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Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded
to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the
injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part
contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting
times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development
of three different adaptive neurofuzzy inference systems (ANFISs) for estimation of compression strength, setting time, and
injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol
percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an
acceptable performance to the estimation of calcium phosphate bone cement properties.

1. Introduction

Bioactive calcium phosphates such as hydroxyapatite (HA)
Ca10(PO4)6(OH)2, tricalcium phosphate (TCP) Ca3(PO4)2,
tetracalcium phosphate (Ca4P2O9), and dicalcum phosphate
(DCP) CaHPO4 have been widely applied for hard tissue
substitute materials, due to their good biocompatibility and
bioactivity [1–4]. Many studies have evidenced the excellent
biocompatibility of calcium phosphates (CaPs) and their
favorable interaction with hard tissue [5, 6]. The shapes of
CaPs for the practical uses are classified into the dense and
porous CaP blocks [7, 8], the powders and granules [9],
the CaP coating [10, 11], and the CaP cement [12, 13].
The hardened forms of CaPs have a major disadvantage.
One of the shortcomings is the difficulty of fitting into the
defects. The particulate form of CaP can easily fill the defects;
however, it migrates or disperses into surrounding tissue [14,
15]. One of the major improvements in CaPs in recent years
is the development of an injectable system. The injectable
bone graft substitutes can mold to the shape of the bone
cavity and set in situ when injected. Such systems should

shorten the surgical operation time, reduce the damaging
effects of large muscle retraction, decrease the size of the scars
and diminish postoperative pain. It also allows the patient
to achieve rapid recovery in a cost-effective manner [15, 16].
Calcium phosphate cements (CaPCs) were the first injectable
bone filling developed for bone substitute applications [17].
Brown and Chow prepared the first CPC in 1985 contained
TTCP and DCP as the solid phase. After mixing with water,
the cement forms HA as the only final product. In an aqueous
environment at 37◦C, CPC transformed to HA which is more
similar to biological apatite than sintered HA formed at high
temperatures [18, 19].

Many different CaPC formulas have been studied, but
most of them form HA as final product [20]. The CaPCs,
now available on the market, are too stable to permit material
degradation and bone ingrowth in a limited period of time,
at least for the first years [21].

As a matter of fact, the properties of a CPC, such
as injectability, setting time, and final strength, can be
modulated through variation in powder composition, liq-
uid phase, liquid-to-powder ratio, and ageing conditions
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Figure 1: Basic structure of ANFIS.
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Figure 2: SEM micrograph of the cement powder before mixing
with the liquid phase.
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Figure 3: X-ray diffraction pattern of cement with 4% PEG and
L/P = 0.4 mL/g after 7-day incubation at 37◦C and 100% relative
humidity.

[20, 21]. Furthermore, a number of organic and polymeric
additives [22–24] have been used with the aim to improve
the properties of CaPCs. Poly ethylene glycol (PEG) is
being widely used in drug delivery systems because of its
hydrophilicity and biocompatibility [25, 26], but there are
few published articles on the use of PEG/CaP composites. In
this study, the effect of PEG on the CaPC was investigated.
The different concentration of PEG was used as the liquid
phase, and the powder component consisted of TCP, DCPA
and calcium carbonate. The surface morphology of cement
powder and phase detection of cements were performed
using scanning electron microscopy and X-ray diffraction.
Also, the injectability, setting behavior, and compressive
strength of this cement were measured.

With the development of computer technology and
artificial intelligence methods, the estimation in nonlinear
problems has become an effective method. Guild and Bon-
field [27] developed a predictive model for hydroxyapatite-
reinforced polyethylene composite using a finite-element
analysis method. The predictive model can be used to
investigate the micromechanical behavior of the mate-
rial. In another research [28], they developed a finite-
element model to improve the ductility at high-volume
fractions. Cao et al. [29] developed a modified artificial
neural network (ANN) to model the nonlinear relationship
between ultrasonic precipitation parameters and the HA
content. Input parameters are temperature, reaction time,
and ultrasonic power. The improved model for processing
dataset and selecting its topology developed using the
Levenberg-Marquardt training algorithm and trained with
comprehensive dataset of HA nanoparticles collected from
experimental data. In the previous paper by the authors
[30], a backpropagation neural network was developed to
predict the mechanical strength and the setting times in an
individual type of HA bone cement. This model had two
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Figure 4: Structure of ANFIS models for (a) compression strength and setting time and (b) injectability.
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Figure 5: Testing RMSE of (a) setting time, (b) compression strength, and (c) injectability.

parameters of the NaH2PO4·2H2O solution as liquid phase
and the liquid/powder ratio of the cement. Results show that
the model had an acceptable performance to estimate the
setting times and mechanical strength in HA bone cement.

