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Abstract: It is shown in this work that annealing of Schottky barrier diodes (SBDs) in the form of
Ni/AlN/SiC heterojunction devices in an atmosphere of nitrogen and oxygen leads to a significant
improvement in the electrical properties of the structures. Compared to the non-annealed device, the
on/off ratio of the annealed SBD devices increased by approximately 100 times. The ideality factor,
derived from the current-voltage (IV) characterization, decreased by a factor of ~5.1 after annealing,
whereas the barrier height increased from ~0.52 to 0.71 eV. The bonding structure of the AlN layer
was characterized by X-ray photoelectron spectroscopy. Examination of the N 1 s and O 1 s peaks
provided direct indication of the most prevalent chemical bonding states of the elements.

Keywords: aluminum nitride; silicon carbide; Schottky barrier diodes; radio frequency sputtering;
X-ray diffraction; X-ray photoelectron spectroscopy

1. Introduction

Wide bandgap semiconductor materials have superior thermal and electrical prop-
erties compared to those of conventional semiconductors, and thus have potential for
use in high-power, high-temperature, microwave and optoelectronic applications [1–3].
Next-generation high-temperature electronics will require increasing use of semiconductor
materials such as SiC, GaN, AlN, and AlGaN due to their superior electrical properties
resulting from their wide band–gap and high thermal conductivity. AlN has the largest
bandgap of 6.2 eV and critical electric field of 11.7 MV/cm, as well as the highest thermal
conductivity of 320 W/mK among group III materials [4,5]. These material properties make
AlN highly versatile for use in high-power and high-temperature applications, including
motor drives, energy conversion systems, high-temperature sensors, and space exploration.
AlN films can be manufactured by several different processes, including chemical vapor
deposition, molecular beam epitaxy, and radio frequency (RF)-sputtering. Compared to
high-temperature thin film deposition techniques, RF-sputtering is cheaper and simpler to
implement. Importantly, RF-sputtering offers the possibility to manufacture high-quality,
large-scale films with desirable material properties, including on temperature-sensitive sub-
strates if required [6–8]. However, RF-sputtering results in a low polar field which reduces
the performance of high electron mobility transistors [9]. Furthermore, AlN thin films
grown by RF-sputtering contain defects related to oxygen impurities, resulting in impaired
electrical and optical properties. The theoretical modeling of oxygen in semiconductor
materials remains computationally challenging, largely because traditional empirical or
semi-empirical methods fail to satisfactorily explain the large electronegativity of oxygen,
along with its chemical binding properties.

Annealing is a potentially important process for manufacturing high-quality com-
pound semiconductors with thin films of materials such as GaAs, SiC, and AlN because
the process appears to have the capacity to reduce unintentional defects in these films
by orders of magnitude [10–12]. However, previous experimental studies have focused
mainly on the sputtering parameters, such as pressure, power, sputtering ambient, and
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target distance [13,14]. It is known that annealing improves the crystallization of films
similar to those mentioned [15]; however, very few researchers have studied the influence
of post-annealing treatment on the surface morphology and crystallization orientation of
AlN films [16].

While the properties of AlN films are determined by the deposition method, they
are also affected by post-deposition treatment parameters, such as annealing temperature
and duration [17]. The manufactured SBDs are expected to be of use in high temperature
applications. Their behavior and use as temperature sensors for temperatures up to 475 K is
explored in [18]. Further investigations of the manufactured device properties are ongoing.
Indicative values of, for instance, breakdown voltage of related AlN thin film structures can
be found in [19]. In this study, we investigate the influence of post-deposition annealing
in nitrogen (N2) and oxygen (O2) atmospheres on the electrical properties of AlN thin
films. We demonstrate that gas annealing of AlN thin films in either a nitrogen or oxygen
atmosphere results in films with lower leakage currents at 300 K than for non-annealed
AlN thin films. This effect was demonstrated by characterizing the electrical properties of
manufactured heterojunction (Ni/AlN/SiC) Schottky barrier diodes (SBDs).

