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Abstract: Filamentous fungi have many secondary metabolism genes and produce a wide variety of secondary metabolites with
complex and unique structures. However, the role of most secondary metabolites remains unclear. Moreover, most fungal secondary
metabolism genes are silent or poorly expressed under laboratory conditions and are difficult to utilize. Pyricularia oryzae, the causal
pathogen of rice blast disease, is a well-characterized plant pathogenic fungus. P. oryzae also has a large number of secondary
metabolism genes and appears to be a suitable organism for analyzing secondarymetabolites. However, in case of this fungus, biosyn-
thetic genes for only four groups of secondary metabolites have been well characterized. Among two of the four groups of secondary
metabolites, biosynthetic genes were identified by activating secondary metabolism. These secondary metabolites include melanin,
a polyketide compound required for rice infection; tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic
fungi and biosynthesized by a unique nonribosomal peptide synthetase–polyketide synthase hybrid enzyme; nectriapyrones, an-
tibacterial polyketide compounds produced mainly by symbiotic fungi, including plant pathogens and endophytes, and pyriculols,
phytotoxic polyketide compounds. This review mainly focuses on the biosynthesis and biological functions of the four groups of P.
oryzae secondary metabolites.

Keywords: Rice blast fungus Magnaporthe oryzae, Plant pathogenic fungus, Secondary metabolite biosynthetic gene cluster, Biological
function

Introduction
Filamentous fungi, including plant pathogenic fungi, produce a
wide variety of secondary metabolites with complex and unique
structures. However, the biological role of secondary metabolites
remains unclear. Filamentous fungi have been a rich source of
secondary metabolites for medicines and agrochemicals. Whole-
genome sequencing analyses have indicated that filamentous
fungi have many more secondary metabolism genes than ex-
pected, suggesting that most secondary metabolism genes are
silent or poorly expressed under laboratory conditions. To utilize
the ability of fungi to produce secondary metabolites, secondary
metabolism has been activated through various approaches, in-
cluding overexpression of pathway-specific transcription factors,
manipulation of global regulators, epigenetic control, ribosome
engineering, heterologous expression of secondary metabolite
biosynthetic gene clusters (BGCs), coculture, and chemical induc-
tion (Macheleidt et al., 2016; Netzker et al., 2015; Ochi & Hosaka,
2013; Rutledge & Challis, 2015). A recent study showed that rice
extracts can induce secondary metabolite gene expression in the
filamentous fungus Aspergillus nidulans (Lacriola et al., 2020), sug-
gesting the possible involvement of fungal secondary metabolites
in plant–fungus interactions.

The major fungal secondary metabolites, polyketides and
nonribosomal peptides, are biosynthesized by polyketide syn-
thases (PKSs) and nonribosomal peptide synthetases (NRPSs),
respectively. Fungal PKSs can be categorized into three types.
The first type is iterative type I PKS that consists of multiple

catalytic domains, including ketosynthase (KS), acyltransferase
(AT), and acyl carrier protein (ACP) domains, along with several
optional β-keto modifying domains, such as β-ketoacyl reductase
(KR), dehydratase (DH), and transacting enoyl reductase domains
(Fischbach & Walsh, 2006). The second type is type III PKS, which
consists of only homodimeric KS (Hashimoto et al., 2014). The
third type is a fungal PKS–NRPS hybrid enzyme, which consists of
an iterative type I PKS followed by a single-module NRPS (Boettger
& Hertweck, 2013; Böhnert et al., 2004; Eley et al., 2007; Fisch,
2013; Song et al., 2004). In fungal PKS–NRPS, the PKS part has KS,
AT, and ACP domains, along with several modifying domains in-
cluding KR, DH, and methyltransferase (MT) domains. The NRPS
part has adenylation (A), peptidyl carrier protein (PCP), condensa-
tion (C), and terminal release or cyclization (R, reductase or DKC,
Dieckmann cyclization) domains (Boettger & Hertweck, 2013).

Pyricularia oryzae (syn. Magnaporthe oryzae) (Fig. 1) is the causal
pathogen of rice blast disease and is a well-characterized plant
pathogen.P. oryzae infects rice plants through an infection-specific
organ appressorium and proliferates inside rice plants via fila-
mentous growth and causes rice blast disease (Howard & Va-
lent, 1996). P. oryzae is also rich in secondary metabolism genes
(Collemare et al., 2008b; Dean et al., 2005). An antiSMASH analysis
predicted the presence of 23 iterative type I PKSs, 2 type III PKSs,
6 fungal PKS–NRPS hybrid enzymes, and 9 NRPSs (unpublished
data). Secondary metabolites of P. oryzae may be involved in rice
infection (Fig. 1). The biosynthetic genes of only four groups of
secondarymetabolites (melanin, tenuazonic acid, nectriapyrones,
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Fig. 1. Are secondary metabolites of the rice blast fungus Pyricularia oryzae involved in rice infection?

