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Abstract: Diseases of cereals caused by pathogenic fungi can significantly reduce crop yields. Many
cultures are exposed to them. The disease is difficult to control on a large scale; thus, one of the
relevant approaches is the crop field monitoring, which helps to identify the disease at an early stage
and take measures to prevent its spread. One of the effective control methods is disease identification
based on the analysis of digital images, with the possibility of obtaining them in field conditions,
using mobile devices. In this work, we propose a method for the recognition of five fungal diseases
of wheat shoots (leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately
and in case of multiple diseases, with the possibility of identifying the stage of plant development. A
set of 2414 images of wheat fungi diseases (WFD2020) was generated, for which expert labeling was
performed by the type of disease. More than 80% of the images in the dataset correspond to single
disease labels (including seedlings), more than 12% are represented by healthy plants, and 6% of the
images labeled are represented by multiple diseases. In the process of creating this set, a method was
applied to reduce the degeneracy of the training data based on the image hashing algorithm. The
disease-recognition algorithm is based on the convolutional neural network with the EfficientNet
architecture. The best accuracy (0.942) was shown by a network with a training strategy based on
augmentation and transfer of image styles. The recognition method was implemented as a bot on the
Telegram platform, which allows users to assess plants by lesions in the field conditions.

Keywords: wheat; leaf rust; powdery mildew; septoria; stem rust; yellow rust; image recognition;
deep learning; convolutional neural network; phenotyping

1. Introduction

Wheat is one of the world’s main crops and food sources for human consumption [1].
Wheat accounts for the largest planting area, and the food security of the population
of most countries of the world depends on its yield. One of the main factors affecting
wheat yield is fungi diseases: rust, septoria of leaves and ears, and powdery mildew [2]
(Figure 1).

Leaf rust, powdery mildew, and septoria (pathogens Puccinia triticina Erikss., Blumeria
graminis (DC.) Speer, Zymoseptoria tritici Rob., and Parastaganospora nodorum Berk.) are
cosmopolitan pathogens. They are observed in the phytopathogenic complex on grain
crops widely. However, the total damage caused by the causative agents of the above-listed
diseases does not exceed 20% and is controlled by the timely use of fungicides [3]. The
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consequences of the epiphytoties of yellow and stem rust, leading to grain shortages of
more than 30%, are of serious economic importance. In general, grain yield losses from
these diseases, depending on the region and season conditions, can vary from 15 to 30%
or more [4,5]. The most effective way to combat these diseases is their prevention and
timely implementation of protective actions [4,6,7]. However, such a strategy is impossible
without a timely and correct diagnosis of pathogens. In this case, it is important to identify
diseases at the stage of seedlings, since at later stages of plant development, resistance to
the pathogen is higher [8]. In turn, the effectiveness of such diagnostics largely depends on
how accurate, labor-intensive, and resource-intensive they are.
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Figure 1. Examples of digital images showing manifestations of wheat plant disease: (a) leaf rust, 
(b) powdery mildew, (c) septoria, (d) stem rust, (e) yellow rust, and (f) multiple diseases. 
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in addition to the observations (keeping a record book, statistical processing of observa-
tions, etc.). In recent decades, molecular, spectral methods, and methods based on the 
analysis of digital images have appeared and have become widespread [11,12]. These ap-
proaches differ in the labor intensity, as well as in its cost and accuracy. The methods, 
using the analysis of digital RGB images, are based on determining changes in the color, 
texture, and shape of plant organs that arise as a result of changes in their pigment com-
position under the influence of the vital activity of pathogens [13–17]. The advantages of 
such methods are the low cost of monitoring equipment (it is sufficient to use a digital 
camera or a mobile phone) and the high monitoring speed. The disadvantages include 
low sensitivity (in comparison, for example, with spectral methods; see References 
[12,18]). 

Recently the technologies for plant-disease monitoring based on digital RGB images 
have received a powerful impulse due to the improvement of machine learning methods 
based on the use of neural network algorithms. A feature of deep learning neural net-
works in comparison with other methods is the multilayer architecture of neurons, in 
which the next layer uses the output of the previous layer as input data to derive ideas 
regarding the analyzed objects [19,20]. For example, for such an important task as image 
labeling, some of the most successful methods are convolutional neural networks (CNNs), 
for which several architecture options are used. Among the first types of CNN architec-
ture were AlexNet [21] and VGG [22]. Further development of these approaches made it 

Figure 1. Examples of digital images showing manifestations of wheat plant disease: (a) leaf rust,
(b) powdery mildew, (c) septoria, (d) stem rust, (e) yellow rust, and (f) multiple diseases.

Visual assessment of the diseases has been the main diagnostic method throughout the
history of wheat cultivation. It allows to identify plaque, pustules, spots, or necrosis [9,10].
It requires the training of specialists in phytopathology and a lot of routine work, in
addition to the observations (keeping a record book, statistical processing of observations,
etc.). In recent decades, molecular, spectral methods, and methods based on the analysis
of digital images have appeared and have become widespread [11,12]. These approaches
differ in the labor intensity, as well as in its cost and accuracy. The methods, using the
analysis of digital RGB images, are based on determining changes in the color, texture, and
shape of plant organs that arise as a result of changes in their pigment composition under
the influence of the vital activity of pathogens [13–17]. The advantages of such methods
are the low cost of monitoring equipment (it is sufficient to use a digital camera or a mobile
phone) and the high monitoring speed. The disadvantages include low sensitivity (in
comparison, for example, with spectral methods; see References [12,18]).

