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Abstract: The classic ultrasonographic differentiation between benign and malignant adnexal masses
encounters several limitations. Ultrasonography-based texture analysis (USTA) offers a new per-
spective, but its role has been incompletely evaluated. This study aimed to further investigate
USTA’s capacity in differentiating benign from malignant adnexal tumors, as well as comparing the
workflow and the results with previously-published research. A total of 123 adnexal lesions (benign,
88; malignant, 35) were retrospectively included. The USTA was performed on dedicated software.
By applying three reduction techniques, 23 features with the highest discriminatory potential were
selected. The features’ ability to identify ovarian malignancies was evaluated through univariate,
multivariate, and receiver operating characteristics analyses, and also by the use of the k-nearest
neighbor (KNN) classifier. Three parameters were independent predictors for ovarian neoplasms
(sum variance, and two variations of the sum of squares). Benign and malignant lesions were dif-
ferentiated with 90.48% sensitivity and 93.1% specificity by the prediction model (which included
the three independent predictors), and with 71.43–80% sensitivity and 87.5–89.77% specificity by the
KNN classifier. The USTA shows statistically significant differences between the textures of the two
groups, but it is unclear whether the parameters can reflect the true histopathological characteristics
of adnexal lesions.

Keywords: computer-aided diagnosis; ovarian cyst; ovarian tumor; texture analysis; ultrasonography

1. Introduction

Transvaginal ultrasonography (TVUS) is the first-choice technique used in the charac-
terization of a suspicious adnexal mass [1]. One of the most important goals of imaging
when assessing these lesions is differentiating between malignant and benign ones [2],
which has a high impact on subsequent medical and surgical management [3].

Several attributes that are considered to advocate for malignancy have been described
(such as multilocularity, irregular and thickened cystic septations, and internal vegeta-
tions) [3], and scoring systems have been developed [4] in the attempt of improving ovarian
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cancers’ detection rates. Nevertheless, the neoplastic morphological features are incon-
sistent and not pathognomonic, since some mixed-type benign tumors can sometimes
mimic the aspect of a neoplastic mass [3,5]. Often, changes between imaging features
corresponding to benign and neoplastic adnexal lesions are subtle and overlapping, so that
even experts are prone to give the wrong interpretation [6,7]. Also, the multitude of ultra-
sound (US) based scoring systems may create confusion, especially since their embedded
parameters are variable, complex, and often with arbitrarily defined importance [4,8,9].
Moreover, the interpretation of TVUS images is subjective and observer-dependent [10].

Over the past few years, computer-aided diagnosis (CAD) techniques have been
developed to reduce these limitations and provide more confidence in the US diagnosis
of ovarian neoplasms [6]. All of the previously developed ultrasound CAD methods rely
on texture analysis [7,11–16] and attempt to develop classifiers that automatically recog-
nize the presence of the disease based on the detected grayscale variations within the US
images [7]. Texture analysis (TA) is a technique that involves the extraction and process-
ing of parameters that reflect the pixel intensity and variation patterns, thus providing a
quantitative and detailed description of the image content [17,18]. The basic principle of
ultrasonography-based texture analysis (USTA) is that a pathological process that alters the
tissue produces a modified US signal, which will in turn give textural features different val-
ues from those of the normal structure [19]. Previously published USTA studies [7,11–16]
that aimed to differentiate benign from malignant adnexal lesions showed the good discrim-
inative abilities of the CAD applications (55–100% accuracy; 55–100% sensitivity; 49–100%
specificity). However, due to the pilot nature of these researches, they encounter several
pitfalls that include but are not limited to small study populations [7,11–13,16], lack of
pre-processing methods [15], and the use of few texture classes [15,16], as well as several
inconsistencies regarding the statistical analysis and the overall design of the prediction
models [7,11–16].

This study aimed to perform a detailed texture assessment of benign and malignant
adnexal lesions and to further investigate whether previously proposed USTA methods
can be reproduced to provide an automated means of differentiation between the two
histopathological entities.

2. Materials and Methods
2.1. Study Group

This Health Insurance Portability and Accountability Act—a compliant, single-institution,
retrospective study has been approved by the institutional review board (ethics committee
of the “Iuliu Hat, ieganu” University of Medicine and Pharmacy Cluj-Napoca; registration
number: 50; date: 11 March 2019), and informed consent was waived owing to its retrospec-
tive nature. From October 2017 to February 2019, a search in the imaging database of our
institution was conducted to identify TVUS images corresponding to adnexal lesions. The
inclusion criteria were: a lesion with a minimum diameter of at least 20 mm, the availability
of conventional B-mode images, lack of imaging artifacts, and the existence of a patient’s
serial number (PSN). In total, 413 images belonging to 274 patients were selected. Based on
the PSN, the patients’ medical records were retrieved from the archive of our healthcare
unit and searched for disease-related data. The exclusion criteria were: no medical data
corresponding to the PSN, the absence of a final pathological diagnosis to indicate the
benign or malignant nature of the lesions, the pathological analysis performed at more
than 30 days after the image acquisition, and no gynecological follow-up.