Fig. 2. Chemical structures of the secondary metabolites of Pyricularia
oryzae.

and pyriculols) have been well characterized in P. oryzae (Fig. 2).
Two (tenuazonic acid and nectryapyrones) of the four groups of
secondary metabolites were identified by activating secondary
metabolism.

Here, we mainly focused on the four groups of secondary
metabolites, as shown in Fig. 2. We describe the biosynthesis and
biological roles of secondary metabolites in the rice blast fungus
P. oryzae.

Melanin: A Polyketide Compound Required
for the Fungal Infection to Rice
P. oryzae synthesizes the black pigment melanin (Fig. 2), which is
required for rice infection (Howard & Ferrari, 1989). Melanin does
not work as a toxin, but this secondary metabolite is required
for rice infection by the mechanism described below. P. oryzae
forms an infection-specific organ, appressorium, and infects rice
plants using this organ. Appressorium formation and appresso-
riummelanization are essential for rice infection. Rice plant inva-
sion is achieved by an infection peg that is formed at the base of an
appressorium,which attaches tightly to the host surface. Theme-
chanical force produced by appressoria is necessary to success-
fully penetrate the infection peg (Howard & Ferrari, 1989). An ap-
pressorial melanin layer between the cell membrane and the cell
wall is essential for mechanical force generation. Turgor pressure
is concentrated toward the cuticular surfaces of the rice plant,
and the pressure inside the appressoria has been assessed to be
as high as 8MPa (Howard et al., 1991; Money & Howard, 1996).
This pressure can be generated by 3.2M glycerol accumulated in-
side the appressorium (de Jong et al., 1997). Melanin is proposed
to function as a semipermeable membrane that passes water, but
not glycerol, and as a structural support for this extremely high
pressure.

Melanin is a well-known natural black pigment. P. oryzae pro-
duces dihydroxynaphthalene (DHN)-melanin, which is a type of
fungal melanin biosynthesized by polymerizing the polyketide
compound 1,8-dihydroxynaphthalene (1,8-DHN) (Bell & Wheeler,
1986; Butler & Day, 1998). In P. oryzae, melanin biosynthetic
genes have been identified, and their biosynthetic pathways have
been elucidated (Fig. 3) (Eliahu et al., 2007; Lundqvist et al.,
1994; Thompson et al., 2000; Vidal-Cros et al., 1994). The itera-
tive type I PKS enzyme ALB1/MGG_07219 catalyzes the synthe-
sis of the backbone compound 1,3,6,8-tetrahydroxynaphthalene
(1,3,6,8-THN). Melanin was originally shown to be a pentaketide
compound. However, analysis of an ALB1 homolog in the closely
related fungus Colletotrichum lagenarium showed that melanin is a
hexaketide compound and the backbone (1,3,6,8-THN) is biosyn-
thesized using acetyl-CoA and five malonyl-CoA (Vagstad et al.,
2012). Then, 1,3,6,8-THN is converted to 1,8-DHN using three
enzymes: 1,3,6,8-THN reductase (4HNR), scytalone dehydratase
(SDH1/RSY1), and 1,3,8-trihydroxynaphthalene (1,3,8-THN) re-
ductase (3HNR/BUF1). Finally, 1,8-DHN is oxidatively polymerized
to form DHN-melanin. Melanin biosynthesis can be induced by
genetic modification of the factors involved in epigenetic control
(Maeda et al., 2017) and signal transduction (Motoyama et al.,
2008).