Recently the technologies for plant-disease monitoring based on digital RGB images
have received a powerful impulse due to the improvement of machine learning methods
based on the use of neural network algorithms. A feature of deep learning neural networks
in comparison with other methods is the multilayer architecture of neurons, in which the
next layer uses the output of the previous layer as input data to derive ideas regarding
the analyzed objects [19,20]. For example, for such an important task as image labeling,
some of the most successful methods are convolutional neural networks (CNNs), for
which several architecture options are used. Among the first types of CNN architecture
were AlexNet [21] and VGG [22]. Further development of these approaches made it
possible to improve the convergence of the proposed algorithms (ResNet network) [23],
reduce the number of parameters due to deep convolution (MobileNet network) [24], and
improve model training results due to adaptive recalibration of responses across channels
(SENet network) [25]. These advances have expanded the applicability of deep learning
neural networks. Moreover, they have also demonstrated exceptional success on complex
problems of plant phenotyping [19,26–30].
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The deep learning neural networks were implemented efficiently in disease detection
for various plant species [31–37]. It was demonstrated that deep learning approaches
outperform machine learning algorithms, such as support vector machine, random forest,
stochastic gradient descent [38]. The development of the deep learning methods towards
better disease recognition in plants included transfer learning approaches [39], imple-
menting networks of various architectures [37,40–44], working with the limited amount of
data [45], and Bayesian deep learning [46].

A number of deep learning methods, which have been developed to identify wheat dis-
eases by using digital RGB images, have proved to be effective. In the work by Barbedo [47],
CNN of the GoogLeNet architecture was used to detect lesions in the leaf image, and, on
this basis, wheat diseases, such as blast, leaf rust, tan spot, and powdery mildew were
identified. In the work by Picon et al. [48], a method was developed for identifying four
types of wheat diseases, taking into account their stage of development (septoria, tan spot,
and two types of rust) based on deep CNNs. Lu et al. [49] have developed an automatic
system for diagnosing six types of wheat diseases that recognizes the type of disease and
localizes the lesions in the image, obtained in the field conditions.

The increase in the use of deep learning architectures provide significant progress in
the diagnosis of wheat diseases based on the digital images. However, there are still gaps
to be investigated regarding the use of especially new deep learning architectures in wheat
leaf fungal disease detection.

First of all, to build a successful algorithm for disease recognition, a set of a large
number of labeled images is required [50]. The availability of such data in the pub-
lic domain is the basis for improving modern methods of image recognition for plant
phenotyping [51,52] and identification of pathogens [53].

Second, progress in disease recognition depends largely on the choice of neural
network architecture [37]. New and modified deep learning architectures are constantly
being introduced to better/transparent plant disease detection [37]. Improved versions of
state-of-the-art models tend to provide high accuracy in disease detection [31,54]. Recently,
the EfficientNet network architecture was proposed in Reference [55], and it has shown
high efficiency in image labeling. It uses a new activation function called Swish instead of
the Rectifier Linear Unit (ReLU) activation function implemented in other CNN models.
EfficientNet is a family of CNNs of similar architecture (B0 to B7) which differ from
each other in the depth of the layers, their width, and the size of the input image, while
maintaining the ratios between these sets of parameters. Thus, as the model number
grows, the number of calculated parameters does not increase much. On the ImageNet
task, the EfficientNet-B7 model with 66 M parameters achieved an accuracy of 84.3% [55].
This architecture was used for the fruit recognition and demonstrated higher performance
compared to the ConvNet architecture [29]. Atila et al. demonstrated that EfficientNet
architecture outperforms AlexNet, ResNet, VGG16, and Inception V3 networks in the plant-
disease recognition task on the PlantVillage dataset [42]. Zhang et al. [41] implemented
EfficientNet for greenhouse cucumber-disease recognition. They demonstrated that the
EfficientNet-B4 model outperforms AlexNet, VGG16, VGG19, Inception V4, ResNet50,
ResNet101, SqueeseNet, and DenseNet networks.

Another difficulty is the simultaneous presence of symptoms caused by different
diseases [56]. On the one hand, the problem of multiple classifications is difficult to solve,
since it requires a larger volume of images for correct classification, in which various
combinations of lesions will be presented in sufficient numbers. On the other hand, the
visual manifestations of each of the diseases can be very similar (see Figure 1), which makes
it difficult to make a correct classification.

Finally, one of the important conditions for creating a recognition method is the
possibility of using it in field conditions [57]. This increases the efficiency of disease
monitoring and, consequently, the chances of successful plant treatment by fungicides. One
of the approaches is using mobile devices for this, both for semi-automatic determination
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of the degree of plant damage [58] and fully automatic analysis, including computer vision
methods [59,60] and deep learning networks [48,49,61,62].

Here we propose a method for the recognition of five fungi diseases of wheat shoots
(leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately and in
combination, with the possibility of identifying the stage of plant development. Our paper
makes the following contributions:

• The Wheat Fungi Diseases (WFD2020) dataset of 2414 wheat images for which expert
labeling was performed by the type of disease. In the process of creating this set, a data-
redundancy reduction procedure was applied based on the image hashing algorithm.

• The disease-recognition algorithm based on the use of a network with the EfficientNet-
B0 architecture with transfer learning from ImageNet dataset and augmentation,
including style transfer.