In this research, the cements consist of both powder and
liquid phases. The powders consist of calcium carbonate,
dicalcium phosphate anhydrous and β-tricalcium phosphate.
These materials are similar to mineral phase of bone
[1–4]. Also, polyethylene glycol (PEG) is being widely used
in biomedical applications due to its hydrophilicity and

biocompatibility [25, 26]. The different concentration of
PEG was used as the liquid phase because PEG solution
can improve the properties of a CPC, such as injectability,
and setting time. Then, an adaptive neurofuzzy inference
system is used to correlate the effective input parameters
to mechanical properties, setting times, and injectability of
synthesized CaPC using the data generated based on experi-
mental observations. Also, unused results of the experiments
were compared with those of the ANFIS predictions, and best
architectures were designed for minimal error.
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Figure 6: Comparison of the predicted values and measured data of (a) setting time, (b) compression strength, and (c) injectability for data
test no. 1.

2. Experimental Procedure

2.1. Preparation of Cements. In this research, the powder
phase is a mixture of β-TCP, DCPA (Merck) and CaCO3,
(Merck). β-TCP was synthesized by the solid-state reaction
method. A mixture of 2 moles of DCPA and 1 mole of
CaCO3 were heated to 1200◦C for 6 hr and then cooling
in a box furnace [14]. After choosing the proper amounts
of starting materials, the powder cement was prepared by
mixing the starting materials together for 1 hr. The liquid
phase was an aqueous solution of PEG (MW = 400, Merck).
In order to investigate the effects of PEG concentration,
various amounts (0, 4, 8, 12, 16, and 20%, w/v) of PEG were
dissolved in a distilled water/ethanol (1/1, v/v) composite
solution by stirring for 6 hr at room temperature. The effect
of liquid/powder ratio (L/P) was also studied in four ratios
of 0.3, 0.35, 0.4, and 0.45 mL/g. The cement samples were
prepared by mixing the powders and the liquids together in
a mortar for about 1 min.

Morphological evaluation of the powder cement was
performed by SEM utilizing a Stereoscan 360 microscope
(Leica, Cambridge, UK). The composition of the cements
was analyzed by means of powder X-ray diffraction using a
Philips 3710-MPD control equipped with Cu Kα radiation.

Data were collected from 2θ = 25–45◦ with a step size of
0.02◦ and a normalized count time of 1 s/step.

To obtain the crystallinity of the cements, a minimum of
the (002) apatite peaks (2θ = 25.9◦) of the specimens after
setting time were recorded. The angular width of the (002)
diffraction peak (B) was measured at 1/2 of the height of the
maximum intensity above the background. The B value was
corrected for instrumental broadening by Warren’s method
using the following expression [31, 32]:

B2 = b2 + β2, (1)

where b and β are the instrumental broadening and the
corrected with of the peak, respectively. Because peak width
inversely correlates with crystallite size and lattice perfection
(i.e., the smaller the width, the larger and/or less strained the
crystal) the 1/β value was calculated to relate the XRD data
more directly to these crystal parameters.

2.2. Measurement of the Cement Properties. Setting times of
these cements were measured according to the ISO 9917
standard for dental silicophosphate cement. Setting times of
the samples were measured by using a Vicat apparatus. Any
sample was considered set when a 400 gram mass loaded to a
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needle with a tip diameter of 1 mm did not make any visible
impression on the surface of the sample. Injectability of the
cement was evaluated using a disposable syringe and taking
out the paste through the syringe by hand pressure. The
syringes had a capacity of 5 mL with an opening nozzle size of
2 mm in diameter. As mixed paste of 4 gram was added into
the syringe and extruded after 5 min. The paste was extruded
from the syringe by hand until it was unable to inject
entirely. The weight of the injected paste was then measured,
and injectability was calculated using the following equation
[15, 33]:

% Injectability = Paste weight expelled syringe
total paste weight before injecting

× 100.