Biosynthetic enzymes of DHN-melanin have been agrochemi-
cal development targets, and three types of commercial melanin
biosynthesis inhibitors (MBIs) have been successfully developed
(Fig. 3). MBIs are classified into three types: MBI-R (tricyclazole,
phthalide, and pyroquilon), MBI-D (carpropamid, fenoxanil, and
diclocymet), and MBI-P (tolprocarb) (Banba et al., 2017; Hagiwara
et al., 2019; Motoyama & Yamaguchi, 2003). The targets of MBI-
R, MBI-D, and MBI-P are 1,3,8-THN reductase (3HNR/BUF1), scy-
talone dehydratase (SDH1/RSY1), and PKS (ALB1), respectively
(Fig. 3). MBIs are known to be environmentally friendly agrochem-
icals because they can inhibit fungal infection without inhibiting
fungal growth. As MBIs have no growth inhibitory activity, it has
long been believed that no resistant strain will be created. How-
ever, the occurrence of resistant strains for MBI-D has been re-
ported (Kaku et al., 2003; Sawada et al., 2004; Yamada et al., 2004),
suggesting that resistant strains can become dominant depending
on the target enzymes and application conditions.

Tenuazonic Acid: A Well-Known Mycotoxin
Biosynthesized by a Unique NRPS–PKS
Enzyme
The tetramic acid derivative tenuazonic acid (TeA, Fig. 2) is a well-
known mycotoxin that was first isolated from Alternaria tenuis
culture broth in 1957 (Rosett et al., 1957). P. oryzae and other
plant pathogenic fungus Phoma sorghina (sorghum pathogen) are
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Fig. 3.Melanin biosynthetic pathway of Pyricularia oryzae. Inhibition points of the three groups of melanin biosynthesis inhibitors (MBIs) are shown.
1,3,6,8-THN, 1,3,6,8-tetrahydroxynaphthalene; 1,3,8-THN, 1,3,8-trihydroxynaphthalene; 1,8-DHN, 1,8-dihydroxynaphthalene.

also known as TeA producers (Steyn & Rabie, 1976; Umetsu
et al., 1972). Alternaria is a ubiquitous plant pathogenic fungus
that causes spoilage of various food crops and fruits in the field
and postharvest decay (Ostry, 2008). TeA has been detected in
manyAlternaria-contaminated vegetables, fruits, and crops (Gross
et al., 2011; Lohrey et al., 2013; Siegel et al., 2009). A TeA ana-
log from valine is also produced by P. oryzae as a minor product
(Lebrun et al., 1990). Among the Alternaria toxins, TeA showed the
highest toxicity, with acute toxicity in mammals. The oral median
lethal doses for male and female mice were 182 or 225mg kg−1

and 81mg kg−1 body weight, respectively (Miller et al., 1963; Smith
et al., 1968). The European Food Safety Authority determined the
threshold of toxicological concern of TeA to be 1500ng kg−1 body
weight (Asam & Rychlik, 2013).

TeA inhibits protein synthesis by preventing the release of
polypeptides from the ribosome (Shigeura & Gordon, 1963).
TeA also shows antiviral, antibacterial, antitumor, phytotoxic,
and plant disease-controlling activities (Aver’yanov et al., 2007;
Gitterman, 1965; Lebrun et al., 1988; Miller et al., 1963). TeA can
inhibit photosynthesis (Chen et al., 2015, 2007, 2010) and the po-
tential use of TeA as a herbicide that targets photosystem II (PSII)
has been proposed (Chen & Qiang, 2017). A recent study indicated
that TeA can inhibit plant plasma membrane (PM) H+-ATPase at
micromolar concentrations (Bjørk et al., 2020). PM H+-ATPase in-
hibition results in depolarization of the membrane potential and
finally necrosis. Currently, it remains unknown whether TeA is re-
quired for plant infection. We induced the production of TeA in P.
oryzae and identified the biosynthetic gene TAS1, which encodes
the first reported fungal NRPS–PKS hybrid enzyme (Motoyama &
Osada, 2016; Yun et al., 2015). We have shown the biosynthetic
and induction mechanisms of TeA (Yun et al., 2017, 2020). In the
following section, we present the data on the biosynthesis and in-
duction of TeA.

TeA has been shown to be biosynthesized using an isoleucine
and two acetates (Stickings & Townsend, 1961). TeA was also pre-
dicted to be a product of a PKS–NRPS hybrid enzyme because it
has a tetramic acid-containing structure (Collemare et al., 2008a).
We successfully induced TeA production by 1% dimethyl sulfox-
ide (DMSO) treatment and disruption of the OSM1 gene, which en-
codes an osmosensory mitogen-activated protein kinase (MAPK)
that works downstream of the two-component signal transduc-
tion system involved in environmental responses. We found that