• The implementation of the recognition method as a chatbot on the Telegram platform,
which allows for the assessment of plants’ symptoms in the field conditions.

The structure of our paper is as follows. Section 2.1 provides an overview of our work.
The dataset preparation and its description are given below in Sections 2.2–2.4 and 3.1,
Section 3.2, Section 3.3, respectively. The network architecture and evaluation methods
are described in Section 2.5, Section 2.6, Section 2.7; the accuracy estimation results are
presented in Section 3.4. A description of the application structure is given in Section 2.8,
and a brief description of the functionality is in Section 3.5. We summarize our contribution
and compare our results with results obtained by other authors in the Discussion section.

2. Materials and Methods
2.1. Methods Overview

The summary of the methods used in this work is shown in Figure 2.
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First, we prepared the Wheat Fungi Diseases image dataset (Figure 2a).
Second, we searched for the optimal parameters of the EfficientNet-B0-based neural

network, using the transfer learning technique for initial settings and choosing the best of
three training strategies (Figure 2b).
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Third, we developed a mobile application for wheat-plant disease detection based on
Telegram messenger chatbot technology (Figure 2c).

2.2. Image Dataset

The images were obtained from various sources. Some images were taken from
the dataset presented at the machine learning challenge “ICLR Workshop Challenge # 1:
CGIAR Computer Vision for Crop” on the Zindi.africa platform from 29 January 2020 to 29
March 2020 [63]. Some images were obtained from the plant disease detection platform
(PDDP) dataset [61,64]. Some images were taken from the Internet using the Google Images
service, and the other part of the dataset was obtained by the authors of the current work
by plant imaging in laboratory and field conditions.

2.3. Filtration of Images

A preliminary analysis of the original set of images showed that, among them, there
were completely duplicated images of the same object with different levels of compression,
resolution, or brightness. All of these factors lead to redundancy of information in the
training data, which could affect the training process of the classification method and its
testing. It was decided to compose a non-redundant set of unique images based on the
initial data. To do this, the hashing algorithm aHash was used, implemented in the python
ImageHash library [65], the average_hash() method. This algorithm returns a hash value
for an image file, a 64-bit integer that does not change when scaling, changing the aspect
ratio and slightly changing the contrast and brightness of the image. All initial images were
grouped by hash function value. If the group included more than one image, the image
from the file with the largest size was selected as its representative. In particular, 612 images
were excluded from the original Zindi.africa dataset, which included 1486 images.

A description of the number of image files from various sources is presented in
Table 1. It includes data from the Zindi.africa project, the Platform for Plant Disease
Detection (PDDP), images obtained through the Google Images service, images obtained
by the authors in field and laboratory conditions in 2016–2020 in St. Petersburg, and
images obtained by the authors in field and laboratory conditions in 2017–2020 in the
Novosibirsk Region.

Table 1. Sources of images in the dataset Wheat Fungi Diseases.

Source Number of Images Reference

Zindi.africa 874 [63]
Google Images 259 -

PDDP 121 [61,64]
Saint Petersburg 367 This work

Novosibirsk 793 This work

2.4. Labeling of Images

Each image in the WFD2020 dataset was manually annotated. The images were
classified into healthy plants (label “healthy”) and by six types of fungal diseases: leaf
rust, powdery mildew, septoria, stem rust, and yellow rust. Additionally, the images were
classified according to the stage of plant development: whether the plant is a seedling
(label “seedling”) or not (absence of such a label). Images could be tagged with several
labels at the same time. This occurred when the plant was affected by several diseases or
was a seedling.

2.5. Neural Network Structure

Here we used the EfficientNet-B0 architecture, which is the simplest and fastest among
EfficientNet family [55]. Its structure is shown in Figure 3, and the layers are described
in detail in Table 2. It includes seven types of sequential blocks built on the basis of the
Conv and MBConv layers [66]. In MBConv, blocks consist of a layer that first expands
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and then compresses the channels, so direct connections are used between bottlenecks
that connect much fewer channels than expansion layers. This architecture has in-depth
separable convolutions that reduce calculation compared to traditional layers [24].
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Table 2. Parameters of the EfficientNet-B0 network used in our work.

Stage Operator Resolution Number of Channels Number of Layers

1 Conv3 × 3 512 × 512 32 1
2 MBConv1, k3 × 3 256 × 256 16 1
3 MBConv6, k3 × 3 256 × 256 24 2
4 MBConv6, k5 × 5 128 × 128 40 2
5 MBConv6, k3 × 3 64 × 64 80 3
6 MBConv6, k5 × 5 32 × 32 112 3
7 MBConv6, k5 × 5 32 × 32 192 4
8 MBConv6, k3 × 3 16 × 16 320 1

9 Conv1 × 1 and
Pooling and FC 16 × 16 1280 1

The EfficientNet-B0 network structure is implemented by using the PyTorch v1.7.1 [67]
and catalyst v20.10.1 [68] frameworks. We used transfer learning technique in our work:
the initial values of the network weights dataset were taken from the EfficientNet_PyTorch
repository [69]. These weights were obtained by training network on the ImageNet dataset.

In order to implement the classification of images converted by using the EfficientNet-
B0 network, two fully connected layers were added to the head of the network: 1280 nodes
for the inner layer and 7 nodes for the output layer (according to the number of predicted
label types). The Dropout (0.5) regularization was applied to the hidden fully connected
layer, which randomly zeroes out half of the layer weights. As a loss function, we used a
combination of the activation function Sigmoid(x) and the binary cross entropy BCEWith-
LogitsLoss(), implemented in the nn module of the PyTorch library. The type of label in
the final implementation of the network was determined by the threshold value of the
corresponding neuron. If this value was greater than 0.5, then the image was considered to
contain the corresponding label. Thus, the image could be marked with several labels at
the same time.