After applying the inclusion and exclusion criteria, 123 images corresponding to
120 patients were retrieved. From 117 subjects, only one image corresponding to a single
lesion was selected. Three subjects had two different pathologically proven lesions, and
one image corresponding to each lesion was retrieved (one patient with teratoma and
functional cyst, one with endometrioma and functional cyst, and one with endometrioma
and hemorrhagic cyst).
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According to the patients’ final diagnosis, images were divided into benign (n = 88)
and malignant (n = 35) groups. The benign grop included: functional cysts (n = 7), hemor-
rhagic cysts (n = 5), endometriomas (n = 28), serous cystadenomas (n = 26), mesothelial
inclusion cysts (n = 2), mucinous cystadenomas (n = 6), ovarian abscesses (n = 6), oophoritis-
related cysts (n = 2), and teratomas (n = 6). The malignant group included: serous ovarian
carcinomas (n = 24), endometroid carcinoma of the ovary (n = 2), mucinous ovarian carci-
nomas (n = 6), and clear-cell ovarian carcinomas (n = 3).

2.2. Reference Standard

The pathological examination was performed in the same institution and comprised
macroscopic and microscopic evaluation of the lesions. When necessary, the examination
was supplemented with immunohistochemical analysis. One to three samples of solid
tissues were collected and analyzed microscopically after being stained with hematoxylin
and eosin. Of the seven histologically proven functional cysts, two belonged to patients who
had other benign lesions and were also included in our study (one with endometrioma and
one with teratoma). The other five functional cysts underwent pathological analysis as they
were included in the same surgical specimen that was removed for another underlying
disease (uterine fibromatosis, n = 3; atypical endometrial hyperplasia, n = 1; adnexal
torsion, n = 1). Of the five included hemorrhagic cysts, one belonged to a patient with
endometrioma, which was also included in this study. Four hemorrhagic cysts were
included in the surgical specimen analyzed for another disease (refractory adenomyosis,
n = 1; uterine sarcoma, n = 1; uterine fibromatosis, n = 2).

2.3. Image Acquisition and Interpretation

All the examinations were performed by five gynecologists with at least 7 yearsof
experience in TVUS on the same unit (Aplio 300, Toshiba Medical Systems, Tokyo, Japan),
using a dedicated endovaginal probe (4–10 MHz). Each of the selected examinations
were comprised of several images, but only conventional B-mode images were selected.
Images were retrieved in digital imaging and communications in medicine (DICOM)
format and imported into a dedicated radiology workstation (General Electric, Advantage
workstation, 4.7 edition, Waukesha, WI, USA). Images were reviewed by two researchers
(one gynecologist and one radiologist, M.D.O. and C.M.M.), who were aware of the
subjects’ final diagnostics, pathological findings, and clinical outcomes. When multiple
adnexal lesions were observed on the same patient, the TVUS examinations were cross-
referenced with the medical data to ensure the selection of only the lesions that were
previously documented. Respective lesions were marked, and for every lesion, one image
was anonymized and retrieved for subsequent analysis.

2.4. Texture Analysis Protocol

The radiomics approach consisted of five steps: image pre-processing, lesion segmen-
tation, feature extraction, feature selection, and prediction.

2.4.1. Image Pre-Processing and Segmentation

Each image was pre-processed in two steps. In the first step, images were converted
from DICOM to joint photographic experts group format (JPG). Then, the converted
images were imported into a dedicated software (Topaz DeNoise AI, Topaz Labs, TX,
USA), where a denoising technique based on convolutional neural networks (CNN) [20]
was applied to countermand the negative impact of the speckle noise. After the noise
correction, images were reconverted in bitmap format (BMP) and imported into a dedicated
texture analysis software (MaZda v5; Institute of Electronics, Technical University of Lodz,
Lodz, Poland) [21]. In the second step, within the MaZda software, an image gray-level
normalization method (based on the mean and three standard deviations) was applied
to reduce the contrast and brightness variations that can affect the true textures of the
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image [22]. The normalization was automatically performed by the MaZda software before
the parameters’ extraction, based on predefined settings.

Each examination was reviewed by a third researcher (P.A.S.), blinded to the final
diagnosis, who performed the image segmentation. This step consisted of incorporating
each lesion into a two-dimensional region of interest (ROI). A semi-automatic level-set
technique was used for the definition and positioning of each ROI using geometry and
gradient coordinates. When an incomplete overlap between the lesion and the ROI was
observed, the researcher performed the necessary adjustments (Figure 1).
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Figure 1. Image pre-processing workflow and the positioning of the region of interest (ROI). (A) The ultrasound image of a
34-year-old patient with histologically-proved mucinous cystadenoma that underwent speckle-noise reduction (B); the
initial ROI that was automatically delineated by the software (green line) (C) and the final ROI after manual adjustments
(green) (D).

2.4.2. Feature Extraction

The texture feature extraction from every ROI was automatically performed by the
software. The resulted texture features were derived from the histogram analysis, gradient,
run-length matrix (RLM), gray-level co-occurrence matrix (GLCM), autoregressive model,
and wavelet transformation. The histogram analysis included the following nine parame-
ters: mean, variance, skewness, kurtosis, and five percentiles (1%, 10%, 50%, 90%, and 99%).
The gradient features were computed using 4 bits/pixel and included five parameters:
absolute gradient mean, absolute gradient variance, absolute gradient skewness, absolute
gradient kurtosis, and percentage of pixels with nonzero gradient. The RLM included
five parameters (run-length nonuniformity, gray-level nonuniformity, long-run emphasis,
short-run emphasis, and the fraction of image in runs). Each RLM parameter was computed
using 6 bits/pixel and calculated for four directions on the image: vertical (V), horizontal
(H), 135◦ (N), and 45◦ (Z) resulting in four variations of each feature. The eleven GLCM
features were computed using 6 bits/pixel (angular second moment, contrast, correlation,
the sum of squares, inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, and difference entropy). Each COM parameter was calculated
in four directions (V, H, N, and Z) for each inter-pixel distance (1, 2, 3, 4, and 5), resulting
in 20 variations of each parameter. The autoregressive model included five parameters
(θ 1–4 and σ). The wavelet transformation included a single parameter (wavelet energy)
that was computed using 8 bits/pixel. This feature was calculated at six scales using four
frequency bands (low–low, low–high, high–low, and high–high), resulting in 24 variations.

