoplasmic trafficking of G2/M regulators in yeast.Mol. Biol.

Cell 19, 4006–4018. doi: 10.1091/mbc.E08-03-0286

Kim, H. B., Haarer, B. K., and Pringle, J. R. (1991). Cellular morphogenesis in

the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product

and the timing of events at the budding site. J. Cell Biol. 112, 535–544. doi:

10.1083/jcb.112.4.535

King, K., Jin, M., and Lew, D. (2012). Roles of Hsl1p and Hsl7p in Swe1p

degradation: beyond septin tethering. Eukaryot. Cell 11, 1496–1502. doi:

10.1128/EC.00196-12

Koehler, C.M., andMyers, A.M. (1997). Serine-threonine protein kinase activity of

Elm1p, a regulator of morphologic differentiation in Saccharomyces cerevisiae.

FEBS Lett. 408, 109–114. doi: 10.1016/S0014-5793(97)00401-8

Kozubowski, L., Larson, J. R., and Tatchell, K. (2005). Role of the septin ring in the

asymmetric localization of proteins at the mother-bud neck in Saccharomyces

cerevisiae.Mol. Biol. Cell 16, 3455–3466. doi: 10.1091/mbc.E04-09-0764

Kusch, J., Meyer, A., Snyder, M. P., and Barral, Y. (2002). Microtubule capture by

the cleavage apparatus is required for proper spindle positioning in yeast.Genes

Dev. 16, 1627–1639. doi: 10.1101/gad.222602

Langeberg, L. K., and Scott, J. D. (2015). Signalling scaffolds and local

organization of cellular behaviour. Nat. Rev. Mol. Cell Biol. 16, 232–244. doi:

10.1038/nrm3966

Lee, P. R., Song, S., Ro, H. S., Park, C. J., Lippincott, J., Li, R., et al. (2002).

Bni5p, a septin-interacting protein, is required for normal septin function and

cytokinesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 6906–6920. doi:

10.1128/MCB.22.19.6906-6920.2002

Lee, S. E., Frenz, L. M., Wells, N. J., Johnson, A. L., and Johnston, L. H. (2001).

Order of function of the budding-yeast mitotic exit-network proteins Tem1,

Cdc15, Mob1, Dbf2, and Cdc5. Curr. Biol. 11, 784–788. doi: 10.1016/S0960-

9822(01)00228-7

Lew, D. J. (2003). The morphogenesis checkpoint: how yeast cells watch their

figures. Curr. Opin. Cell Biol. 15, 648–653. doi: 10.1016/j.ceb.2003.09.001

Lianga, N., Williams, E. C., Kennedy, E. K., Doré, C., Pilon, S., Girard, S. L., et al.

(2013). A Wee1 checkpoint inhibits anaphase onset. J. Cell Biol. 201, 843–862.

doi: 10.1083/jcb.201212038

Longtine, M. S., Fares, H., and Pringle, J. R. (1998). Role of the yeast Gin4p protein

kinase in septin assembly and the relationship between septin assembly and

septin function. J. Cell Biol. 143, 719–736. doi: 10.1083/jcb.143.3.719

Longtine, M. S., Theesfeld, C. L., McMillan, J. N., Weaver, E., Pringle, J. R.,

and Lew, D. J. (2000). Septin-dependent assembly of a cell cycle-regulatory

module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 4049–4061. doi:

10.1128/MCB.20.11.4049-4061.2000

Lowery, D. M., Lim, D., and Yaffe, M. B. (2005). Structure and function of Polo-like

kinases. Oncogene 24, 248–259. doi: 10.1038/sj.onc.1208280

Luca, F. C., Mody, M., Kurischko, C., Roof, D. M., Giddings, T. H., and Winey, M.

(2001). Saccharomyces cerevisiaeMob1p is required for cytokinesis and mitotic

exit.Mol. Cell. Biol. 21, 6972–6983. doi: 10.1128/MCB.21.20.6972-6983.2001

Luedeke, C., Frei, S. B., Sbalzarini, I., Schwarz, H., Spang, A., and Barral, Y.