2.6. Evaluation Scenarios and Performance Assessment

For machine learning, the images were split into 3 subsamples: training 1454 (60%)
images, which were used to train the model; validation 480 (20%), images for choosing the
best model during training; and test/hold out 480 (20%) images to assess the accuracy of the
selected model. To ensure a balanced distribution of multi-label classes in each subsample,
the iterative stratification algorithm was used, implemented in the iterative_train_test_split
() method of the model_selection python module of the skmultilearn library [70].

For each image, the network predicted 7 numbers, each of which characterized the
presence or absence of a particular label. To assess the accuracy of the method on a
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sample of test images, we compared the predicted set of such numbers and the true
set for each image, so if the test sample contained M images, we made 7 × M of such
binary comparisons and based on them calculated the true positive (TP) values, true
negative values (TN), as well as the total number of positive (1, P) and negative (0, N)
values. Based on these values, at the end of each epoch, the accuracy (ACC) value (cata-
lyst.metrics.accuracy.multilabel_accuracy() method) was calculated for images from the
validation set according to the formula ACC = (TP + TN)/(P + N). Additionally, we
calculated F1-score [20] for various labels.

2.7. Training Strategies

To optimize the network parameters in the training process using the stochastic
gradient descent method, the Adam algorithm was used (implemented in the optim module
of the PyTorch library [67]) with the regularization parameter weight_decay = 1 × 10−6

and the initial learning rate lr = 1 × 10−4. The learning rate varied according to the
CosineAnnealingWarmRestarts heuristic (implemented in the optim.lr_scheduler package
of the PyTorch library) with the parameters T_0 = 10, T_mult = 2, eta_min = 1 × 10−6. The
learning was performed by 150 epochs; the batch size was 16. The network was trained on
RGB images transformed to 512 × 512 px, while maintaining proportions.

Three training strategies were considered.
(1). Basic strategy EfficientNet-B0_baseline. Training the model by using the above-

described methods without any additional modifications to the data and training parameters.
(2). EfficientNet-B0_augm strategy with augmentation. The model was trained by

using the above-described methods with the introduction of random noise in the loss of
1%, according to the label-smoothing method [71]. Image augmentation was used by the
algorithms implemented in the Albumentations library [72]. Transformations to images
from the training sample were applied with a probability of 0.3 and included: rescaling
by using the method IAAPerspective (scale = (0.02, 0.05)); random rotation ±15 degrees
ShiftScaleRotate (rotate_limit = (−15.0, 15.0)); vertical and horizontal reflections by using
the HorizontalFlip() and VerticalFlip() methods; changing brightness and contrast by using
the RandomBrightnessContrast(brightness_limit = 0.2, contrast_limit = 0.2) method, as well
as random masking of square areas by using the Cutout() method [73].

(3) The strategy with augmentation and transfer of image styles EfficientNet-B0_FDA.
This strategy used transformations as in the EfficientNet-B0_augm strategy with an addi-
tional transformation of the style transfer using the FDA algorithm [74], the FDA() method
of the domain_adaptation package of the Albumentations library with the mask parameter
β = 0.01.

One of the options for using the style transfer method in the learning process is to
choose a style from a randomly selected sample image. However, our preliminary analysis
has shown that the approach is more effective when several typical styles are first identified
for a sample, characteristic images are selected for these styles, and their style is used in
the learning process.

To highlight typical styles in the sample, 1000 random images were selected from
it. For each image, the Fast Fourier Transform (FFT) method of the fft2() package of the
fft numpy library was used. For the resulting transformation, the ifftshift() method was
applied, which shifts the low-frequency components of the spectrum, carrying information
about the image style, to the center of the spectrum. After that, the elements of the central
part of the amplitude component of the spectrum were extracted with a size of 30×30.
Thus, for each image, we obtained 900 characteristics, the amplitude components of the
low-frequency part of the spectrum. The t-SNE method (t-distributed stochastic neighbor
embedding) [75] was applied to this data to isolate two components. After that, the images
were clustered in the space of two components by the k-means method (k = 10). For
each cluster, the image closest to the centroid was determined, which represented the
corresponding type of image style. Thus, 10 source images were selected to transfer their
style to other images in the training process.
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We used Grad-CAM (Gradient-weighted Class Activation Map) algorithm [76] from
TorchCAM package [77] for the visualization of the network activation map. This technique
assigns each neuron a relevance score for the class prediction in the output layer. Grad-
CAM backpropagates this information to the last convolutional layer.

A computer with a GPU Nvidia RTX 2080ti was used to train the models. Depending
on the type of the applied transformations, the training time for one epoch ranged from 1
to 1.5 min. Based on the results of the training process, the optimal values of the network
parameters were determined by the epoch for which the maximum values of the ACC
metric were achieved, calculated on the images of the validation sample. We ran our tasks
more than 25 times (including preliminary evaluation of models and strategies), which
took about 90 h of computer load in total.