In total, 283 parameters were computed from every ROI. Two sets of measurements
(lesion segmentation and feature extraction) were performed one week apart by the same
researcher, and the resulted values were used to assess the intra-observer agreement. The
intra-reader agreement was evaluated using the intraclass coefficient (IC) between the
parameters extracted by the same researcher. Only the features that showed an IC of >85
were selected for further statistical analysis.
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2.4.3. Feature Selection

Two methods were used to ensure the selection of the most discriminative parameters.
First, the MaZda software allows the selection of the best-suited parameters for differen-
tiating between classes through several reduction methods. Three of them were applied,
based on the probability of classification error and average correlation coefficients (POE
+ ACC), mutual information (MI), and Fisher coefficients (F, the ratio of between-class to
within-class variance) [23], each of them providing a set of ten texture features.

Second, the parameters highlighted by the three methods underwent statistical anal-
ysis. The absolute values recorded by each of the previously selected parameters were
compared between the two groups by conducting a univariate analysis test (the Mann–
Whitney U test). The statistical significance level was set at a p-value of below 0.0019
after applying the Bonferroni correction (which implied dividing the standard 0.05 value
to 26 variables; 23 were represented by the unique parameters provided by the reduc-
tion technique, one corresponding to the patients’ age, and two represented the major
histopathological classes). Features that did not meet the above-mentioned criteria were
excluded from further analysis.

2.4.4. Class Prediction

Two methods were used to assess the selected features’ ability to distinguish between
benign and malignant adnexal lesions. First, we investigated which of the parameters
that showed statistically significant results at the univariate analysis are also independent
predictors of malignancy. In this regard, a multiple regression analysis (using the “enter”
input model) was conducted, with the computation of the coefficient of determination
(R-squared) and the variance inflation factor (VIF). The “enter” input model included all
variables that showed a p-value of below 0.05 and removed all variables that showed a
p-value of more than 0.01. The residuals were tested for normal distribution by applying
the D’Agostino–Pearson Test. Since a high VIF value is an indicator of multicollinearity,
features that recorded a VIF of ≥104 were excluded from further analysis. The predicted
values were saved and subsequently used in a receiver operating characteristics (ROC)
analysis to assess the diagnostic power of the entire prediction model. The ROC analysis
was also used to determine the diagnostic power of features independently associated
with ovarian malignancies, along with the calculation of the area under the curve (AUC),
sensitivity, and specificity, with 95% confidence intervals (CIs). The ROC curves were
calculated using the DeLong et al. method, and the binomial exact confidence intervals for
the AUCs were reported. Optimal cut-off values were chosen using a common optimization
step that maximized the Youden index for predicting patients with malignancies. Sensitivity
(Se) and specificity (Sp) were computed from the same data, without further adjustments.
Statistical analysis was performed using a commercially available dedicated software,
MedCalc v14.8.1 (MedCalc Software, Mariakerke, Belgium).

Second, within the B11 program (part of the MaZda package), the use of textural
features to differentiate between classes was further evaluated by the use of a classifier.
The classifier chosen in this model was the k-nearest neighbor (KNN), which follows the
partitioning method for clustering [24]. Two feature sets were subsequently imputed in the
KNN. The first was the set composed of all the parameters highlighted by the selection
methods (set 1), and the second was the set that contained the parameters that were
demonstrated to be independently associated with the presence of malignant lesions (set 2).
The classifier’s ability to distinguish between the two histological types of adnexal lesions
was shown by quantifying its Se (true positive rate), Sp (true negative rate), and accuracy
(Acc, percentage of correct classified lesions), with 95% CI. The entire workflow diagram is
displayed in Figure 2.
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3. Results

Of the 274 patients with adnexal lesions who were referred to our department during
the study period, 120 (average age ± standard deviation: 38.15 ± 14.68 years; age range:
22–76 years) were included in this study after applying the inclusion and exclusion criteria.
Patients were divided into benign (85 patients and 88 images) and malignant groups
(35 patients and 35 images).

Twenty-three individual parameters were selected by applying the three reduction
techniques. Three variations of the sum variance (SumVarnc) parameter (CH5D6SumVarnc,
CH4D6SumVarnc, CH3D6SumVarnc) were selected by both Fisher and POE + ACC tech-
niques, of which two were highlighted by all three methods (CH3D6SumVarnc and
CH4D6SumVarnc), and two variations were selected only by the Fisher and mutual infor-
mation techniques (CN2D6SumVarnc, CV4D6SumVarnc).