(2005). Septin-dependent compartmentalization of the endoplasmic reticulum

during yeast polarized growth. J. Cell Biol. 169, 897–908. doi: 10.1083/jcb.2004

12143

Manford, A. G., Stefan, C. J., Yuan, H. L., Macgurn, J. A., and Emr, S. D. (2012).

ER-to-plasma membrane tethering proteins regulate cell signaling and ER

morphology. Dev. Cell 23, 1129–1140. doi: 10.1016/j.devcel.2012.11.004

Ma, X. J., Lu, Q., and Grunstein, M. (1996). A search for proteins that interact

genetically with histone H3 and H4 amino termini uncovers novel regulators

of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev. 10, 1327–1340. doi:

10.1101/gad.10.11.1327

Mazur, P., and Baginsky, W. (1996). In vitro activity of 1,3-β-D-glucan synthase

requires the GTP- binding protein Rho1. J. Biol. Chem. 271, 14604–14609. doi:

10.1074/jbc.271.24.14604

McCollum, D., and Gould, K. L. (2001). Timing is everything: regulation of mitotic

exit and cytokinesis by the MEN and SI. Trends Cell Biol. 11, 89–95. doi:

10.1016/S0962-8924(00)01901-2

McMillan, J. N., Longtine, M. S., Sia, R. A., Theesfeld, C. L., Bardes, E. S., Pringle,

J. R., et al. (1999). The morphogenesis checkpoint in Saccharomyces cerevisiae:

cell cycle control of Swe1p degradation by Hsl1p and Hsl7p.Mol. Cell. Biol. 19,

6929–6939. doi: 10.1128/MCB.19.10.6929

McMillan, J. N., Sia, R. A., and Lew, D. J. (1998). A morphogenesis checkpoint

monitors the actin cytoskeleton in yeast. J. Cell Biol. 142, 1487–1499. doi:

10.1083/jcb.142.6.1487

McMillan, J. N., Theesfeld, C. L., Harrison, J. C., Bardes, E. S., and Lew, D. J. (2002).

Determinants of Swe1p degradation in Saccharomyces cerevisiae.Mol. Biol. Cell

13, 3560–3575. doi: 10.1091/mbc.E02-05-0283

McMurray, M. A., Bertin, A., Garcia, G. III, Lam, L., Nogales, E., and Thorner, J.

(2011). Septin filament formation is essential in budding yeast. Dev. Cell 20,

540–549. doi: 10.1016/j.devcel.2011.02.004

McMurray, M. A., and Thorner, J. (2009). Septins: molecular partitioning and the

generation of cellular asymmetry. Cell Div. 4:18. doi: 10.1186/1747-1028-4-18

Meitinger, F., Boehm, M. E., Hofmann, A., Hub, B., Zentgraf, H., Lehmann, W. D.,

et al. (2011). Phosphorylation-dependent regulation of the F-BAR protein Hof1

during cytokinesis. Genes Dev. 25, 875–888. doi: 10.1101/gad.622411

Meitinger, F., Palani, S., Hub, B., and Pereira, G. (2013). Dual function of the NDR-

kinase Dbf2 in the regulation of the F-BAR protein Hof1 during cytokinesis.

Mol. Biol. Cell 24, 1290–1304. doi: 10.1091/mbc.E12-08-0608

Meitinger, F., Palani, S., and Pereira, G. (2012). The power of MEN in cytokinesis.

Cell Cycle 11, 219–228. doi: 10.4161/cc.11.2.18857

Meitinger, F., Petrova, B., Lombardi, I. M., Bertazzi, D. T., Hub, B., Zentgraf, H.,

et al. (2010). Targeted localization of Inn1, Cyk3 and Chs2 by the mitotic-exit

network regulates cytokinesis in budding yeast. J. Cell Sci. 123, 1851–1861. doi:

10.1242/jcs.063891

Merlini, L., Bolognesi, A., Juanes, M. A., Vandermoere, F., Courtellemont, T.,

Pascolutti, R., et al. (2015). Rho1- and Pkc1-dependent phosphorylation of the

F-BAR protein Syp1 contributes to septin ring assembly. Mol. Biol. Cell 26,

3245–3262. doi: 10.1091/mbc.E15-06-0366

Mocciaro, A., and Schiebel, E. (2010). Cdc14: a highly conserved family of

phosphatases with non-conserved functions? J. Cell Sci. 123, 2867–2876. doi:

10.1242/jcs.074815

Mohl, D. A., Huddleston, M. J., Collingwood, T. S., Annan, R. S., and Deshaies,

R. J. (2009). Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14

to the cytoplasm during exit from mitosis. J. Cell Biol. 184, 527–539. doi:

10.1083/jcb.200812022

Mok, J., Kim, P. M., Lam, H. Y., Piccirillo, S., Zhou, X., Jeschke, G. R., et al. (2010).

Deciphering protein kinase specificity through large-scale analysis of yeast

phosphorylation site motifs. Sci. Signal. 3:ra12. doi: 10.1126/scisignal.2000482

Moore, J. K., Chudalayandi, P., Heil-Chapdelaine, R. A., and Cooper, J. A. (2010).

The spindle position checkpoint is coordinated by the Elm1 kinase. J. Cell Biol.

191, 493–503. doi: 10.1083/jcb.201006092

Moravcevic, K., Mendrola, J. M., Schmitz, K. R., Wang, Y. H., Slochower, D.,

Janmey, P. A., et al. (2010). Kinase associated-1 domains drive MARK/PAR1

kinases to membrane targets by binding acidic phospholipids. Cell 143,

966–977. doi: 10.1016/j.cell.2010.11.028

Mortensen, E. M., McDonald, H., Yates, J. III, and Kellogg, D. R. (2002). Cell cycle-

dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13, 2091–2105.

doi: 10.1091/mbc.01-10-0500

Mostowy, S., and Cossart, P. (2012). Septins, the fourth component of the

cytoskeleton. Nat. Rev. Mol. Cell Biol. 3, 183–194. doi: 10.1038/nrm3284

Nakano, K., Yamamoto, T., Kishimoto, T., Noji, T., and Tanaka, K. (2008). Protein

kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry.Mol.

Biol. Cell 19, 1783–1797. doi: 10.1091/mbc.E07-07-0646

Nishihama, R., Onishi, M., and Pringle, J. R. (2011). New insights into the

phylogenetic distribution and evolutionary origins of the septins. Biol. Chem.

392, 681–687. doi: 10.1515/BC.2011.086

Nishihama, R., Schreiter, J. H., Onishi, M., Vallen, E. A., Hanna, J., Moravcevic,

K., et al. (2009). Role of Inn1 and its interactions with Hof1 and Cyk3 in

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 November 2016 | Volume 4 | Article 119

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Perez et al. Protein Kinases at the Yeast Bud Neck

promoting cleavage furrow and septum formation in S. cerevisiae. J. Cell Biol.

185, 995–1012. doi: 10.1083/jcb.200903125

Oh, Y., and Bi, E. (2011). Septin structure and function in yeast and beyond. Trends

Cell Biol. 21, 141–148. doi: 10.1016/j.tcb.2010.11.006

Oh, Y., Chang, K. J., Orlean, P., Wloka, C., Deshaies, R., and Bi, E. (2012).

Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase Chs2 to

regulate cytokinesis in budding yeast. Mol. Biol. Cell 23, 2445–2456. doi:

10.1091/mbc.E12-01-0033

Oh, Y., Schreiter, J., Nishihama, R., Wloka, C., and Bi, E. (2013). Targeting and

functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during

the cell cycle.Mol. Biol. Cell 24, 1305–1320. doi: 10.1091/mbc.E12-11-0804

Okada, S., Leda, M., Hanna, J., Savage, N. S., Bi, E., and Goryachev, A. B. (2013).

Daughter cell identity emerges from the interplay of Cdc42, septins, and

exocytosis. Dev. Cell 26, 148–161. doi: 10.1016/j.devcel.2013.06.015

O’Neill, R. S., and Clark, D. V. (2016). Partial functional diversification of

Drosophila melanogaster septin genes Sep2 and Sep5. G3 (Bethesda). 6,

1947–1957. doi: 10.1534/g3.116.028886

Ong, K., Wloka, C., Okada, S., Svitkina, T., and Bi, E. (2014). Architecture and

dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat.