the TeA biosynthetic gene TAS1/MGG_07803 was upregulated un-
der TeA-inducing conditions (Motoyama&Osada, 2016; Yun et al.,
2015). Unexpectedly, the biosynthetic enzyme TAS1 (tenuazonic
acid synthetase 1) was not a PKS–NRPS hybrid enzyme but an
NRPS–PKS hybrid enzyme. PKS–NRPS hybrid enzymes have also
been found in bacteria (Blodgett et al., 2010; Yu et al., 2007). More-
over, a different type of hybrid enzymes, NRPS–PKS hybrid en-
zymes (which begin with an NRPS module), have been found in
bacteria (Du et al., 2001; Gerc et al., 2012; Müller et al., 2014;
Silakowski et al., 1999; Simunovic et al., 2006; Tang et al., 2004).We
reported that TAS1 is the first fungal NRPS–PKS hybrid enzyme,
which consists of an NRPS module of domains C-A-PCP and a ter-
minal PKS KS domain (Fig. 4A). TAS1 is a new type of NRPS–PKS
hybrid enzyme that starts with an NRPS module (C-A-PCP). The
domain structure is quite different from that of conventional fun-
gal PKS–NRPS enzymes that start with a PKSmodule (Fig. 4A). The
PKS part of TAS1 only has a KS domain, in contrast to other NRPS–
PKS hybrid enzymes. This KS domain has a unique sequence and
is essential for TAS1 activity. Phylogenetic analysis revealed that
this KS domain formed an independent clade close to the type I
PKS KS clade. We elucidated that TAS1 biosynthesizes TeA from
isoleucine and acetoacetyl-CoA (diketide) (Fig. 4B). This unique
KS domain catalyzes the final Dieckmann cyclization step for
tetramic acid ring formation and TeA release, although previous
studies have suggested the involvement of this KS domain in dike-
tide biosynthesis (Stickings & Townsend, 1961). In contrast, fungal
NRPSs use the terminal condensation-like domain for substrate
cyclization (Gao et al., 2012) and bacterial NRPSs use the termi-
nal thioesterase domain for substrate cyclization (Trauger et al.,
2000). Moreover, fungal PKS–NRPSs use the terminal reductase-
like cyclization (DKC) domain for substrate cyclization (Boettger
& Hertweck, 2013). This information shows that TAS1 is a unique
type of biosynthetic enzyme that may be used for the production
of various compounds.

The PKS KS domains usually conduct the decarboxylative
Claisen condensation of acyl and malonyl blocks to extend the
polyketide chain (Hertweck, 2009). In contrast, the terminal KS
domain of P. oryzae TAS1 catalyzes substrate cyclization (Yun
et al., 2015). Interestingly, a KS domain with a cyclization and not
ketide extension role has only been reported in TAS1. We ana-
lyzed the unique features of the KS domain of TAS1 (Yun et al.,
2020). We revealed that the KS domain of TAS1 is unexpectedly
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Fig. 4. Tenuazonic acid biosynthesis. (A) Comparison of the domain structures of TAS1 and other enzymes. (B) Biosynthetic pathway of tenuazonic
acid. (C) Proposed cyclization mechanism for tenuazonic acid. KS, ketosynthase; NRPS, nonribosomal peptide synthetase; PKS, polyketide synthase;
TAS1, tenuazonic acid synthetase 1.

monomeric such as NRPSs (Tanovic et al., 2008) although KSs are
normally dimeric (Dutta et al., 2014; Kao et al., 1996; Weissman,
2015). The 1.68Å resolution crystal structure of the TAS1 KS do-
main suggested that substrate cyclization is initiated by proton
abstraction from the active methylene moiety in the substrate by
the catalytic residue H322 (Fig. 4C). We also revealed that TAS1
KS shows broad substrate specificity and promiscuously accepts
aminoacyl substrates. Moreover, this behavior could be increased
by a single amino acid change in the substrate-binding pocket.
Our data provided insight into the substrate cyclization mecha-
nism catalyzed by the KS domain in TeA biosynthesis and how the
KS domain in the NRPS–PKS hybrid enzyme TAS1 receives large
amino acid-containing substrates.