When comparing the absolute values, the Mann–Whitney U test showed statisti-
cally significant results in 18 of the 23 previously selected parameters. Five parameters
were situated above the p-level threshold and therefore were excluded from further pro-
cessing (WavEnHL_s-6/wavelet energy, p = 0.0283; ATeta4/parameter θ4, p = 0.0675;
GD4Kurtosis/absolute gradient kurtosis, p = 0.0913; RZD6LngREmph, p = 0.3699; and
WavEnLH_s-5, p = 0.014). The intra-rater agreement showed adequate reproducibility of
all remaining texture parameters. The results of the univariate analysis and intra-reader
agreement evaluation are displayed in Table 1.

The multivariate analysis showed a significance level of p < 0.0001, an R2 coeffi-
cient of determination of 0.4754, an adjusted R2 of 0.4153, and a multiple correlation
coefficient of 0.6895. Three features were identified as independent predictors of ma-
lignant lesions (CH5D6SumOfSqs, CZ2D6SumVarnc, and CZ5D6SumOfSqs) (Table 2).
Seven features were excluded from the model due to multicollinearity (as having a
VIF >104) (CH3D6SumVarnc, CH4D6SumVarnc, CN2D6SumVarnc, CV3D6SumVarnc,
CV4D6SumVarnc, CZ3D6SumOfSqs and CZ4D6SumOfSqs). The ROC analysis showed
that the prediction model exceeded the diagnostic ability of all independent features in
terms of both sensitivity and specificity (Table 3, Figure 3).
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Table 1. The univariate analysis (Mann–Whitney U test) and the intra-reader agreement evaluation results.

Parameter p-Value Benign Group Malignant Group Agreement
Median IQR Median IQR ICC 95% CI

Fisher

CH4D6SumVarnc <0.0001 85.88 59.73–131.59 242.63 167.91–455.47 0.96 0.94–0.97

CH3D6SumVarnc <0.0001 88.27 62.54–136.3 258.28 172.04–463.22 0.96 0.94–0.97

CH5D6SumVarnc <0.0001 84.31 56.33–128.25 235.9 164.45–450.94 0.95 0.94–0.97

CV5D6SumVarnc <0.0001 83.53 55.74–127.05 230.49 143.38–438.08 0.96 0.94–0.97

CV4D6SumVarnc <0.0001 85.37 56.91–132.69 234.69 148.02–449.39 0.96 0.94–0.97

CV3D6SumVarnc <0.0001 86.71 59.6–139.33 238.15 154.47–465.49 0.96 0.94–0.97

CH2D6SumVarnc <0.0001 94.86 67.57–148.25 269.59 180.29–480.45 0.96 0.94–0.97

CN2D6SumVarnc <0.0001 89.56 61.13–136.95 247.13 158.06–464.65 0.96 0.94–0.97

CN3D6SumVarnc <0.0001 83.48 58.51–129.63 236.66 147.31–449.5 0.96 0.94–0.97

CV2D6SumVarnc <0.0001 91.49 63.79–147.72 251.8 168.09–479.01 0.96 0.94–0.97

POE + ACC

WavEnHL_s-6 0.0283 108.02 54.64–173.56 124.12 110.04–214.94 0.99 0.99–0.99

Kurtosis 0.0005 10.27 4.55–21.56 4.07 1.12–7.23 0.92 0.89–0.94

ATeta4 0.0675 0.18 0.09–0.24 0.14 0.08–0.16 0.98 0.97–0.98

GD4Kurtosis 0.0913 50.09 14.94–68.34 13.01 4.–44.66 0.99 0.99–0.99

RZD6LngREmph 0.3699 3.4 2.25–9.54 3.09 2.17–4.72 0.97 0.95–0.98

Perc99 <0.0001 116 85.5–144 166 150–207.25 0.93 0.9–0.95

WavEnLH_s-5 0.014 92.19 63.68–138.44 122.81 101.37–153.98 0.98 0.97–0.98

Mutual Information

CZ4D6SumOfSqs <0.0001 25.24 17.23–39.44 64.54 48.28–118.29 0.96 0.95–0.97

CZ5D6SumOfSqs <0.0001 25.03 17.14–38.63 62.24 48.03–116.66 0.96 0.95–0.97

CH5D6SumOfSqs <0.0001 25.13 16.93–40 67.71 48.79–117.8 0.96 0.94–0.97

CZ2D6SumOfSqs <0.0001 25.6 17.85–41.33 69.91 49.11–122.1 0.96 0.94–0.97

CZ3D6SumOfSqs <0.0001 25.51 17.48–40.51 67.11 48.76–120.45 0.96 0.94–0.97

CZ2D6SumVarnc <0.0001 91.34 61.89–142.25 240.57 169.41–470.34 0.96 0.94–0.97

Values in bold are statistically significant. IQR, interquartile range; POE + ACC, probability of classification error and average correlation
coefficient; ICC, intraclass coefficient; SumVarnc, sum variance; WavEnHL_s-6, wavelet energy; GD4Kurtosis, kurtosis; CV5D6SumEntrp,
sum entropy; ATeta4, parameter θ4; Perc99, 99% percentile; ASigma, parameter σ; SumOfSqs, sum of squares.

Table 2. Multivariate analysis results showing the parameters independently associated with the
presence of malignant lesions. Bold values are statistically significant (p < 0.05). VIF, variance
inflation factor.