2.8. Telegram Chatbot

To implement the user interface, we used the chatbot in the Telegram messenger. The
chatbot is a virtual Telegram user who can exchange messages with other users, using the
Telegram bot Application Program Interface (API). Virtual users access the network and
communicate through the same channels available to the users [78,79]. The main task of
the bot is an automatic response after the command entered by the user. In our case, the
communication is simple. First, the user uploads the plant image taken by smartphone
camera via bot interface to the application server. Then the server classifies the user’s
image and reports the result to the user via chatbot interface. The chatbot interface was
used for several reasons. First, the messenger provides all the major functionalities (image
uploading, analysis report) which are accessible via simple API calls. Second, it is much
faster to develop and much easier to maintain the chatbot interface in comparison with
standalone mobile app. Third, the system works on all mobile and desktop platforms
without the need to build system-specific versions.

The overview of the chatbot implementation is shown in Figure 4. The user can send
the bot single image or an album of images. After receiving the images, @wheat_healthy_bot
upload them to the server for analysis. The server part of the system includes three main
components. Inference server accepts a request with a user’s image, runs the recognition
of the fungal disease by using the EfficientNet model, and sends the results back to the bot.
Queue managing system balance the inference server load. The Queue managing system
was implemented by using the RabbitMQ [80]; the inference server was implemented
by using the FastAPI framework [81]; the EfficientNet model was implemented by using
PyTorch [67]. The aiotg library [82] was used for interaction with the Telegram API.
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3. Results
3.1. Wheat Fungi Diseases Dataset

The original image dataset included 3076 images. As a result of image filtering, a
non-redundant set of 2414 color images of wheat in jpeg format (Wheat Fungi Diseases
dataset, WFD2020) was obtained. These images comprise 78% of the initial dataset. Thus,
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more than 20% of the redundant images were removed. The total size of the image files
was 4.84 GB. The average image resolution was approximately 1500 × 1200 pixels.

The WFD2020 dataset used for network training is available for public access at the
website http://wfd.sysbio.ru/ (accessed on 16 July 2021). All images can be downloaded
from the site in the form of a zip archive; expert annotation for all images is available in csv
format for annotations for training, validation, and training subsamples that were used in
the process of training the models. The images with a label of a certain class can be viewed
on the website. The filename for the images matches the value of aHash. Since the hash
values for similar images calculated are close in Hamming distance, similar images will
be in files with similar names, and to search for similar images, it is sufficient to sort them
by the file name. An example of three images of which two are similar, and the third one
differs from them, along with the values of the hash functions, is shown in Figure 5.
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Figure 5. Examples of images of wheat leaves and shoots affected by leaf rust. Below the image,
there are the file names (hash function values), which are similar for similar images (a,b) but differ
significantly for different images (a,c) and (b,c).

3.2. Results of Labeling a Set of Images

As a result of annotation, the images from the dataset have 3147 labels, resulting in
1.30 labels per image, on average. The number of occurrences of labels of each class in the
dataset is presented in Table 3. It could be seen that the label which is most represented in
the dataset comprises 20% of the all labels (leaf rust). The label with the smallest fraction
(septoria) is about one-quarter of the most frequent label. We may conclude that our dataset
is moderately balanced.

Table 3. The number of labels of each class in the WFD2020 dataset.

Class Number of Labels (%)

leaf rust 655 (20.8%)
stem rust 591 (18.8%)

yellow rust 571 (18.1%)
powder mildew 277 (8.8%)

septoria 185 (5.9%)
seedlings 569 (18.1%)
healthy 299 (9.5%)

Total 3147 (100%)

Table 4 shows the number of occurrences of various combinations of labels in the
WFD2020 dataset. These data demonstrate that more than 80% of images corresponds to
single disease labels (including seedlings), more than 12% represented by healthy plants
and 6% of the images labeled by multiple diseases.

http://wfd.sysbio.ru/
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Table 4. The number of images with different combinations of labels in the WFD2020 dataset.

Class Number of Labels

stem rust 426 (17.6%)
yellow rust 362 (15.0%)

leaf rust 334 (13.8%)
healthy 253 (10.5%)

leaf rust, seedlings 198 (8.2%)
seedlings, yellow rust 197 (8.2%)

powdery mildew 187 (7.7%)
septoria 133 (5.5%)

seedlings, stem rust 127 (5.3%)
leaf rust, powdery mildew 65 (2.7%)

healthy, seedlings 46 (1.9%)
leaf rust, stem rust 20 (0.8%)
leaf rust, septoria 17 (0.7%)

powdery mildew, septoria 12 (0.5%)
leaf rust, powdery mildew, septoria 11 (0.5%)

septoria, stem rust 11 (0.5%)
leaf rust, yellow rust 7 (0.3%)

stem rust, yellow rust 2 (0.1%)
powdery mildew, stem rust 2 (0.1%)

leaf rust, stem rust, yellow rust 2 (0.1%)
septoria, yellow rust 1 (0.0%)

leaf rust, seedlings, stem rust 1 (0.0%)
Total 2414

3.3. Clustering Images by Style

One of the strategies of the analysis, EfficientNet-B0_FDA, implied a procedure for
transferring image styles in the training set during the augmentation process. In order to
select the characteristic image styles in the sample based on the low-frequency part of their
Fourier spectra, we classified the styles as described in the “Training Strategies” section
for 1000 randomly selected training sample images. The results are presented in Figure 6.
This diagram shows the distribution of images in the space of two components obtained
by using the t-SNE dimensionality reduction method for low-frequency components of
Fourier spectra of images. The distribution of images on the diagram is non-uniform, and a
number of clearly visible clusters can be distinguished in it. Clustering images in the space
of these two components by the k-means method allowed us to obtain 10 characteristic
image styles, the centroids of which are indicated in Figure 4 by the corresponding numbers.
In particular, Cluster 5 corresponds to images of wheat in plots in the field conditions.
Cluster 2 includes the images obtained under laboratory conditions for leaves affected
by diseases, in Petri dishes. In the center of the diagram (clusters numbered 4, 1 and 7),
there are images containing hands. Thus, the sample of images was heterogeneous in their
styles, since the images acquired by using different protocols were used to obtain it. The 10
characteristic types of styles identified by cluster analysis were further used in the training
process according to the EfficientNet-B0_FDA strategy.
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3.4. Assessment of Image Classification Accuracy