Commun. 5:5698. doi: 10.1038/ncomms6698

Pan, F., Malmberg, R. L., and Momany, M. (2007). Analysis of septins across

kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7:103. doi:

10.1186/1471-2148-7-103

Patasi, C., Godocíková, J., Michlikova, S., Nie, Y., Kacerikova, R., Kvalova, K.,

et al. (2015). The role of Bni5 in the regulation of septin higher-order structure

formation. Biol. Chem. 396, 1325–1337. doi: 10.1515/hsz-2015-0165

Paulovich, A. G., Toczyski, D. P., and Hartwell, L. H. (1997). When checkpoints

fail. Cell 88, 315–321. doi: 10.1016/S0092-8674(00)81870-X

Pereira, G., and Schiebel, E. (2005). Kin4 kinase delays mitotic exit in

response to spindle alignment defects. Mol. Cell 19, 209–221. doi:

10.1016/j.molcel.2005.05.030

Peterson, E. A., and Petty, E. M. (2010). Conquering the complex world of human

septins: implications for health and disease. Clin. Genet. 77, 511–524. doi:

10.1111/j.1399-0004.2010.01392.x

Qiu, W., Neo, S. P., Yu, X., and Cai, M. (2008). A novel septin-associated

protein, Syp1p, is required for normal cell cycle-dependent septin cytoskeleton

dynamics in yeast. Genetics 180, 1445–1457. doi: 10.1534/genetics.108.091900

Ramkumar, N., and Baum, B. (2016). Coupling changes in cell shape to

chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521. doi:

10.1038/nrm.2016.75

Reider, A., Barker, S. L., Mishra, S. K., Im, Y. J., Maldonado-Báez, L., Hurley, J.

H., et al. (2009). Syp1 is a conserved endocytic adaptor that contains domains

involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116.

doi: 10.1038/emboj.2009.248

Rhind, N., and Russell, P. (2012). Signaling pathways that regulate cell division.

Cold Spring Harb. Perspect. Biol. 4:a005942. doi: 10.1101/cshperspect.a005942

Rock, J. M., Lim, D., Stach, L., Ogrodowicz, R. W., Keck, J. M., Wong, C. C.,

et al. (2013). Activation of the yeast Hippo pathway by phosphorylation-

dependent assembly of signaling complexes. Science 340, 871–875. doi:

10.1126/science.1235822

Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G., and Hartwig, J. H.

(2005). Actin and septin ultrastructures at the budding yeast cell cortex. Mol.

Biol. Cell 16, 372–384. doi: 10.1091/mbc.E04-08-0734

Roelants, F. M., Baltz, A. G., Trott, A. E., Fereres, S., and Thorner, J. (2010). A

protein kinase network regulates the function of aminophospholipid flippases.

Proc. Natl. Acad. Sci. U.S.A. 107, 34–39. doi: 10.1073/pnas.0912497106

Roelants, F. M., Su, B. M., von Wulffen, J., Ramachandran, S., Sartorel, E., Trott,

A. E., et al. (2015). Protein kinase Gin4 negatively regulates flippase function

and controls plasma membrane asymmetry. J. Cell Biol. 208, 299–311. doi:

10.1083/jcb.201410076

Rubenstein, E. M., and Schmidt, M. C. (2007). Mechanisms regulating the

protein kinases of Saccharomyces cerevisiae. Eukaryot. Cell 6, 571–583. doi:

10.1128/EC.00026-07

Russell, P., Moreno, S., and Reed, S. I. (1989). Conservation of mitotic controls

in fission and budding yeasts. Cell 57, 295–303. doi: 10.1016/0092-8674(89)

90967-7

Saito, K., Fujimura-Kamada, K., Hanamatsu, H., Kato, U., Umeda, M., Kozminski,

K. G., et al. (2007). Transbilayer phospholipid flipping regulates Cdc42p

signaling during polarized cell growth via Rga GTPase-activating proteins.Dev.

Cell 13, 743–751. doi: 10.1016/j.devcel.2007.09.014

Sakchaisri, K., Asano, S., Yu, L. R., Shulewitz, M. J., Park, C. J., Park, J. E., et al.