2. Materials and Methods

A schematic of the manufactured vertical AlN Schottky barrier diode (SBD) is shown
in Figure 1. N-type 4H-SiC wafers (base substrate: ND = 1 × 1019 cm−3; n-type epitaxial
layer: ND = 5 × 1016 cm−3) acted as starting substrates. The SiC substrate was cleaned
in a sulfuric peroxide mixture (sulfuric acid (H2SO4) to hydrogen peroxide (H2O2) ratio
of 4:1), after which the native SiO2 layer was stripped using a buffered oxide etch (BOE)
solution. A 150 nm thick Ni-film was then deposited by e-beam evaporation to create a
diode cathode on the reverse side of the substrate. The samples were subjected to rapid
thermal annealing (RTA) at 1323 K in N2 for 90 s to form nickel silicide (Ni2Si) ohmic
contacts. AlN films were subsequently deposited by RF sputtering of a 99.9% pure AlN
target onto the substrate at 300 K under injection of high purity argon gas (99.999%) with a
flow rate of 5.5 sccm, using a mass flow controller. The sputtering power was 150 W, and
the target diameter was 5.08 cm. Deposition chamber working pressure was maintained at
10 mTorr during the 120 min deposition step, resulting in a film thickness of approximately
200 nm. An Alpha-Step stylus profilometer and atomic force microscopy (AFM) were
used to measure the thickness of the AlN films. AFM thickness measurements are in good
agreement with measurements performed by ellipsometry [20]. AlN thin film samples
either remained as deposited, i.e., not annealed, or were annealed at 773 K for 30 min, in
either an ambient nitrogen or oxygen atmosphere. Top electrode contacts were created by
depositing a 150 nm thick nickel layer on the AlN thin films, thus completing the sample
SBDs. The mobility of the AlN films were measured using a Ecopia HMS-5000 Hall Effect
Measurement System. The four Hall measurement probes were each connected through
ohmic contacts located at each upper corner of the AlN film samples.
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Before deposition of the top electrodes, the samples were subjected to X-ray diffraction
(XRD) measurement, X-ray photoelectron spectroscopy (XPS), and Fourier transform
infrared spectroscopy (FTIR). XPS was performed to analyze the orientation of the wurtzite
crystal structure of the AlN thin films [21]. Annealing atmosphere influence on the AlN
film binding energies was measured by X-ray photoelectron spectroscopy (XPS). Al, N, and
O contents of the films were estimated from Al 2p, N s, and O s XPS core-level spectra. The
AlN film samples were analyzed by Fourier transform infrared spectroscopy (FTIR), and,
finally, the finished SBDs were characterized by current voltage (I-V) measurements at 300 K
using a semiconductor analyzer (Keithley 4200-SCS, Tektronix, Beaverton, OR 97077, USA).

3. Result and Discussion

Figure 2 shows the XRD patterns of the untreated (“as-grown”, i.e., before annealing)
and gas (nitrogen or oxygen) annealed AlN films, indicating the main crystal plane ori-
entations of the films. The three graphs in Figure 2 each display two intensity peaks at
2θ = 38.2◦ and 44.4◦, corresponding to the (2111) and (2110) AlN crystal diffraction planes,
respectively. The amplitudes of these peaks decrease after annealing. The different XRD
patterns indicate that the samples annealed in either N2 or O2 atmospheres were influenced
at the crystal domain level to cause the observed decrease in intensity and full width at
half maximum (FWHM) [22].
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Figure 2. XRD patterns of the as-grown, N2, and O2 annealed AlN films.

Figure 3 shows the FWHM of the Al (2110) peak and the corresponding average
AlN crystal domain size. The average domain size of the as-grown, N2 annealed, and O2
annealed samples was calculated according to the Scherrer equation given by

D =
Kλ

β sin(θ)
(1)

where K is the shape factor (0.9), λ is the X-ray wavelength (1.5406 Å), β is the FWHM
of the peaks in radians, and θ is the Bragg diffraction angle. The results indicate that the
FWHM was reduced as a result of the annealing process. The average grain sizes of the
as-grown, N2, and O2 annealed samples estimated by the Scherrer equation and the XRD
data are 87.07 nm, 168.17 nm, and 162.64 nm, respectively. This indicates increases in
both uniformity and the level of crystallinity [16]. This result suggests that annealing can
to some degree remove or “soften” the grain boundaries in the film. Consequently, the
annealed samples contain fewer or less distinct grain boundaries, leading to a reduced
number of charge carrier traps or scattering obstacles along grain boundaries [23].
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average crystal size for the as-grown, N2, and O2 annealed AlN films.

