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Extracellular matrix (ECM) provides both structural support
and contextual information to cells within tissues and organs.
The combination of biochemical and biomechanical signals
from the ECM modulates responses to extracellular signals
toward differentiation, proliferation, or apoptosis; alterations
in the ECM are necessary for development and remodeling
processes, but aberrations in the composition and
organization of ECM are associated with disease pathology
and can predispose to development of cancer. The primary
cell surface sensors of the ECM are the integrins, which
provide the physical connection between the ECM and the
cytoskeleton and also convey biochemical information about
the composition of the ECM. Transforming growth factor-b
(TGF-b) is an extracellular signaling molecule that is a
powerful controller of a variety of cellular functions, and that
has been found to induce very different outcomes according
to cell type and cellular context. It is becoming clear that
ECM-mediated signaling through integrins is reciprocally
influenced by TGF-b: integrin expression, activation, and
responses are affected by cellular exposure to TGF-b, and
TGF-b activation and cellular responses are in turn controlled
by signaling from the ECM through integrins. Epithelial-
mesenchymal transition (EMT), a physiological process that is
activated by TGF-b in normal development and in cancer, is
also affected by the composition and structure of the ECM.
Here, we will outline how signaling from the ECM controls the
contextual response to TGF-b, and how this response is
selectively modulated during disease, with an emphasis on
recent findings, current challenges, and future opportunities.

Basics of ECM and Integrin Signaling

ECM is a dynamic and complex combination of collagens,
glycoproteins and proteoglycans.1,2 It provides structural support

in bone, cartilage, and the basement membrane; specific associa-
tion of cells with the ECM also provides contextual information
that controls cellular phenotype, including differentiation, prolif-
eration, or apoptosis.3,4 ECM also regulates availability and activ-
ity of many signaling molecules, including TGF-b, through
controlled sequestration, presentation, and release.5,6 The pri-
mary cell surface receptors for the ECM are the integrins, a fam-
ily of 24 heterodimeric proteins composed of one of 18
a-subunits and 8 b-subunits.7,8 Integrins bind to motifs present
in the ECM though an interaction domain located between the
a- and b-subunit; while many integrin-binding motifs have been
identified, the best studied is the arginine-glycine-aspartate
(RGD) sequence that is present in fibronectin and many other
extracellular molecules. Integrins become activated in a process
that is regulated both by availability of ECM substrate (outside-
in activation) and signals from within the cell (inside-out activa-
tion).9 Activated integrins can bind to the actin cytoskeleton and
recruit a variety of cytosolic components into adhesion com-
plexes. Through those interactions integrins can transduce bio-
chemical signaling dependent on ECM composition, as well as
directly link physical forces acting on the ECM to the cellular
cytoskeleton (Fig. 1).10,11

Basics of TGF-b Signaling

Three TGF-b isoforms are present in mammals, TGF-b1, -2,
and -3, each encoded by a separate gene, and each playing dis-
tinct physiological roles during development.12 Exposure of cells
to an active TGF-b isoform leads to assembly of a TGF-b-ligated
tetrameric receptor complex, composed of 2 type I and 2 type II
TGF-b receptor subunits (TGFBRI and TGFBRII). TGFBRII
then phosphorylates TGFBRI, enabling it to activate down-
stream signaling responses, which are regulated through canoni-
cal and noncanonical signaling pathways (Fig. 2).

In the canonical signaling pathway, TGFBRI phosphorylates
the receptor SMAD proteins, SMAD2 or SMAD3. Phosphory-
lated receptor SMADs associate with SMAD4 and the resultant
oligomeric complex becomes translocated to the nucleus, where
it can bind to a variety of other transcription factors and cofac-
tors. Transcriptional alterations induced by the canonical path-
way vary according to the strength and sustained maintenance of
the TGF-b receptor signaling, the composition and availability
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of existing transcriptional cofactors, and the epigenetic landscape
of the chromatin at the time of TGF-b pathway activation.13

The gene expression effects are highly cell type and context
dependent; for example, the canonical signaling pathway inhibits
expression of the inhibitor of differentiation (ID1) gene in nor-
mal mammary epithelial cells, but activates its expression in
breast cancer cells.13-15

In the noncanonical signaling pathway, the activated TGF-b
receptor complex directly regulates non-SMAD-dependent path-
ways to activate, sustain, or modulate cellular responses.16,17