An example of the learning curves obtained for the EfficientNet-B0_FDA strategy are
shown in Figure 7. It can be seen from the figure that, for the chosen number of epochs,
150, the Loss and ACC values for the training and validation data become stationary.
The ACC values after becoming stationary for the validation sample are within 0.92–0.94,
reaching a maximum value of 0.943 at epoch 110. The network parameters obtained for this
epoch were used for further testing on the hold-out sample; the accuracy was 0.942 (see
Table 5). The difference in accuracy between validation and deferred samples was 0.1%,
which indicates that there is no overfitting effect.
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Table 5. The value of the target metric of the model accuracy on the validation and test sample for
different model training strategies.

Model Name Number of Epochs ACC Valid ACC Test

EfficientNet-B0_baseline 18 0.938 0.933
EfficientNet-B0_augm 140 0.941 0.939
EfficientNet-B0_FDA 110 0.943 0.942

For the EfficientNet-B0_baseline model, the stationary values of Loss and ACC were
reached already at Epoch 10, and the optimal parameters were obtained for Epoch 18
(Table 5). On the test sample, the accuracy of this network reached 0.933. For the
EfficientNet-B0_augm strategy, it became stationary at Epoch 60, and the optimal pa-
rameters were obtained for Epoch 140. The accuracy of this model on the test sample was
0.939 (Table 5).

From the data presented in Table 5, it can be concluded that the use of augmentations
in the training process increases the accuracy on deferred sampling by 0.6% (EfficientNet-
B0_augm vs. EfficientNet-B0_baseline). The addition of the FDA style transfer to the
augmentations increases the image recognition accuracy by another 0.3% (EfficientNet-
B0_FDA vs. EfficientNet-B0_augm). For the EfficientNet-B0_FDA model, we additionally
evaluated the disease prediction accuracy for seedlings and adult plants separately. In the
first case, the ACC value was 0.963, and in the second one, 0.926.

The recognition accuracy of individual labels for images of the test sample is presented
for all three strategies for training the network in Table 6. It shows that the improvement in
accuracy when changing the strategy for different labels does not always change systemati-
cally depending on the strategy. The increase in accuracy with the increasing complexity of
the strategy (EfficientNet-B0_baseline -> EfficientNet-B0_augm -> EfficientNet-B0_FDA) is
typical for disease-related labels, but it decreases slightly when identifying healthy plants
and seedlings. The highest recognition accuracy among disease labels is achieved for
“septoria” (0.956), and the lowest one is for “leaf rust” (0.890).

Table 6. Accuracy of determining various types of labels on the test sample for the three used neural
strategies of neural network training.

Label EfficientNet-B0_Baseline EfficientNet-B0_Augm EfficientNet-B0_FDA

leaf rust 0.881 0.881 0.890
stem rust 0.910 0.925 0.929

yellow rust 0.927 0.915 0.931
powdery mildew 0.940 0.952 0.954

septoria 0.927 0.952 0.956
seedlings 0.990 0.990 0.988
healthy 0.933 0.958 0.938

The performance characteristics for different labels for the EfficientNet-B0_FDA neural
network training strategy are shown in Table 7. In terms of the F1-score, the best perfor-
mance is achieved for seedling recognition. The lowest value is for the septoria (0.686);
other disease types have an F1 score between 0.815 and 0.852.

Table 7. Performance characteristics for the EfficientNet-B0_FDA neural network training strategy.

Label Precision Recall F1-Score

leaf rust 0.803 0.852 0.827
stem rust 0.892 0.816 0.852

yellow rust 0.920 0.748 0.825
powdery mildew 0.830 0.800 0.815

septoria 0.770 0.619 0.686
seedlings 0.982 0.960 0.971
healthy 0.824 0.615 0.704
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Examples of the activation map for the images of plants with disease symptoms are
shown in Figure 8. The figure demonstrates that the focus in the image is at the disease
lesions located in the green parts of the leaves, not at the dead leaves (Figure 8a, septoria
as an example). Our network discriminates well between plant disease lesions and human
hands, despite their similar color, as demonstrated in the Figure 8b (leaf rust as an example).
For the complex diseases (Figure 8c, leaf rust and powdery mildew, as an example), the
network is able to detect, at least partially, both the leaf rust pustules and powdery mildew
grayish white colored patches on the leaf.
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Figure 8. Visualization of the activation maps for three images with disease symptoms by Grad-CAM:
(a) septoria, (b) leaf rust, and (c) leaf rust and powdery mildew. The original image is shown in the
left part of the panel, and the activation map diagram is shown on the right part of the panel. The
level of the activation is shown by color from low (blue) to high (red) values.