Figure 4 shows the FTIR spectra of AlN films before and after N2 and O2 annealing.
Spectra were obtained in the range from 600 to 800 cm−1. The absorption peak at 668 cm−1

corresponds to the characteristic value of aluminum nitride. The magnitude of this peak
increased with gas annealing, as seen in Figure 4 [24]. Furthermore, the FTIR spectra
in Figure 4 show increased overall transmittance of the N2 and O2 annealed AlN films,
indicating improved film crystallinity [25].
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In order to investigate the effect of the annealing process on the chemical bonding
state of nitrogen atoms in the AlN layer, we performed an XPS core level measurement.
Figure 5a,b show the N 1 s and O 1 s core level XPS spectra for the AlN films. Figure 5a
shows these spectra were deconvoluted into three components with peaks at 403.2 ± 0.1,
397.4 ± 0.2, and 396.7 eV, which correspond to the chemical bonding states of Al-(NOx)y,
AlN-O, and Al-N, respectively, as previously reported in the literature [26]. The XPS
response after annealing displays a new peak at 403.2 ± 0.1 eV, distinct from the expected
one at 397.4 ± 0.2 eV [27]. This indicates increased levels of surface oxygen, which is
understood to result from the creation of an oxide film.
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When it reducing the relative nitrogen content, AlN chemical bonds break up. This
is likely due to the result of the oxidation of the AlN surface barrier that is presumed to
occur [28]; also, annealing has related to the creation of nitrogen defects in the form of
interstitial N2 trapped between the surface oxide film and AlN film interlayer. Figure 5b
shows the measured XPS core-level O 1s spectra. These can be deconvoluted into two
peaks at 531.78 and 530.88 eV of the as-grown sample, corresponding to the Al-OH and
O-Al chemical bond states, respectively [29]. After gas annealing, in the N2 annealed
sample, Al–OH and O–Al binding energies shifted to 531.38 eV and 530.58 eV, respectively.
Said energies were 0.4 eV and 0.3 eV lower than those of the as-grown sample. In the
O2 annealed sample, the Al–OH and O–Al binding energies shifted to 531.32 eV and
530.50 eV, which in turn were lower than the respective binding energies of the N2 annealed
sample. Additionally, the relative area of the Al–OH peak decreased. Annealing effectively
decomposes the OH- species in the AlN film. Simultaneously, the residual OH- bonds
release Al atoms to form more Al-O bonds. Then, the OH- groups are removed and the
oxygen vacancies are filled [30]. The relationship between the electrical properties of
the AlN thin film samples and the film quality was investigated by Hall measurements.
Figure 6 shows charge carrier mobility and concentration relative to the different gas
annealing conditions. The maximum achieved carrier mobility (528 cm2/Vs) was observed
in the O2 annealed sample. A reduced number of crystal defects result in higher mobility
and decreased charge carrier concentration [31]. From the literature, we infer that also in
AlN thin films, grain boundaries are the main source of defects that limit charge carrier
mobility and give rise to charge carriers [32,33]. Film crystallinity is proportional to the
average crystal grain size, which in turn is inversely proportional to the density of grain
boundaries. With the O2 annealed device having a larger average grain size, it is reasonable
to expect that the density of the grain boundaries may have decreased accordingly. This,
in turn, would explain the observed reduction in carrier concentration and the increase
in mobility.