Non-canonical pathways include activation of ERK/MAPK sig-
naling through tyrosine phosphorylation of TGFBR1 and
recruitment of Grb/Shc, and subsequent activation of Ras,18,19

which may contribute to TGF-b-dependent induction of senes-
cence and prevention of transformation in normal human mam-
mary epithelial cells.20 TGF-b can also induce JNK/p38 through
a SMAD-independent pathway,21,22 which can then reinforce
SMAD-dependent transcriptional alterations through a reactive
oxygen species (ROS)-mediated mechanism.23 Rho family
GTPases can be regulated through SMAD-independent TGF-b
signaling: RhoA, Rac1, and Cdc42 can be activated in epithelial
cells,24-26 or RhoA can be targeted for degradation via a pathway
initiated by direct phosphorylation of the polarity protein PAR6
by TGFBRII.27,28 TGF-b can also activate Akt through SMAD-
independent induction of PI3K, which can in turn act as a regu-
lator of the canonical pathway through phosphorylation of ERK

and consequent activation of SMADs.29

The principal determinant and mediator of
whether TGF-b will signal through the
canonical or noncanonical pathway in nor-
mal cells is SMAD7, which is able to inhibit
phosphorylation of receptor SMADs
through multiple mechanisms.30 SMAD7 is
a transcriptional target of the canonical
pathway, which constitutes a mechanism for
channeling signaling from canonical to non-
canonical pathways.‘‘

TGF-b expression has been studied in
many tumor types, where it has been found
to function both as a tumor suppressor and
a tumor promoter. In normal cells and in
early stage tumors, TGF-b acts to block cell
proliferation through the canonical path-
ways, including via SMAD-dependent inhi-
bition of MYC, as well as activation of
cyclin-dependent kinase inhibitors. Addi-
tionally, in premalignant cells which have
acquired oncogenic mutations, TGF-b can
induce apoptosis. In more advanced tumors,
the TGF-b-dependent cytostatic effects are
suppressed, and EMT-associated cell inva-
sion and metastasis become dominant.31,32

The transition from tumor-inhibitory to
tumor-promoting behaviors has been
described as the TGF-b paradox, and while
multiple components of this transition have

been discovered, many aspects remain unknown.33 Additionally,
TGF-b can induce a variety of different anti- and pro-tumori-
genic effects indirectly by acting on stromal cells in the cancer
microenvironment.34

TGF-b Regulation of ECM Secretion and Integrin
Function

One of the most highly investigated roles of TGF-b in pathol-
ogy is in the context of development of tissue fibrosis.35 Under
normal circumstances, tissue damage triggers a wound healing
response characterized by deposition of transitional ECM, fol-
lowed by activation and invasion of fibroblasts that remodel and
contract the wound ECM; once tissue homeostasis is restored,
the fibroblasts undergo apoptosis. Under fibrotic conditions,
however, a feedback loop is activated in which excessive ECM
deposition leads to increased proliferation and activation of
ECM-producing fibroblasts. Maintained for extended periods of
time, fibrosis can become a significant problem in its own right,
and can also stimulate malignant transformation and promote
tumor progression.36,37 TGF-b has been implicated as a critical
player in chronic fibrosis of many organs, including lung, kidney,
liver, and skin. TGF-b directly stimulates expression of ECM
proteins, including collagen, fibronectin, and proteoglycans.38-40

TGF-b induces conversion of fibroblasts into myofibroblasts

Figure 1. Integrin activation. Stimulation of cellular signaling pathways can lead to increased
affinity for binding sites in the ECM. Integrin ligation to the ECM triggers assembly of cytoplasmic
molecules that can lead to focal adhesion complex formation and connection to the actin
cytoskeleton.
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which can further contract and distort the
ECM. TGF-b can also directly stimulate
myofibroblast formation from epithelial and
endothelial cells through EMT-related pro-
cesses, and this function is essential for
development of fibrosis in several organs.41-
44 The relative amount of epithelial- vs
fibroblast-derived myofibroblasts is a cur-
rent point of debate and is likely to be
highly tissue specific.

In addition to inducing integrin signal-
ing through increased production of ECM,
TGF-b can also regulate integrin function
directly. TGF-b can control expression of
av-, b3-, and b1-integrin subunits through
both canonical and noncanonical pathways,
according to cell type.45-48 TGF-b signaling
can also directly phosphorylate and activate
b1-integrin, stimulating cell invasion and
facilitating tissue regeneration.49,50 TGF-b
can also induce cross-talk between integrins
and growth factor receptors, including via
activation of focal adhesion kinase (FAK)-
dependent clustering of ErbB2 (HER2) and
integrins a6, b1, and b4 through a pathway
initiated by EGFR-dependent phosphoryla-
tion and activation of SRC; the overall effect
of this pathway is increased cell migration
and survival.51