Parameter Coefficient Standard Error p-Value VIF

CH2D6SumVarnc 0.015 0.013 0.2341 3718.896
CH5D6SumOfSqs −0.108 0.045 0.019 2905.638
CH5D6SumVarnc 0.013 0.009 0.1665 1629.273
CN3D6SumVarnc −0.009 0.008 0.2547 1396.956
CV2D6SumVarnc 0.0194 0.014 0.175 4275.282
CV5D6SumVarnc −0.0017 0.009 0.859 1769.967
CZ2D6SumOfSqs −0.0287 0.059 0.63 4969.092
CZ2D6SumVarnc −0.0246 0.009 0.011 1880.17
CZ5D6SumOfSqs 0.097 0.039 0.014 2058.43

Kurtosis <0.001 0.002 0.8365 1.663
Perc99 0.001 0.001 0.5304 8.415
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Table 3. The receiver operating characteristic analysis results of the parameters that are independently
associated with the presence of ovarian malignancy and the prediction model consisting of these
parameters. Between the brackets are the values corresponding to the 95% confidence interval.

Parameter AUC Significance
Level J Cut-Off Se (%) Sp (%)

CH5D6SumOfSqs 0.887
(0.812–0.94) <0.0001 0.65 >39.77 85.71

(63.7–97)
74.71

(64.3–83.4)

CZ2D6SumVarnc 0.883
(0.807–0.937) <0.0001 0.65 >151.46 85.71

(63.7–97)
79.31

(69.3–87.3)

CZ5D6SumOfSqs 0.895
(0.821–0.946) <0.0001 0.67 >38.77 90.48

(69.6–98.8)
77.01

(66.8–85.4)
Prediction

model
0.951

(0.891–0.983) <0.0001 0.83 >0.31 90.48
(69.6–98.8)

93.1
(85.6–97.4)

SumVarnc, sum variance; SumOfSqs, sum of squares; Perc 99, 99th percentile.
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Figure 3. Receiver operating characteristic curve of the four texture parameters independently
associated with the presence of malignant lesions and the prediction model. SumVarnc, sum variance;
SumOfSqs, sum of squares.

Two feature sets were analyzed separately by the KNN. The first (set 1) contained
all 23 parameters initially selected by the reduction techniques, and the second set (set 2)
contained only the three parameters that were independently associated with ovarian
malignancies. Nineteen lesions were incorrectly classified by the KNN based on the first
feature set and 18 lesions based on the second feature set. Nine lesions were misclassified
by the KNN after the imputation of both sets: functional cyst (n = 1), hemorrhagic cyst
(n = 1), endometrioma (n = 2), serous cystadenoma (n = 1), serous carcinoma (n = 4),
mucinous carcinoma (n = 1). Additionally, the KNN based on the parameters from set
1 incorrectly classified: endometrioma (n = 1), serous cystadenoma (n = 2), mucinous
cystadenoma (n = 1), serous carcinoma (n = 3), mucinous carcinoma (n = 1), endometroid
carcinoma (n = 1). Separately, the KNN based on the parameters from set 2 misclassified:
endometrioma (n = 1), serous cystadenoma (n = 3), ovarian abscess (n = 1), oophoritis
(n = 1), serous carcinoma (n = 1), clear cell carcinoma (n = 1). The overall KNN performance
and classification results are displayed in Table 4. The feature maps that display the
image distribution of parameters across images belonging to the two groups are shown in
Figure 4.
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Table 4. The k-nearest neighbor classifier’s results. The values between the brackets corresponding
to the 95% confidence interval. KNN, k-nearest neighbor classifier.

Input Parameters Set 1 Set 2

Accuracy (%) 84.55 (76.93–90.44) 85.37 (77.86–91.09)

Sensitivity (%) 71.43 (53.7–85.36) 80 (63.06–91.56)

Specificity (%) 89.77 (81.47–95.22) 87.5 (78.73–93.59)

Positive Predictive Value (%) 73.53 (59.1–84.23) 71.79 (58.84–81.93)

Negative Predictive Value (%) 88.76 (82.32–93.06) 91.67 (84.95–95.54)

Study population

benign group (n = 88) 9 11

functional cyst (n = 7) 1 1

hemorrhagic cyst (n = 5) 1 1

endometrioma (n = 28) 3 3

serous cystadenoma (n = 26) 3 4

mesothelial inclusion cyst (n = 2) - -

mucinous cystadenoma (n = 6) 1 -

ovarian abscess (n = 6) - 1

oophoritis (n = 2) - 1

teratoma (n = 6) -

malignant group (n = 35) 10 7

serous carcinoma (n = 24) 7 5

endometroid carcinoma (n = 2) 1 -

mucinous carcinoma (n = 6) 2 1

clear cell carcinoma (n = 3) - 1
“-” corresponds to no lesion from a histopathological group being misclassified.
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Figure 4. Texture maps that show the distribution of texture features in selected images. (A) The ultra-
sound image of a 34-year-old patient with histologically-proved mucinous cystadenoma; (B–D) show
the distribution of Perc99, CV5D6SumVarnc, and CV5D6SumOfSqs in image (A); (E) The ultrasound
image of a 67-year-old patient with histologically-proved serous ovarian carcinoma; (F–H) show the
distribution of Perc99, CV5D6SumVarnc, and CV5D6SumOfSqs in image (E).
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4. Discussion
4.1. Study Outcomes

Our results indicate that an important part of the initially selected parameters were
variations of the GLCM-based features, namely SumVarnc and SumOfSqs (sum of squares).
These variations showed similar results at the univariate analysis (having a p-value of less
than 0.0001), a similar range of values for the benign (SumVarnc, 83.53–94.86; SumOfSqs,
25.03–91.34) and malignant groups (SumVarnc, 230.49–269.59; SumOfSqs, 62.24–69.91), and
similar intra-rater reproducibility coefficients (SumVarnc, 0.95–0.96; SumOfSqs, 0.96).