Figure 7 shows the typical I-V characteristics of the fabricated AlN/4H-SiC SBDs
measured on a logarithmic scale. The diode currents were measured for terminal potentials
ranging from −5 V to +5 V. From 0 V to 2 V, the forward current of the as-grown sample was
higher than that of the annealed samples (N2 annealed, O2 annealed), while for voltages
higher than 2 V, the forward current of the O2 annealed sample was the highest. For the
case of reverse bias, the annealed AlN SBDs exhibited lower leakage currents (~1.3 ×
10−6 A) than the as-grown AlN SBD (9.5 × 10−5 A).
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The Schottky barrier height (φB) of the manufactured diodes was calculated according
to Equation (2) and shown in Figure 8:

IS = AA∗T2
[

exp
(
−qφB

kT

)]
(2)

where φB is the barrier height, A is the effective area of the diode for current transport,
IS is the saturation current, T is the measurement temperature, and A∗ is the Richardson
constant (theoretically ~57.6 A cm−1 K−2 for AlN) [34,35]. The Figure 8 shows the N2
annealed device exhibited the highest Schottky barrier height φB = 0.71 eV at reverse
bias. From 0 V to 2 V forward bias, the O2 annealed device had the highest barrier height
φB = 0.59 eV, which can be explained by the filled oxygen vacancies identified from the
Al-OH/Al-O peak ratio of the XPS O 1s data. After 2 V forward bias, the O2 annealed
device also had the lowest barrier height φB = 0.29 eV, which can be explained by the Hall
carrier mobility.
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The Ion/Ioff ratio and ideality factor values of the fabricated devices are shown in
Figure 9. According to thermionic emission (TE) theory, the SBD I-V curves in forward bias
can be expressed in the form of Equations (3)–(5) [36,37].
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kT
−q

ln
(

IST
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)
(3)
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[
exp

(
q(V − IRs)

ηkT

)
− 1

]
(4)

η =
q

KT

[
dV

d(lnI)

]
(5)

where η is the ideality factor, q is the elementary electric charge, k is the Boltzmann constant,
T is the absolute temperature, and Is is the saturation current. The ideality factor value is
explained assuming a Gaussian distribution of the barrier height around the AlN/4H-SiC
interface. As Figure 9 shows, the lower the ideality factor, the greater the barrier height.
The on/off ratios at room temperature of the as grown, N2 annealed, and O2 annealed
samples were calculated to be ~4.5 × 102, ~2.2 × 104, and ~6.7 × 103, respectively. The
corresponding ideality factors for the as grown, N2 annealed, and O2 annealed samples
were 8.5, 4.1, and 5.29, respectively. The on/off ratio of the annealed device was two orders
of magnitude (~100 times) higher than the on/off ratio of the as-grown device, while the
ideality factor was the lowest (4.1) for the N2 annealed sample.

In summary, after the annealing process, the electrical conduction properties of the
AlN SBDs improved.
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4. Conclusions

The influence of different annealing atmospheres on AlN thin films was investigated.
We measured and analyzed the electrical characteristics of an AlN SBD before and after
the gas of nitrogen and oxygen annealing. For the N2 and O2 annealed sample, we
observed that the AlN thin films were formed with relatively large grain sizes 168.17 nm
and 162.62 nm, respectively, and higher magnitude of Al-N bond peaks. These less distinct
grain boundaries related to a reduced number of charge carrier traps or scattering obstacles
along grain boundaries. Charge carrier mobility was the highest (528 cm2/Vs) for the
O2 annealed sample. From this sample, we also observed a relatively a reduced barrier
height, and increased forward current. The high-temperature annealing process caused the
decomposition of the Al-OH bonds; as a result, the relative area of the Al-O peak increased,
while the number of oxygen vacancies decreased in O2 annealed sample. Consequently,
the current decreased with the increasing electric resistance until 2 V. One main result of
this study is that the characteristic XPS data of the N 1 s region show unusual feature at 404
eV. It is related that the reduced reverse leakage current is a result of the trapped nitrogen
defect. The barrier height decreased with improved conductivity, which in turn resulted
in an improved on/off ratio in the N2 annealed devices. In conclusion, the N2 annealed
sample had the lowest reverse leakage current and the O2 annealed sample displayed the
highest forward current level. Gas annealing thus constitutes a method for controlling the
electrical properties of manufactured AlN thin films.
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