Integrin Regulation of TGF-b
Activation and Signaling

Integrins are directly involved in the activation of TGF-b
(Fig. 3).52,53 TGF-b isoforms are translated as preproproteins
that contain a 25–30 kDa latency associated peptide (LAP) and
the 13 kDa TGF-b molecule. LAP-TGF-b homodimers linked
by disulfide bonds are formed in the endoplasmic reticulum
(ER), followed by protoelytic cleavage of LAP from TGF-b in
the Golgi; the resultant homodimers of TGF-b and LAP remain
noncovalently associated following secretion as an inactive pro-
tein complex called the small latency complex (SLC). Many cell
types also produce latent TGF-b-binding protein (LTBP), which
can covalently bind to the SLC, producing the large latency com-
plex (LLC), which can become associated with fibrillar ECM
molecules.52,53 Outside of the cell, TGF-b can be activated fol-
lowing release from the SLC, which can occur through selective
proteolytic digestion, exposure to ROS, or through direct interac-
tion with ECM molecules.54-56 Recent studies have identified a
process by which TGF-b1 and TGF-b3 can be released from
their LAP-TGF-b complex through a force-dependent confor-
mational shift induced by association of RGD motifs in their
respective LAP proteins with integrins; all av-containing integ-
rins (avb1, avb3, avb5, avb6, and avb8) as well as a8b1
integrin have been shown to bind LAP, although whether avb1

and a8b1 can activate latent TGF-b has not been determined.57-59

The relevance of av integrin-mediated activation of latent TGF-b
was demonstrated by studies showing that transgenic mice with
mutations in the RGD motif of the TGF-b1-associated LAP pro-
tein recapitulate the phenotype of the TGF-b1 knockout mouse;
similar developmental alterations are seen in mice lacking a func-
tional av-integrin gene.60-62 Of av-containing integrins that can
activate latent TGF-b, avb6- and avb8-integrins have been shown
to play a critical role in TGF-b activation during development and
in immune homeostasis, while avb3 and avb5 may play a more
important role in TGF-b activation during fibrosis.6,63,64

In addition to controlling TGF-b activation, integrins can
also affect signaling downstream of the TGF-b receptor.6 This
can occur through integrin-mediated activation of the TGF-b
receptor, through stimulation of canonical and noncanonical sig-
naling pathways, and through increased transcription of genes
encoding TGF-b and TGF-b receptor isoforms.6,65 Recent stud-
ies have shown that the pathways regulating these effects vary in
different cell and tissue types.66 Activity of b1-integrins and the
integrin signaling mediator integrin-linked kinase (ILK) are
required for TGF-b-induced EMT in mammary epithelial
cells.67,68 Integrin a3b1 is necessary for TGF-b-induced EMT
of alveolar epithelial cells and development of pulmonary fibro-
sis,69 and integrin a1b1 is required for TGF-b-induced kidney
fibrosis.70 Integrin avb5 and ILK activity are a prerequisite for
TGF-b-dependent activation of dermal fibroblasts.71-73

Figure 2. TGF-b signaling. TGF-b signaling can be initiated by binding of TGF-b to TGF-b receptor
type III (TGFBRIII), which can then assemble with TGF-b receptors types II and I (TGFBRII, TGFBRI)
to form an active signaling complex. In the canonical signaling pathway, the active signaling
complex phosphorylates the receptor SMADs (SMAD2 and SMAD3), which then associate with
SMAD4, translocate to the nucleus and affect gene transcription. In the noncanonical pathway,
phosphorylation of the TGF-b receptor complex leads to activation of cytosolic signaling path-
ways, including MAPK, PI3K/Akt, and Rho GTPases.
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Furthermore, the response of the TGFb receptor can be potenti-
ated through binding of specific integrins to TGFBRII, leading
to phosphorylation of the receptor in a FAK- and SRC- depen-
dent manner.73-78 These effects can be quite cell-type specific: in
mammary epithelial cells, the activation of TGFBRII by interac-
tion with integrin b3 is inhibited by signaling from integrin b1,
while in chondrocytes, integrin b1 preferentially associates with
and activates TGFBRII.76,77

As an additional layer of control, the strength of the signal
from the TGF-b receptor complex depends on which TGF-b
ligand is bound, as the ligands vary in their ability to bind to
TGFBRI and to assemble the active tetrameric receptor complex
with TGFBRII; the co-receptor, TGFBRIII, can further modu-
late the ligand-dependent assembly and activation of the com-
plex.6,34 While a role for integrin-mediated regulation of TGF-b
and receptor isoform expression is relatively unexplored, it is

known that activation of integrin a5b1
stimulates TGFBRII expression, while
expression of both TGFBRI and TGFBRII
can be repressed by integrin avb3.79,80