The multivariate analysis indicated that three features were independently associ-
ated with the presence of ovarian malignancies (CH5D6SumOfSqs, CZ2D6SumVarnc,
CZ5D6SumOfSqs). Of the independent parameters, the highest Se (90.48%; CI, 69.6–98.8%)
and Sp (79.31%; CI, 69.3–87.3%) were once again achieved by GLCM-based features. Over-
all, all the features belonging to this class showed a high potential to discriminate between
benign and malignant adnexal lesions, an observation that is in accordance with previous
USTA research [7,12,15,16]. Moreover, it was demonstrated that GLCM parameters are
uninfluenced by the variations of ROI depth and size, and gain settings, and also showed
good operator repeatability and reproducibility [16].

Both the sum of squares and sum variance features reflect the degree of deviation from
the mean gray level present in the ROI [25], and some authors even provide them with
the same definition [26]. Sum variance quantifies the variance of the sum of gray levels
(e.g., the spread in the sum of the gray-levels of pixel-pairs distribution) [27,28]. Within the
GLCM, when the frequency of occurrence is equally concentrated in the lowest and highest
cells of the matrix, this parameter’s values increase [29]. In other words, sum variance
is a measure of heterogeneity that places higher weight on neighboring intensity level
pairs that deviate more from the mean [30]. Similarly, the values of the sum of squares
increase proportionally to the pixel gray value differences [27]. Our results show higher
values of all variations of both parameters for the malignant compared to the benign group,
and the difference between the measurements was statistically significant in all scenarios
(p < 0.0001).

Several hypotheses can be formulated to explain the increased heterogeneity observed
in the malignant group. A possible explanation is related to the fact that the morphological
features (such as septations, solid areas within the cyst, wall structure, and papilations)
were included within the ROI, thus creating a high contrast between fluid and solid
components that was interpreted by the software as an expression of inhomogeneity. On
the other hand, tissue heterogeneity is a well-known feature of malignancy, likely related to
tumoral angiogenesis and cell infiltration [31,32], a feature that could be very well-reflected
in the analyzed US images.

Another important aspect is related to the fluid component of the ovarian cystic
lesions. It was previously documented that the fluid contained in these lesions express
particularities for several histological groups, such as biomarkers [33,34], cellularity [35,36],
and liquid properties [37,38]. Overall, the fluid contained in the malignant cystic lesions is
more heterogeneous than one contained in benign lesions [37,39,40], which could also im-
pact the USTA results. Moreover, we previously demonstrated that the texture analysis [41]
and density measurements [42] of the fluid component can successfully discriminate alone
between the two histopathological groups. Therefore, it is not possible to indicate exactly
which of the lesions’ macro or microscopical components are responsible for the increased
heterogeneity, and because of this, no direct link between texture parameters and the
lesions’ appurtenance to a certain histopathological group can be stated. These matters
were not addressed in previous USTA studies [7,11–16], although we consider them to be
a key component in the interpretation of the TA results. In order to identify the tumoral
components that directly impact the texture measurements, separate USTA of solid and
liquid components would be required, under direct coordination with the pathology and
surgical departments regarding the timing and handling of probes.
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We were able to identify seven previously published papers that also followed the dif-
ferentiation between benign and malignant adnexal masses based on USTA. Besides having
similar backgrounds and aims, the workflow and the results were highly variable [7,11–16]
(Table 5).

Table 5. Summary of benign and malignant ovarian masses classification using texture features from ultrasound images.

Author, Year Study Group Texture Features Classifier
Performance

Acc (%) Se (%) Sp (%)

Acharya et al. 2013 [11] ns = 20
LBP, LTE SVM 99.9 100 99.8ni = 2000

Acharya et al. 2012 [12] ns = 20 Hu i.m., Gabor,
Entropies PNN 99.8S 99.2 99.6ni = 2600

Acharya et al. 2012 [13] ns = 20 SD, FD,
DT 97 94.3 99.7ni = 2000 GLCM, RLM, HOS

Acharya et al. 2014 [7]
ns = 20;

ni = 2600 FOS, GLCM, RLM

SVM 84.7–100 81–100 88.46–100

DT 98.54 98.15 98.92

KNN 100 100 100

NB 67.35 60.62 74.08

PNN 100 100 100

Khazendar et al. 2015 [14]
ns = 187

FOS, LBP KNN 63–55 55–71 49–69ni = 177

Aldahlawi et al. 2017 [15]
ns = 163; GLCM - - 71–75 55–60

ni = 169 Wavelet - - 50–62 46–60

Hamid. 2011 [16]
ns = 20 GLCM - - 100 90

ni = 20 Wavelet - - 100 90

ns, number of subjects; ni, number of analyzed images; acc, accuracy; Se, sensibility; Sp, specificity; LBP, Local Binary Patterns; LTE,
Laws Texture Energy; SVM, Support Vector Machine; Hu i.m., Hu’s invariant moments; PNN, probabilistic neural network; DT, Decision
Tree classifier; SD, standard deviation; FD, fractal dimension; GLCM, gray-level co-occurrence matrix; RLM, run-length matrix; HOS,
higher-order spectra; FOS, first-order statistics; KNN, k-Nearest Neighbor; NB, naïve Bayes; -, no information regarding this aspect could
be found in the study.