(2004). Coupling morphogenesis to mitotic entry. Proc. Natl. Acad. Sci. U.S.A.

101, 4124–4129. doi: 10.1073/pnas.0400641101

Sanchez-Diaz, A., Marchesi, V., Murray, S., Jones, R., Pereira, G., Edmondson, R.,

et al. (2008). Inn1 couples contraction of the actomyosin ring to membrane

ingression during cytokinesis in budding yeast. Nat. Cell Biol. 10, 395–406. doi:

10.1038/ncb1701

Sayegh, J., and Clarke, S. G. (2008). Hsl7 is a substrate-specific type II protein

arginine methyl-transferase in yeast. Biochem. Biophys. Res. Commun. 372,

811–815. doi: 10.1016/j.bbrc.2008.05.121

Schmidt, M., Varma, A., Drgon, T., Bowers, B., and Cabib, E. (2003). Septins, under

Cla4p regulation, and the chitin ring are required for neck integrity in budding

yeast.Mol. Biol. Cell 14, 2128–2141. doi: 10.1091/mbc.E02-08-0547

Shulewitz, M. J., Inouye, C. J., and Thorner, J. (1999). Hsl7 localizes to a septin

ring and serves as an adapter in a regulatory pathway that relieves tyrosine

phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae.Mol. Cell.

Biol. 19, 7123–7137. doi: 10.1128/MCB.19.10.7123

Simpson-Lavy, K. J., and Brandeis, M. (2010). Clb2 and the APC/C(Cdh1) regulate

Swe1 stability. Cell Cycle 9, 3046–3053. doi: 10.4161/cc.9.15.12457

Smeets, M. F., and Segal, M. (2002). Spindle polarity in S. cerevisiae: MEN can tell.

Cell Cycle 1, 308–311. doi: 10.4161/cc.1.5.143

Smolka, M. B., Albuquerque, C. P., Chen, S. H., and Zhou, H. (2007). Proteome-

wide identification of in vivo targets of DNA damage checkpoint kinases. Proc.

Natl. Acad. Sci. U.S.A. 104, 10364–10369. doi: 10.1073/pnas.0701622104

Smolka, M. B., Chen, S. H., Maddox, P. S., Enserink, J. M., Albuquerque, C. P.,Wei,

X. X., et al. (2006). An FHA domain-mediated protein interaction network of

Rad53 reveals its role in polarized cell growth. J. Cell Biol. 175, 743–753. doi:

10.1083/jcb.200605081

Song, S., Grenfell, T. Z., Garfield, S., Erikson, R. L., and Lee, K. S. (2000). Essential

function of the polo box of Cdc5 in subcellular localization and induction of

cytokinetic structures.Mol. Cell. Biol. 20, 286–298. doi: 10.1128/MCB.20.1.286-

298.2000

Soulard, A., Cremonesi, A., Moes, S., Schütz, F., Jenö, P., and Hall, M. N. (2010).

The rapamycin-sensitive phosphoproteome reveals that TOR controls protein

kinase A toward some but not all substrates.Mol. Biol. Cell 21, 3475–3486. doi:

10.1091/mbc.E10-03-0182

Sreenivasan, A., and Kellogg, D. (1999). The Elm1 kinase functions in a mitotic

signaling network in budding yeast.Mol. Cell. Biol. 19, 7983–7994. doi: 10.1128/

MCB.19.12.7983

Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S., and Drubin,

D. G. (2009). Early-arriving Syp1p and Ede1p function in endocytic site

placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651. doi:

10.1091/mbc.E09-05-0429

Swaney, D. L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., et al. (2013).

Global analysis of phosphorylation and ubiquitylation cross-talk in protein

degradation. Nat. Methods 10, 676–682. doi: 10.1038/nmeth.2519

Szkotnicki, L., Crutchley, J. M., Zyla, T. R., Bardes, E. S., and Lew, D. J. (2008). The

checkpoint kinase Hsl1p is activated by Elm1p-dependent phosphorylation.