Approaches to Therapeutic
Intervention

As TGF-b has been found to play a cen-
tral role in promotion of tumor cell invasion
and metastasis, stimulation of pathological
EMT, and induction of cancer-promoting
microenvironmental changes, it is unsurpris-
ing that there has been considerable effort to
develop inhibitors targeting the TGF-b
pathway as potential cancer therapeutics. To
date, multiple inhibitors of the TGF-b sig-
naling have been developed and tested in ani-
mal models and clinical trials.34,81,82 These
include monoclonal antibody-based inhibi-
tors of TGF-b signaling, for example fresoli-
mumab (GC1008), a fully human
monoclonal antibody against TGF-b-1, -2
and -3, currently tested in clinical trials for
combinatorial treatment with radiation ther-
apy in metastatic breast cancer (Clinical-
Trials.gov identifier: NCT01401062) and in
glioma (ClinicalTrials.gov identifier:
NCT01472731). Another avenue for TGF-
b pathway inhibition is through synthetic
antisense oligonucleotides, such as trabe-
dersen (AP 12009), targeting TGF-b2, cur-
rently being tested for treatment of glioma,83

pancreatic cancer, melanoma and colorectal
cancer.84 Other types of TGF-b pathway
inhibitors include small molecule TGF-b
receptor kinase inhibitors which bind to and
directly block receptor signaling, as well as
peptide aptamers which bind to and inhibit

downstream mediators of the TGF-b pathway, such as
SMADs.34,81,85

An alternative way to interfere with TGF-b signaling would be
to target av integrin subunit integrins required for activation of
latent TGF-b. Multiple anti-integrin av small molecule synthetic
inhibitors and monoclonal anitbodies have been developed and are
being tested in preclinical and clinical trials.8,86,87 Among these, the
monoclonal antibody intentumumab88,89 is currently being tested
in patients with melanoma (ClinicalTrials.gov identifier:
NCT00246012) and prostate cancer (ClinicalTrials.gov identifier:
NCT00537381). It should be noted that, given the pleiotropic
effects of TGF-b and potential development of resistance, the cur-
rent paradigms for targeting TGF-b signaling in cancer treatment
have focused on short term dosing in combination with other
therapies.

Figure 3. Interaction of integrins and TGF-b signaling pathways. (a) Integrin binding to latent TGF-
b complexes can lead to release of active TGF-b. (b) Signaling from integrins or TGF-b receptors
can stimulate expression of receptors or effectors of the other signaling pathway. (c) Activation of
integrins or TGF-b receptors can lead to activation or inhibition of the other signaling receptor.
(d) Cooperative signaling from integrins and TGF-b receptor may be necessary to stimulate phe-
notypic outcomes, including EMT.
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Conclusions

TGF-b is a multi-functional cytokine that regulates virtually
all cellular processes. It can act as a tumor suppressor, blocking
proliferation and inhibiting stromal mitogens, as well as a tumor
promoter and an inducer of cancer-associated EMT, allowing
evasion of immune surveillance and stimulating invasion and
metastatic spread. Those opposing consequences of TGF-b sig-
naling are highly cell type dependent and regulated by the cellular
context. ECM is a key regulator of both initiation of TGF-b sig-
naling and a determinant of its outcomes. Integrins, acting as
bidirectional signal transducers between the cellular microenvi-
ronment and the cell itself, play crucial roles in this process.
Often, the presence of certain integrins is required for activation
of latent TGF-b and thus induction of downstream signaling
pathways; integrins can also lead to ligand-independent signaling
via activation of TGF-b receptor. The complexity and dual
nature of TGF-b signaling effects reinforce the need to specifi-
cally study the context and determinants of those different

responses. Moreover, while it is the paradigmatic view that in
early stages of tumor development TGF-b acts to inhibit prolifer-
ation, whereas in later stages that aspect of signaling is lost in
favor of promotion of EMT and invasiveness, we should be
mindful that this phenotypic transition from cytostasis to motil-
ity is unlikely to occur in every cell within a tumor, and that com-
petition between pathways responsible for these different
phenotypes likely leads to complex and sometimes unexpected
outcomes. Most importantly, if TGF-b pathway is to be targeted
in cancer therapy, the challenge remains to predict the types and
stages of tumors in which TGF-b signaling inhibition would pre-
vent metastasis without facilitating growth of the primary tumor.
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