4.2. Study Population

Our study group included 123 images provided by 120 subjects. Similar research also
included clustered observational data. Normally, analyses of data that include multiple
observations per subject require a form of adjustment to account for the possible correlation
between observations [43]. A single image corresponding to one lesion was retrieved from
most of the subjects included in our study (n = 117). Two images, each corresponding
to a different pathologically proven lesion, were retrieved from three patients. Since the
images provided from the same patient were analyzed as separate entities, no statistical
adjustments were performed. The same approach was followed by Aldahlawi et al. [15]
(which included 169 images from 163 patients), and by Khazendar et al. [14] (which
included 187 images from 177 subjects). On the other hand, the studies conducted by
Acharya et al. [7,11–13] included between 100–130 images retrieved from the same le-
sion, also with no statistical adjustments regarding the reported diagnostic ability of the
texture features.

4.3. Image Pre-Processing and Segmentation

In US images, the superposition of acoustical echoes with random phases and am-
plitudes produces speckle noise [44]. Also, variations in brightness could occur due to
different operators and different settings used when acquiring the image [45]. The speckle
noise and brightness variations inevitably have an impact on the measured texture parame-
ters and therefore negatively influence the tissue comparability. For speckle noise reduction,
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we used a CNN-based approach [20]. Other studies used a slightly different modality
to counteract these variations. Khazendar et al. [14] applied a noise reduction method
in the pre-processing step based on nonlocal mean (NLM). However, recent publications
demonstrated that deep learning algorithms (such as CNN) can easily outperform the NLM
approach since it can automatically deal with both stationary and spatially varying noise
patterns [46]. For brightness and contrast variations, we used the limitation of dynamics
to mean and three standard deviations, which was successfully applied in previous TA
studies based on US as well as other imaging modalities [45,47]. Aldahlawi et al. [15] also
conducted the analysis based in MaZda based on BMP images, restrained from using any
image correction methods. Also, in the researches conducted by Acharya et al. [7,11,13] the
use of image correction methods was not mentioned.

Our segmentation process included a semi-automatic level set technique, and manual
corrections were applied when necessary. In previous research with a similar workflow
it was stated that this technique does not require intra- or inter-observer reproducibility
assessment [48]. However, the researcher (P.A.S.) who conducted the segmentation process
was asked to repeat the process one week later, to evaluate and ensure good intra-observer
reproducibility of the texture measurements. Similar USTA research used an entirely
manual ROI definition and the reproducibility was not assessed [14,15]. Two papers also
implied a semi-automatic method [7,11], but also with no details regarding the agreement.
One study [13] offered no information about lesion segmentation and ROI definition. How-
ever, it was documented that the ROI characteristics (such as delineation, size, shape, etc.)
could influence the TA results [18], and therefore intra- or inter-observer reproducibility
could be an important aspect.

4.4. Feature Extraction and Reduction

Feature extraction is the main step in the TA process and implies the computation of TA
parameters from preselected regions. There are many methods from which the parameters
can be retrieved, including statistical methods (GLCM, RLM, local binary patterns, etc),
model-based methods (autoregressive and fractal models), transform methods (wavelet
transformation), and many more, each including several specific categories of textural
features [18]. In our study, 283 features belonging to six categories that were computed
from every ROI. Most of the similar studies [11,14–16] extracted texture features belonging
to two categories, two studies included three categories [7,12], and one study included five
categories [13]. The GLCM-based features showed statistically significant and/or adequate
classification results in four previous studies [7,13,15,16]. Although this category provided
the highest discriminatory ability, it is possible that the use of multiple parameters from
several texture methods could provide a more complete description of the image contents.

Three built-in feature reduction methods (Fisher, POE + ACC, and MI) were each used
to select a set of features with high discriminatory ability. Of the two similar studies that
were also conducted on the MaZda platform [15,16], none used any selection methods, and
restrained form analyzing any other parameters than GLCM and wavelet-based features.
The most used reduction technique in all previous studies was represented by the univariate
analysis (Mann–Whitney U or Student t-test) [7,11–16]. Typically, a p-value of less than
0.05 is regarded as clinically significant [12], and this threshold was used in five previous
researches [7,12,14–16]. Two studies [11,13] considered a p-value of less than “0.01 or 0.05”
to be statistically significant. However, we emphasize that the statistical significance level
needs to be adjusted, especially when tens or hundreds of parameters are computed within
the same ROI.

4.5. Class Prediction

The KNN is one of the simplest classifiers [6]. Our choice for the KNN was determined
by the fact that it showed high discriminatory power (100% sensitivity, specificity, positive
predictive value, and accuracy) in a previous USTA research conducted by Acharya et al. [7],
but also because it can be accessed through the B11 program (part of the MaZda package).
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This classifier performed poorly in the study conducted by Khazendar et al. [14] (Acc,
63–55%; Se, 55–71%; Sp, 49–49) but showed adequate classification abilities in a research
performed by Acharya et al. [7] (100% average Acc, Se, and Sp). The very good results
may be determined by the clustered input data, mostly since the second research [7]
used 130 images from every lesion of the 20 enrolled subjects (50% with benign and 50%
with malignant tumors). On the contrary, our study group, as well as the one used by
Khazendar et al. [14] included fewer images obtained from a larger number of patients
with a wider range of pathologies, which could represent a more accurate perspective of
the capabilities of this tool.