The expression of fungal secondary metabolism genes should
be properly regulated in response to various environmental sig-
nals. To understand the interaction between fungi and their envi-
ronments, it is important to elucidate the regulatory mechanisms
of these secondarymetabolism genes. For example, clarification of
the regulatorymechanismofmycotoxin biosynthesis is important
to protect human and animal health by inhibiting mycotoxin pro-

duction. As explained previously, TeA is biosynthesized by TAS1 in
P. oryzae, and its production is induced by 1% DMSO treatment or
osmosensory MAPK gene (OSM1) deletion. However, the detailed
regulatory mechanism of TeA production remains unknown. We
identified two positive regulators of TeA production (Fig. 5) (Yun
et al., 2017). Most fungal secondary metabolites are produced us-
ing BGCs. Some gene clusters have a cluster-specific DNA-binding
binuclear Zn(II)2Cys6-type transcription factor, which is unique
to fungi and stimulates the transcription of the clustered genes
to generate a secondary metabolite (Keller et al., 2005). Tran-
scription factor genes include Fusarium sporotrichioides tri6 for tri-
chothecene biosynthesis (Proctor et al., 1995), A. nidulans aflR for
aflatoxin biosynthesis (Yu et al., 1996), Aspergillus fumigatus gliZ
for gliotoxin biosynthesis (Bok et al., 2006), and Monascus pur-
pureus ctnA for citrinin biosynthesis (Shimizu et al., 2007).We iden-
tified TAS2 (MGG_07800), a Zn(II)2Cys6-type transcription factor
that regulates the production of TeA. TAS2 is located in the up-
stream region of TAS1 (Fig. 5). In fungi, the secondary metabolite
production is regulated by upper-level regulators. These regula-
tors are called global regulators, which are transacting positive or
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Fig. 5. Regulation of tenuazonic acid production in Pyricularia oryzae.

negative transcription factors of secondary metabolite BGCs. Loss
of aflR expression (LaeA) is a well-characterized global regulator of
secondary metabolism that was originally identified in Aspergillus
spp. (Bayram et al., 2008; Brakhage, 2013; Perrin et al., 2007; Yin &
Keller, 2011). LaeA orthologs have been identified in other fungi,
including Fusarium spp., Cochliobolus heterostrophus, and Monascus
pilosus (Bok&Keller, 2016).We identified the LaeA ortholog PoLAE1
(MGG_01233) from P. oryzae. Analysis of PoLAE1 knockout and over-
expression strains indicated that PoLAE1 positively controlled the
production of TeA. We also found that the two TeA-inducing sig-
nals, 1% DMSO treatment and OSM1 deletion, were transmitted
through PoLAE1. These results showed that TeA production was
regulated by two specific transcriptional regulators, TAS2 and Po-
LAE1, in P. oryzae (Fig. 5). Recently, it has been shown that TeA pro-
duction can be induced by mycoviruses via upregulation of TAS2
(Ninomiya et al., 2020).

Nectriapyrones: Antibacterial Polyketide
Compounds
Nectriapyrone (Fig. 2) is a polyketide compound, which is pro-
duced by various fungi (Andolfi et al., 2015; Avent et al., 1992;
Claydon et al., 1985; Evidente et al., 2011; Gong et al., 2015;
Guimaraes et al., 2008; He et al., 2016; Meister et al., 2007; Nair
& Carey, 1975; Thines et al., 1998; Weber et al., 2005; Xi et al.,
2012; Zhu et al., 2013). Interestingly, nectriapyrone producers are
mainly symbiotic fungi, including plant pathogens (Andolfi et
al., 2015; Evidente et al., 2011), endophytes (Claydon et al., 1985;
Guimaraes et al., 2008; Lu et al., 2009; Meister et al., 2007;Weber et
al., 2005; Xi et al., 2012), and sponge-associated fungi (Gong et al.,
2015; He et al., 2016; Zhu et al., 2013). We recently revealed that
nectriapyrone production can be induced in P. oryzae by disturbing
the two-component signal transduction system (Motoyama et al.,
2019). We succeeded in identifying the nectriapyrone BGC and
analyzed its physiological functions, as described below.

The production of secondary metabolites is predicted to be
strictly regulated under specific environmental conditions. Thus,
we expected that secondary metabolite production might be acti-
vated bymanipulating the signal transduction pathways involved
in environmental responses. The two-component system (TCS) is
a signal transduction system that controls various cellular func-
tions in response to environmental signals and is found in various

organisms, including bacteria, archaea, plants, slime molds, and
fungi (Catlett et al., 2003; West & Stock, 2001). The P. oryzae TCS
was disturbed by deletion of OSM1 and PoYPD1,which encode HOG
MAP kinase and His-containing phosphotransfer protein, respec-
tively. This genetic manipulation induced the production of two
polyketide compounds, nectriapyrone and its oxidized analog.