A confusion matrix for identifying labels in images for the EfficientNet-B0_FDA model,
built on the basis of test sample, is shown in Figure 9. The diagonal elements of the matrix
are significantly larger than the off-diagonal ones, which characterizes the high accuracy
of image classification by our method. An analysis of the matrix shows that the largest
fraction of misclassifications among rust diseases falls on other rust diseases. Thus, for
the label “stem rust”, 69 images (82%) are classified correctly; four images are classified as
“yellow rust”, and five images as “healthy”. For the label “leaf rust”, 49 images (77%) are
classified correctly, seven images are classified as “stem rust”, four images as “yellow rust”,
and four images as “healthy”. For the “yellow rust” class, 54 images (75%) are classified
correctly, five images are incorrectly classified as “leaf rust”, and one image as “stem rust”.
A slightly smaller, but noticeable part of the images from these classes appeared in the
“no prediction” class. Another type of error for these labels was placing them into the
categories with multiple labels of rust diseases.

In the case of images of plants affected by several pathogens, we observed that
sometimes one of the pathogens is predicted correctly, but the symptoms of the second
pathogen are recognized with less accuracy due to the low value of the corresponding
output neuron. For example, for the class “leaf rust, powdery mildew”, nine images
are classified correctly, two images are classified as “leaf rust”, two images as “powdery
mildew”, and one image as “powdery mildew, septoria”. An example of such an image
classified by the expert as “leaf rust, powdery mildew” is shown in Figure 10a. In the
center of the leaf, an area affected by leaf rust is clearly visible, and two spots affected by
powdery mildew are visible on the left above and on the right below. However, the area on
the right below is blurred due to the lack of focus of the camera. This is likely the reason
why the label “powdery mildew” was not identified.
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Figure 10. Examples of images marked with several disease labels at the same time, for which
one of the diseases is not recognized. (a) Image 00c0f87c20f0fcff.jpg: labels “leaf rust” (identified)
and “powdery mildew” (not identified). (b) Image 0dedf8d8db703948.jpg: labels “leaf rust” (not
identified) and “septoria” (identified).

For the multiple label “leaf rust, septoria”, no images were predicted correctly; how-
ever, out of five such images, four were assigned to individual labels: two to “leaf rust”
and two to “septoria”. An example of one such image is shown in Figure 10b. It shows the
shoots strongly affected by septoria, especially the leaves in the foreground of the image.
Against such a background, symptoms of leaf rust damage are barely noticeable (the plant
is in the upper left corner of the frame near the peg).

Another example is the definition of joint labels “leaf rust, powdery mildew, septoria”;
one image is classified correctly, one image as “leaf rust”, and one image as “leaf rust,
septoria” (Figure 9).

It is interesting to consider the case of classifying such a label as “seedling”. It is noted
that such a label was not separately presented in the labeling of any image. This label
has always been found either together with the label of some disease or with the label of
a healthy plant (see Table 4). The analysis of the confusion matrix shows that, in most
of all test images in which this label was present, our algorithm predicted it. This gives
an accuracy of 0.959 for the “seedling” plant type. In several cases, the model assigned



Plants 2021, 10, 1500 15 of 21

the label “seedlings” to images that were not tagged with such a label. In two cases,
the “seedlings” label was predicted to be the only one (for the “healthy seedlings” and
“seedlings, yellow rust” labels), but it should be noted that in these two cases the plants in
the images were seedlings.

It should be noted that, if no weight is determined for any of the labels greater than
the specified threshold of 0.5, the model returns the label “no prediction” (absence of
classification). This label was assigned to 25 images (5%). The largest share of such
classifications was obtained for the label “healthy” (16%).

3.5. Bot in the Telegram Messenger

The proposed recognition model was implemented for use as the bot @wheat_healthy
_bot in the Telegram messenger https://t.me/wheat_healthy_bot (accessed on 16 July
2021). The Telegram application is available for all popular platforms, which allows us
to use this service both in the field conditions via mobile devices and in the laboratory,
using a stationary computer. The user can send the bot an image of a plant and receive
a prediction of its state (damage by a disease and/or developmental stage). This service
allows users to identify plant diseases by using mobile devices in field conditions. The user
interface for interacting with the bot @wheat_healthy_bot is shown in Figure 11.
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4. Discussion

In this paper, a method was proposed for identifying wheat diseases based on digital
images obtained in the field conditions and the algorithm based on the EfficientNet-B0
architecture network.

It should be noted that a sample of well-annotated images for training and testing is
one of the important conditions for creating a successful method of disease recognition [50].
Unfortunately, the existing open databases of images of plant diseases contain few images
of wheat. For example, there are nine of them in the PDDB database [34], but they are
absent in the well-known PlantVillage dataset [53]. For the analysis of wheat diseases, in
the work by Picon et al. [48], the sample included 8178 images (according to the imaging
protocol, these data contained images of individual leaves, but not the whole plant). In the
work by Lu et al. [49], a sample of Wheat Disease Database 2017 (WDD2017) was collected
from 9230 images of not only leaves but also plants in field conditions. Arsenovich et al. [54]
used a dataset that included information on 5596 images of wheat (the authors do not

https://t.me/wheat_healthy_bot
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provide details). These three abovementioned sets, however, are not freely available.
Therefore, in our work, based on several open sources and our own data, a set of wheat
images was formed both in the field and in the laboratory conditions. It is important to
note that, in our sample, images from external sources were relabeled by phytopathologists
for six types of diseases, both separately and jointly. The WFD2020 data are freely available
for downloading.