Mol. Biol. Cell 19, 4675–4686. doi: 10.1091/mbc.E08-06-0663

Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E., and Vale, R. D. (2000).

Plasma membrane compartmentalization in yeast by messenger RNA

transport and a septin diffusion barrier. Science 290, 341–344. doi:

10.1126/science.290.5490.341

Tang, C. S., and Reed, S. I. (2002). Phosphorylation of the septin Cdc3 in G1 by

the Cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle 1,

42–49. doi: 10.4161/cc.1.1.99

Thomas, C. L., Blacketer, M. J., Edgington, N. P., and Myers, A. M.

(2003). Assembly interdependence among the S. cerevisiae bud neck ring

proteins Elm1p, Hsl1p and Cdc12p. Yeast 20, 813–826. doi: 10.1002/

yea.1003

Vallen, E. A., Caviston, J., and Bi, E. (2000). Roles of Hof1p, Bni1p, Bnr1p, and

myo1p in cytokinesis in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 593–611.

doi: 10.1091/mbc.11.2.593

Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G., and Deshaies,

R. J. (1997). Phosphorylation of Sic1p by G1 Cdk required for its degradation

and entry into S phase. Science 278, 455–460. doi: 10.1126/science.278.5337.455

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 November 2016 | Volume 4 | Article 119

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Perez et al. Protein Kinases at the Yeast Bud Neck

Versele, M., Gullbrand, B., Shulewitz, M. J., Cid, V. J., Bahmanyar, S.,

Chen, R. E., et al. (2004). Protein-protein interactions governing

septin heteropentamer assembly and septin filament organization in

Saccharomyces cerevisiae.Mol. Biol. Cell 15, 4568–4583. doi: 10.1091/mbc.E04-

04-0330

Versele, M., and Thorner, J. (2004). Septin collar formation in budding yeast

requires GTP binding and direct phosphorylation by the PAK, Cla4. J. Cell Biol.

164, 701–715. doi: 10.1083/jcb.200312070

Versele, M., and Thorner, J. (2005). Some assembly required: yeast septins

provide the instruction manual. Trends Cell Biol. 15, 414–424. doi:

10.1016/j.tcb.2005.06.007

Visintin, R., and Amon, A. (2000). The nucleolus: the magician’s hat for cell cycle

tricks. Curr. Opin. Cell Biol. 12, 372–377. doi: 10.1016/S0955-0674(00)00102-2

Vrabioiu, A. M., and Mitchison, T. J. (2006). Structural insights into yeast septin

organization from polarized fluorescence microscopy. Nature 443, 466–469.

doi: 10.1038/nature05109

Weirich, C. S., Erzberger, J. P., and Barral, Y. (2008). The septin family of

GTPases: architecture and dynamics. Nat. Rev. Mol. Cell Biol. 9, 478–489. doi:

10.1038/nrm2407

Wloka, C., and Bi, E. (2012). Mechanisms of cytokinesis in budding yeast.

Cytoskeleton 69, 710–726. doi: 10.1002/cm.21046

Wloka, C., Nishihama, R., Onishi, M., Oh, Y., Hanna, J., Pringle, J. R., et al. (2011).

Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding

yeast. Biol. Chem. 392, 813–829. doi: 10.1515/BC.2011.083

Xu, S., Huang, H. K., Kaiser, P., Latterich, M., and Hunter, T. (2000).

Phosphorylation and spindle pole body localization of the Cdc15p mitotic

regulatory protein kinase in budding yeast. Curr. Biol. 23, 329–332. doi:

10.1016/S0960-9822(00)00382-1

Yoshida, S., Kono, K., Lowery, D. M., Bartolini, S., Yaffe, M. B., Ohya, Y., et al.

(2006). Polo-like kinase Cdc5 controls the local activation of Rho1 to promote

cytokinesis. Science 313, 108–111. doi: 10.1126/science.1126747

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Perez, Finnigan, Roelants and Thorner. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 November 2016 | Volume 4 | Article 119

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

	Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae
	Introduction
	A Morphogenesis Checkpoint
	Mitotic Exit
	Cytokinesis
	Regulation of Septin Organization
	Outlook and Prospectus
	Author Contributions
	Acknowledgments
	References