We found a nectriapyrone BGC containing an itera-
tive type I PKS gene (NEC1/MGG_00806) and an O-MT gene
(NEC2/MGG_14657) (Fig. 6A). Overexpression of these two genes
induced overproduction of nectriapyrone and five analogs, includ-
ing a new derivative, zaepyrone (Fig. 6A) (Abramson & Wormser,
1981; Burkhardt & Dickschat, 2018; Cai et al., 2017; Hammer-
schmidt et al., 2014; Motoyama et al., 2019). Nectriapyrone is
similar to gibepyrones (Fig. 6B) from Fusarium spp. Gebepyrones
lack a methoxy group found in nectriapyrone, and the O-MT gene
is absent from the gibepyrone BGC (Janevska et al., 2016). Nec-
triapyrone also shows similarity to the Streptomyces metabolite
germicidins (Aoki et al., 2011; Petersen et al., 1993; Xu et al., 2011)
(Fig. 6B). A type III PKS is known to biosynthesize the germicidin
backbone (Song et al., 2006). In contrast, in case of nectriapyrone,
a type I PKS (NEC1) biosynthesizes the nectriapyrone backbone.

Nectriapyrones are α-pyrone compounds that have a wide
range of biological activities (McGlacken & Fairlamb, 2005;
Schaberle, 2016). For example, germicidins, produced by Strepto-
myces strains, act as autoregulators of spore germination (Aoki et
al., 2011; Petersen et al., 1993). Photopyrones are bacterial signal-
ing molecules that control cell clumping (Brachmann et al., 2013).
The biological activities of nectriapyrone have been reported, al-
though the functions of nectriapyrone in its producers are un-
known. Nectriapyrone is toxic to bacteria, plants, and tumor cells
(Evidente et al., 2011; Guimaraes et al., 2008; Nair & Carey, 1975;
Turkkan et al., 2011). Nectriapyrone stimulates the formation of
DOPA (3,4-dihydroxyphenylalanine)melanin in B16-F1melanoma
cells (Thines et al., 1998). In addition, it has been reported to in-
hibit monoamine oxidase in the mouse brain (Lee et al., 1999).

Identification of the nectriapyrone BGC enabled us to analyze
the biological roles of nectriapyrones in the fungus that produce
them (Motoyama et al., 2019). Although many nectriapyrone pro-
ducers have been identified from plant pathogens, we have re-
vealed that nectriapyrones are not required for rice infection and
have different roles. The chemical structure of nectriapyrone is
similar to that of germicidins produced by Streptomyces spp. Our
data showed that nectriapyrones can control growth and pigment
formation in Streptomyces griseus and have a growth-promoting ef-
fect on P. oryzae in interactions with S. griseus. Therefore, nectri-
apyrones may be involved in microbe–microbe interactions with
other environmental bacteria, such as endophytic Streptomyces
strains. To identify the active nectriapyrone analogs in this in-
teraction, we tested the bioactivity of each nectriapyrone analog
(Fig. 6A) and showed that nectriapyrone was the only active ana-
log, suggesting that other nectriapyrone analogsmay be detoxified
compounds of nectriapyrone.

Pyriculols: Phytotoxic Polyketide
Compounds
Pyriculol (Fig. 2) is a major secondary metabolite of P. oryzae and is
a phytotoxin (Iwasaki et al., 1973). Several pyriculol analogs have
also been reported. The major analogs are pyriculariol (Nukina
et al., 1981), dihydropyriculol (Kono et al., 1991), and dihydropy-
riculariol (Tanaka et al., 2011b) (Fig. 7A). It is also reported that
other pyriculol analogs, griseaketides, are produced by a rice blast
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Fig. 6. Nectriapyrones and related compounds. (A) Biosynthesis of nectriapyrones. (B) Related compounds of nectriapyrones.

fungus isolate (Yang et al., 2019). Pyriculols are classified into two
groups: aldehyde-type (pyriculol and pyriculariol) and alcohol-
type (dihydropyriculol and dihydropyriculariol). It has been
shown that aldehyde-type analogs induce lesion-like necrosis in
rice leaves, whereas alcohol-type analogs are inactive (Jacob et
al., 2017; Kono et al., 1991; Tanaka et al., 2011b). Four analogs are
produced simultaneously (Jacob et al., 2017), and interconversion
between oxidized aldehyde-type analogs and reduced alcohol-
type analogs is expected. It is important to know why and how P.
oryzae produces both alcohol and aldehyde analogs. Identification
of the genes responsible for this oxidoreductive conversion will
help to answer this question. Here, we describe the identification
of the pyriculol BGC and analyze the pyriculol function using the
biosynthetic genes.