(2)

The mechanical strength of the synthesized cements was
evaluated as follows: cement paste was packed in a cylindrical
plastic mold with 6 mm in diameter and 12 mm in length.
After setting the cements were incubated in 100% relative
humidity at 37◦C for 7 days. The specimens were crushed
with a cross-head speed of 1 mm/min using an Instron
Universal Testing Machine (6025). The compressive strength
(Cs) of the sample was calculated from the following formula:

Cs = 2F
πdh

, (3)

where F is the peak load (N), d is the diameter (mm),
and h is the thickness (mm) of sample. The maximal
compression load at failure was obtained from the recorded
load-deflection curves. For each measurement, an average of
five samples was taken.

3. Adaptive Neurofuzzy Inference
System (ANFIS)

An adaptive neurofuzzy inference system gives the mapping
relation between the input and output data by using hybrid
learning method to determine the optimal distribution of
membership functions [34]. Both artificial neural network
(ANN) and fuzzy logic (FL) are used in ANFIS architecture.
Basically, five layers are used to construct this inference
system. Each ANFIS layer consists of several nodes described
by the node function. The inputs of present layers are
obtained from the nodes in the previous layers.

Figure 1 shows the basic ANFIS structure for a system
with m inputs (X1, . . . ,Xm), each with n membership func-
tions (MFs), a fuzzy rule base of R rules, and one output
(Y). The network consisting of five layers is used for training
Sugeno-type fuzzy interface system (FIS) through learning
and adaptation. The number of nodes (N) in layer 1 is the
product of numbers of inputs (m) and MFs (n) for each
input, that is, N = mn. The number of nodes in layers 2–
4 depends on the number of rules (R) in the fuzzy rule base.
Five Layers of ANFIS model are as follow.

Layer 1 (fuzzification layer). It transforms the crisp inputs
Xi to linguistic labels (Aij , like small, medium, large etc.) with

a degree of membership. The output of node i j is expressed
as follows:

O1
i j = μi j(Xi), i = 1, . . . ,m, j = 1, . . . ,n, (4)

where μi j is the jth membership function for the input
Xi. Several types of MFs are used, for example, triangular,
trapezoidal, and generalized bell function. In this study it
selected a generalized bell function by trial and error, as
follows:

μ(X) = 1

1 + |(X − c)/a|2b , (5)

where a and b vary the width of the curve, and c locates
the center of the curve. The parameter b should be positive.
These parameters are named as premise parameters.

Layer 2 (product layer). For each node k in this layer,
the output represents weighting factor (firing strength) of
the rule k. The output Wk is the product of all its inputs as
follows:

O2
k = Wk = μ1e1 (X1)μ2e2 (X2), . . . ,μmem(Xm),

k = 1, . . . ,R, e1, e2, . . . , em = 1, . . . ,n.
(6)

Layer 3 (normalized layer). The output of each node k in
this layer represents the normalized weighting factor Wk of
the kth rule as follows:

O3
k =Wk = Wk

W1 + W2 + · · · + WR
(7)

Layer 4 (defuzzification layer). Each node of this layer
gives a weighted output of the first-order TSK-type fuzzy if-
then rule as follows:

O4
k =Wk fk, (8)

where fk represents the output of kth TSK-type fuzzy rules
as follows:

If
(
X1 is A1e1

)
and

(
X2 is A2e2

)
and . . . and

(
Xm is Amem

)
,

then fk =
m∑

i=1

pieiXi + rk,

(9)

where piei and rk are called consequent parameters and e1, e2,
. . ., em = 1, . . . ,n, k = 1, . . . ,R.

Layer 5 (output layer). This single-node layer represents
the overall output (Y) of the network as the sum of all
weighted outputs of the following rules:

O5 = Y =
n∑

k=1

Wk fk. (10)

4. Results and Discussion

4.1. Characterization. The morphology of the cement pow-
der before adding the liquid phase is shown in the SEM
image reported in Figure 2. A few big plate-like crystals due
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to DCPA are clearly distinguishable from the synthesized β-
TCP and CaCO3 particles, which display an average size of
3–7 μm.