One of the features of the sample is a special class of images for seedlings. Special
attention was paid to this, since the timely diagnosis of the harmful complex in the early
periods of the vegetational season is of particular importance. Under favorable weather
conditions, diseases can develop rapidly and lead to significant losses of yield. Therefore,
to obtain large yields, it is important to monitor the lesion of flag and pre-flag leaves and
diagnose the type of pathogen of the disease, which makes it possible to select effective
means of protection [83]. As a result of the research, it appeared that the accuracy of
disease prediction is higher for seedlings. However, this may also be related to the dataset
peculiarities: the variety of shooting conditions for seedlings is less than when shooting
adult plants.

The accuracy of determining diseases by using the developed method for the most
optimal learning strategy (EfficientNet-B0_FDA) was 0.942 which is comparable to the
results of other authors. For example, Picon et al. [48] used a network architecture based
on ResNet50 to identify lesions of septoria, tan spot, or rust (either leaf or yellow). The
accuracy of disease identification was 97%. Lu et al. [49] tried several options of neural
networks for deep learning and multiple instance learning to identify wheat lesions by
the six most common diseases. The performance of our approach is comparable to the
accuracy of methods for assessing plant diseases not only for wheat but also for other
crops. The recognition accuracy ranged from 95 to 97% for plant-disease symptoms in
Reference [54]; on the basis of the PlantVillage dataset and the authors’ data, a two-
stage network architecture was developed, which showed an average accuracy of disease
recognition of 0.936. In Reference [60], the problem of simultaneous identification of
14 crop species and 26 diseases was also solved on the basis of the PlantVillage dataset. The
network of the ResNet50 architecture was used, which achieved an accuracy of 99.24%.

It is interesting to compare our results with the accuracy obtained for plant-disease
recognition from using similar architecture, EfficientNet. Atila et al. [42] evaluated the
performance of all eight topologies of this family on the original PlantVillage dataset and
demonstrated that the highest average accuracy in disease recognition was achieved for
the B5 architecture (99.91%). However, all models of the family obtained average accuracy
very close to each other.

Zhang et al.’s work [41] is very similar to ours. They predicted the disease symptoms
for a single crop, cucumber, on the images taken in a naturally complex greenhouse
background. They detected three types of labels (powdery mildew, downy mildew, and
healthy leaves) and combination of powdery mildew and downy mildew. Their dataset
included 2816 images, which is close to our dataset size. They used different optimization
methods and network architectures and obtained the best accuracy for the EfficientNet-B4
network and Ranger optimizer, 96.39% on the test sample. Interestingly, the EfficientNet-B0
architecture demonstrated accuracy of 94.39% on this dataset [41], which is very close to
our results (94.2%).

It should be noted that the difference in the accuracy of our method between the
validation and test datasets is small (0.1%), which indicates the overfitting absence for
our model. This is not surprising, because we used the EfficientNet architecture with the
smallest number of parameters (B0) and the strategy of the dataset stratification.

Our analysis of the matrix of errors showed that their main sources were the incorrect
classifications of diseases, for example, rust ones, among themselves. Interestingly, the
cross-misclassification between rust diseases and the other two (septoria and powdery
mildew) was found to be higher for septoria. This is explainable since the visual symptoms
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of these diseases can be very similar. In addition, for some images, the prediction of the
pathogen type was not reliable enough to perform classification (“no prediction” result).

The possibility of using the technology of identification of crops by pathogens in
the field is one of the necessary properties of the system for operational monitoring of
diseases. In this direction, methods are being actively developed that integrate the results
of prediction by the method of deep learning and the implementation of access to them via
smartphones and tablets [48,49,61,62]. This, however, requires additional effort to build
and maintain mobile applications. Here, we took advantage of the possibility of a simple
interface through the use of a Telegram messenger bot. Recently, this type of application
has become popular and is used for crowdsourcing problems in social research [84], for
predicting real-estate prices [85], for determining the type of trees [86], etc. Its advantages
are that there is no need to develop and maintain a smartphone graphical interface, and,
at the same time, that it allows us to send an image as a request to a server for further
processing and displaying the results. At the same time, access to the service is possible
wherever there is access to the Internet both from a mobile device and from a desktop PC.

5. Conclusions

The paper proposed a method for recognizing plant diseases on images obtained in
field conditions based on the deep machine learning. Fungal diseases of wheat as leaf rust,
stem rust, yellow rust, powdery mildew, septoria, and their combinations were recognized.
Additionally, the network determines whether the plant is a seedling. The image dataset
represents a specially formed and labeled sample of 2414 images, which is freely available.

The algorithm is based on the EfficientNet-B0 neural network architecture. We imple-
mented several techniques to achieve better performance of the network: transfer learning;
dataset stratification into training, validation and testing samples; and augmentation,
including image style transfer.

Of the three examined learning strategies, the best accuracy was provided by the
method using augmentation and transfer of image styles (the accuracy was 0.942). These
results are comparable with the performance obtained by other deep learning methods for
plant-disease recognition. Our network performance is in good agreement with the results
obtained by implementation of the EfficientNet architectures for plant-disease recognition.

The interface to the recognition method was implemented on the basis of the Telegram
chatbot, which provides users with convenient access to the program via the Internet, both
from a mobile device and using a desktop PC. This allows users to utilize our recogni-
tion method for wheat plants in the field conditions by using the images obtained via
smartphone camera under real-world circumstances.
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