Pyriculols are polyketide compounds, and their BGC have been
reported (Furuyama et al., 2021a; Jacob et al., 2017).This gene clus-
ter has an iterative type I PKS gene (MGG_10912/MoPKS19/PYC1)
and other genes predicted to be responsible for the biosynthesis
of pyriculols (Furuyama et al., 2021a; Jacob et al., 2017). It has
been suggested that aldehyde-type analogs are biosynthesized
first and converted to alcohol-type analogs by a reduction reaction
(Tanaka et al., 2011b). The gene (MGG_10961/MoC19OXR1/PYC10)
responsible for the oxidation of alcohol-type analogs to aldehyde-
type analogs has been reported (Jacob et al., 2017), although the
gene catalyzing the reverse reductive reaction has not yet been
identified. We recently identified the gene (MGG_16813/PYC7) for
this reverse reaction from aldehyde-type analogs to alcohol-type
analogs (Furuyama et al., 2021a) (Fig. 8). Furthermore, previous

studies have predicted that alcohol-type analogs are biosynthe-
sized via aldehyde-type analogs.We indicated that aldehyde-type
analogs are biosynthesized via alcohol-type analogs (Fig. 8), in
contrast to the previous prediction. Similarly, a recent study has
shown that a pyriculol-related compound, flavoglaucin (Fig. 7B), is
biosynthesized via alcohol intermediates in Aspergillus ruber (Nies
et al., 2020). We suggest that the rice blast fungus controls the
amount of pyriculol analogs using two oxidoreductases, PYC10
and PYC7, thereby controlling the bioactivity of the phytotoxin.

Neurospora crassa produces sordaria (Fig. 7B), which shows high
structural similarity to pyriculols.A sordarial biosyntheticmecha-
nism has also been proposed (Zhao et al., 2019). The sordarial BGC
is highly similar to the pyriculol BGC and has a PYC10 homolog
(srdI) and a PYC7 homolog (NCU02930). N. crassa may also control
the amount of sordarial analogs using two oxidoreductases ho-
mologous to PYC10 and PYC7. In addition, it has been proposed
that an aldehyde-type intermediate is released from PKS (SrdA)
and cyclized by SrdC/D/E. The aldehyde-type intermediate is pro-
posed to be converted by SrbB and SrdG to yield a sordarial. In
this pathway, an alcohol-type intermediate is thought to be pro-
duced from an aldehyde-type compound by an endogenous re-
ductase, which is expected to be a PYC7 homolog. We assume
that an alcohol-type compound is the release product from PKS
(SrdA), and an aldehyde-type compound will be produced using
the PYC10 homolog SrdI.

The PKS gene (MGG_10912/MoPKS19/PYC1) knockout strain
extract failed to induce phytotoxic lesions in rice leaves, sug-
gesting that pyriculols are the sole lesion-inducing compounds
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Fig. 7. Structures of the pyriculols (A) and a related compound (B).

Fig. 8. Interconversion of the two types of pyriculols.

produced by the wild-type strain under the culture conditions
used (Jacob et al., 2017). Importantly, the PKS gene knockout
strain is as pathogenic as the wild-type strain, demonstrating
that pyriculols are not needed for infection (Jacob et al., 2017).
Dihydropyriculol is thought to be an inactive analog of the
phytotoxin, pyriculol. We found that cycloheximide, an antibi-
otic with protein biosynthesis inhibitory activity, can induce
the production of dihydropyriculol (Furuyama et al., 2021b).
We revealed that pyriculol and dihydropyriculol have potent
growth inhibitory activity against the actinomycete S. griseus,
which is a cycloheximide producer. Pyriculol inhibits the growth
of P. oryzae. Localization analysis of dihydropyriculol indicated
that this compound can reach S. griseus under confrontation
culture. These data suggest that dihydropyriculol can be used as

a chemical weapon against S. griseus. Pyriculols may be involved
in microbe–microbe interactions. Each pyriculol analog may
have different roles, and P. oryzae may control its biosynthesis to
produce a suitable analog, depending on the ecological context.