XRD patterns of cements showed that the presence of
PEG does not affect appreciably the final phase of the
cements that exhibits the diffraction reflections characteristic
of β-TCP and HA. But, the PEG had an influence on the
resulting of crystallinity of the cements. The calculation
of the crystallinity index (1/β) of the cements for L/P =
0.4 cc/gr with 0%, 4%, 12%, and 20% run yielded crys-
tallinity of about 2.50, 1.04, 0.78 and 0.45 degree, respec-
tively. When the liquid cement no contain of any percents
of PEG, the final phase of cement had a crystalline phase of
apatite (1/β = 2.78 degree) and when the present of PEG,
the final phase of the cements had low crystallinity. With
adding PEG, the cements were converted to bone-like poor
crystalline apatite. The X-ray pattern of the cement with
liquid contains 4% PEG and L/P = 0.4 cc/gr after 7-day
incubation at 37◦C and 100% relative humidity which is
reported in Figure 3.

4.2. Data Preprocessing for ANFIS Development. Before the
ANFIS can be trained and the mapping learnt, it is
important to process the experimental data into patterns.
Training/testing pattern vectors are formed. Each pattern is
formed with an input condition vector and the correspond-
ing target vector.

The scale of the input and output data is an important
matter to consider, especially when the operating ranges of
process parameters are different. The scaling or normalizing
ensures that the ANFIS will be trained effectively, without
any particular variable skewing the results significantly. As
a result, all of the input parameters are equally important in
the training of the neural network. The scaling is performed
by mapping each term to a value between new min and
new max using the following equation:

Vnor = newmin +
Vi −Vmin

Vmax −Vmin
(newmax −newmin),

(11)

where Vnor is the normalized value, Vi is the value of a
certain variable (speed ratio, dressing depth, and cross-feed
rate), and Vmax and Vmin are the maximum and minimum
values of the independent variable. Additionally, “0.9” is its
new maximum value (new max), and “0.1” is the variable’s
new minimum value (new min). The input pattern vectors
are then formed, comprising 19 pairs of input/output ones
for training the neural network on the basis of the previous
mentioned experiments. The remaining 6 pairs are reserved
for testing the trained network performance.

4.3. Training and Testing Performance Criterion. The training
performance of the ANFIS model can be checked by the root
mean square error (RMSE) as follows:

RMSE =

√
√√
√
√

1
M

M∑

z=1

(Sz − Yz)
2, (12)

where M is the total number of training patterns (19
patterns), Sz is the target value, and Yz is the ANFIS output
value.

Also, the testing performance can be checked by the
error of network predictions. For the test data sets (6
patterns), neural network predictions are calculated. These
are compared with the corresponding experimental values.
The linear regression and statistical analysis is only effective
for large quantities of data. In the current circumstances, it
would have been better to use the root mean square error
(RMSE) as presented in (12).

4.4. ANFIS Topology, Training, and Testing. Modeling of
the process with an ANFIS model is composed of two
stages: training and testing of the network with experimental
data. The training data consist of dressing values for speed
ratio, dressing depth and cross-feed rate, and corresponding
specific energy. In all, 25 such data sets were used, of which,
19 data sets were selected randomly and used for training
purposes, while the remaining 6 data sets (data marked by
“∗” in Table 1) were presented to the trained network as
new application data for verifying or testing the predictive
accuracy of the network model. Thus, the network was
evaluated using data that had not been used for training.

Since the model is based on a limited number of
dressing conditions, it is necessary to ascertain whether
the same model can predict the output parameter for the
other conditions. Therefore, four overlapping data sets were
prepared from the master set as shown in Table 1, and
simulations were carried out individually for each of them.

The number of required rules and type of MF are
very important considerations when solving actual problems
using ANFIS network. To find the best network model that
gives superior results in comparison with other networks
topologies, a number of candidate networks with different
number of rules and different MF types firstly were devel-
oped using the ANFIS editor of the Matlab 7.1 (14th release)
software. Then, all ANFIS structures were trained based on
the error goal (RMSE) of 0.001 and maximum number of
100 epochs. It means that the training epochs are continued
until the RMSE fell below 0.001 or the epochs go up 100.
As the RMSE criterion for all networks is the same, their
actions are comparable. Then their testing performances
were compared, and the optimized model is selected based
on its predictive accuracy in response to new input data in
the testing phase when compared with experimental values.