A very important step in the classification process is splitting the study population
into training and validation (testing) sets. Typically, approximately 70% of the acquired
dataset is used for training and the remaining samples are used to evaluate the classifier’s
performance [13]. We were unable to perform this task due to the limited number of
ovarian malignancies (n = 35; 29.1% of the study population) that were referred to our
center in the recruitment time that was approved by the ethical committee (16 months), and
splitting this group into training (n = 24) and validation (n = 11) sets would not offer a fair
assessment of the classifier’s performance. However, our classifier was also run two times,
but with slightly different parameters. Nevertheless, the overall performance of our KNN
tool was moderate at best, especially in terms of sensitivity of malignant lesions’ detection
(71.43–80%). Overall, in previous studies, the highest diagnostic abilities were achieved on
small study populations or few histopathological entities [7,11–13,16]. Thus, the USTA and
CAD’s utility in the diagnosis of ovarian malignant lesions remains uncertain, and further
studies are required to validate this method.

4.6. Future Perspectives

There is an undoubted need for new noninvasive methods that could correctly classify
adnexal lesions, especially since the classic surgical and interventional methods for tissue
sampling are invasive, offer inconsistent results, and expose the patients to a series of
risks [49–53]. Also, the classic imaging assessment can be limited by the morphological
features advocating for ovarian malignancy that appear in later stages of the disease, hence
the need for developing early and precise biomarkers [54]. In this regard, TA can offer
a non-invasive and objective description of the lesions’ contents, that could be further
linked to the risk of malignant transformation of small/early detected adnexal lesions.
Moreover, the TA could be integrated into prediction models along with other non-imaging
parameters such as CA-125 levels, thus providing an individual malignancy risk assessment
for every patient.

Previously, TA parameters and other radiomics models have been proved useful in
predicting several oncologic phenotypic patterns [55], response to tumor treatment [56],
and even the overall survival and metastasis risk [57]. If further research can demonstrate
a direct link between imaging parameters and local malignant tissue characteristics, the
USTA evaluation of adnexal malignancies could prove useful especially when biopsy can
not be performed [58]. Moreover, if adnexal tumors’ genomics could be further linked
to the dynamics of texture parameters, this approach could become a core component of
personalized oncology [59]. It was previously demonstrated that MRI can augment the
diagnosis in patients with indeterminate adnexal masses detected at TVUS [60]. Since
MRI acquisitions can contain more information than USTA, it is possible that MRI-based
TA could offer a more adequate characterization and discrimination of adnexal masses
than USTA. Rongping et al. [61] proposed a combined model that integrated non-texture
information (clinical and conventional MRI features) and texture features (extracted from
T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted
imaging) that was able to differentiate borderline epithelial ovarian tumors from FIGO
stage I/II malignant epithelial ovarian tumors with 92.5% sensitivity, 86.4% specificity and
an AUC of 0.962. Moreover, in a previously published study [41], we build a prediction
model based on the texture features extracted from the fluid component of adnexal masses
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as seen on T2-weighted images that was able to discriminate benign from malignant
lesions with 84.62% sensitivity, 80% specificity, and an AUC of 0.841. Therefore, a direct
comparison between US and MRI-derived texture features extracted from the same cohort
could be useful to establish which of the two methods can offer better diagnostic rates in
terms of adnexal lesions.

4.7. Study Limitations

Our study had several limitations. Due to its retrospective nature, it may contain
selection and verification bias regarding the gynecological follow-up and management,
which mainly depend on the referral hospital and the status of the institution. The study
population included almost four times more benign than malignant lesions, therefore not
allowing the data to be split into training and validation sets. The menstrual phase and
menopausal status were not considered since it is was inconsistently mentioned in the
retrieved medical data. The fact that two researchers were aware of the final diagnosis
of the lesions can also be considered a limitation. However, because at the time of the
US examination several patients exhibited multiple adnexal lesions, this approach was
necessary for selecting only documented lesions. After this step, the two researchers were
not involved in the processes of image segmentation, statistical analysis, or reporting the
results. The software used in this study can be regarded as outdated since an official new
version has not been released in more than ten years. However, for this research, we used
a newly developed beta version released four years ago (MaZda version 5). Although
currently several other texture programs have been developed, few others are able to
offer built-in techniques for feature reduction and vector classification within an intuitive
interface that can be used by non-image processing specialists, such as medical doctors.
Considering these limitations and also the pilot nature of some of the previously published
studies, the USTA approach for discriminating adnexal lesions requires prospective re-
search for both validation and establishment of its clinical utility compared to the classic
imaging methods.

5. Conclusions

We demonstrated a statistically significant difference between adnexal benign and
malignant features based on ultrasound-derived texture features. Although successful,
it is unclear whether these texture features reflect the lesions’ appurtenance to a certain
histopathological group or the ultrasonographic differences between the fluid and the solid
components. Further studies are required to identify the exact substrate that determines
textural differentiation.
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