By testing the various ANFIS structures with different
number of membership functions, it obtained the optimal
structure by trial and error method. The optimal structures
have 8 membership functions for compression strength and
setting time models as shown in Figure 4(a). Also, it has 18
membership functions for injectability model as shown in
Figure 4(b).

Also, different types of membership functions like bell,
sigmoid, triangle, trapezoid, and Gaussian were tested.
Figure 5 shows the testing RMSE of three ANFIS models.

Here four types of MF and four test data sets were
assumed, and then the RMSE was presented in each case.
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Table 1: Experimental data of cements.

Exp. no.
Inputs Outputs Test data set

PEG (%) L/P ratio (cc/gr) Setting time (min) Compression strength (MPa) Injectability (%) no. 1 no. 2 no. 3 no. 4

1 0 0.3 5.5 12.2 16.9 ∗
2 4 0.3 8 8.9 22 ∗
3 8 0.3 9.25 7.1 28.7 ∗
4 12 0.3 9.5 4.6 33.3 ∗
5 16 0.3 13 4.4 39.7 ∗
6 20 0.3 15.75 3.1 46.5 ∗
7 0 0.35 8.15 10.9 21 ∗
8 4 0.35 12.5 6.3 39.1 ∗
9 8 0.35 16 5.2 49.3 ∗
10 12 0.35 18.75 4.9 61.6 ∗
11 16 0.35 22 3.6 75.2 ∗
12 20 0.35 27.25 1.5 79.8 ∗
13 0 0.4 10 8.2 42.8 ∗
14 4 0.4 18 5.5 52.9 ∗
15 8 0.4 21.25 4.8 66.3 ∗
16 12 0.4 25 3.2 75.7 ∗
17 16 0.4 29.5 2.1 81.4 ∗
18 20 0.4 32 1.3 86.3 ∗
19 0 0.45 22.5 7.3 48.4 ∗
20 4 0.45 27 5.6 67.9 ∗
21 8 0.45 30 3.6 78.8 ∗
22 12 0.45 33.5 2.8 80.3 ∗
23 16 0.45 35.25 1.3 90.5 ∗
24 20 0.45 40.75 1.2 93.3 ∗

Results show that the triangle function with constant fuzzy
rules in comparison with others has minimum RMSE values
for all models. Average errors are 0.97, 1.74 and 4.29 for
setting time, compression strength, and injectability models,
respectively. Therefore, the triangle function with 8 rules is
the best architecture for compression strength and setting
time models, and also triangle function with 18 rules is the
best architecture for injectability model.

Comparison of the measured results and those of esti-
mated values by ANFIS models for data test no. 1 and triangle
MF are shown in Figure 6. It can be seen that the predicted
results have a good agreement with experimental results for
a wide range of data. They are acceptable, considering the
limited amount of training data available and large error
prone to measurements of calcium phosphate properties.
Therefore, the adopted ANFIS can be used to acquire a
function that maps input parameters to the desired process
outputs.

5. Conclusions

In this study, an ANFIS model has been used to predict
the mechanical properties, setting times, and injectability
in CaPC. Considered input parameters were % PEG and
liquid/powder ratio to determine the setting properties. The
required training and validation data have been obtained

from experimental observation. Three separate adaptive
neurofuzzy inference systems with 8, 8, and 18 rules and tri-
angle membership function were developed for compression
strength, setting time, and injectability models, respectively.
Novelty of this research is the use of neural network and
fuzzy sets in modeling of synthesis of calcium phosphate
bone cement which has not been worked as yet. ANFIS
model provided an interesting method for modeling the
setting properties. Despite the relatively small amount of data
(25 conditions), the ANN model gave satisfying results. By
adding more data, the ANN model can easily be expanded.
If based on a larger amount of data, it might be possible to
predict the output parameter with sufficient accuracy. The
application of neural networks for the prediction of other
setting properties might be of interest as well.
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