Other Secondary Metabolites
Penicillin G production in P. oryzae has been reported re-
cently (Saha et al., 2020). Overexpression of a laeA homolog
(MoLAEA/MGG_07964) induced the production of penicillin G
compared to the parental strain. In contrast, the knockdown
strain of this gene did not produce penicillin G. The NRPS gene
(MGG_14767) was predicted to be involved in penicillin G biosyn-
thesis although it is characteristically different from the acvA
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(pcbAB) gene encoding ACV synthetase. MGG_14767 was upreg-
ulated threefold in the MoLAEA-overexpression strain, whereas
it was downregulated 3.8-fold in the knockdown strain. Tran-
scriptomic analysis showed that MoLAEA regulates the expres-
sion of secondary metabolism genes. Interestingly, the laeA ho-
molog (MoLAEA/MGG_07964) is different from the laeA homolog
(PoLAE1/MGG_01233) for TeA production control. Another laeA ho-
molog (PoLAE2/MGG_08161) has also been reported to affect the
cAMP signaling pathway and appressorium formation (Prajanket
et al., 2020).Multiple laeAhomologsmay be involved in controlling
secondary metabolite production.

ACE1 (MGG_12447) is a secondary metabolism gene that en-
codes a PKS–NRPS hybrid enzyme (Böhnert et al., 2004). However,
the chemical structure of the final product is unknown.ACE1was
identified as an avirulence gene, and the P. oryzae isolate carrying
the ACE1 gene is specifically recognized by rice cultivars carrying
the resistance gene Pi33. Defense responses are activated by this
recognition in resistant plants. The secondary metabolite whose
synthesis is dependent on ACE1 is predicted to be recognized by
resistant rice plants. ACE1 is located in a gene cluster consisting
of 15 genes that show a rice-infection-specific expression pattern
(Collemare et al., 2008b). Of the 15 genes, 14 genes were predicted
to be involved in secondary metabolism because they encode for
proteins such as a second PKS–NRPS (SYN2), two enoyl reductases
(RAP1 and RAP2), and a putative Zn(II)2Cys6-type transcription
factor (BC2). Heterologous expression of both ACE1 and RAP1 in
Aspergillus oryzae enables the production of an amide compound
that is similar to the PKS–NRPS-derived backbone of cytochalasin
(Song et al., 2015). However, bioactivity analysis indicated that the
produced compound was not responsible for ACE1-mediated avir-
ulence. These data suggest that the final active product may be a
cytochalasin-like compound.

ABM (MGG_04777) is a monooxidase gene located in a pu-
tative secondary metabolite BGC with a PKS gene (MGG_04775)
(Patkar et al., 2015). Although the role of Abm (antibiotic biosyn-
thesis monooxygenase) in this gene cluster is unclear, it can oxi-
dize endogenous free jasmonic acid (JA) into 12OH-JA in P. oryzae,
which is secreted during infection and helps evade the defense
response by inhibiting JA-signaling induction. Loss of Abm in P.
oryzae causes accumulation of methyl JA, which induces host de-
fense and blocks fungal infection. In addition, Abm itself is se-
creted after infection and is predicted to convert plant JA into
12OH-JA to facilitate host colonization.

P. oryzae also produces other plant hormones, such as abscisic
acid (ABA) (Jiang et al., 2010), auxins (indole-3-acetic acid [IAA])
(Tanaka et al., 2011a), and cytokinins (CKs) (Jiang et al., 2013), and
their biosynthetic genes for ABA and CKs have been described
(Chanclud et al., 2016; Spence et al., 2015). Gene disruption of
MoABA4/MGG_07514, a homolog of the Botrytis cinerea ABA4
gene responsible for ABA biosynthesis, reduces ABA levels by
twofold (Spence et al., 2015). The virulence of the �Moaba4 strain
was strongly reduced, suggesting that ABA contributes to the
virulence of P. oryzae. CKS1/MGG_04857 encodes a putative tRNA-
isopentenyl transferase required for CK biosynthesis (Chanclud et
al., 2016). The interaction between the �csk1 strain and rice plants
was analyzed. This analysis suggested that P. oryzae-derived CKs
are required for full virulence by affecting nutrient distribution,
fungal oxidative stress tolerance, and rice defenses.

Conclusions
P. oryzae has numerous secondary metabolism genes, and some
secondary metabolites are expected to be required for rice

infection. In this review, we focused on the biosynthesis and
biological roles of secondary metabolites in this fungus. Five
groups of secondary metabolites (melanin, TeA, nectriapyrones,
pyriculols, and penicillin G) have been indicated to be produced
by P. oryzae. Biosynthetic genes for three (TeA, nectryapyrone, and
penicillin G) of the five groups of secondary metabolites were
identified by activating secondary metabolism. TeA and nec-
tryapyrones were induced by genetic modification of TCS factors.
Penicillin G was induced by overexpression of a laeA homolog.
Activation of secondary metabolism is a useful method for the
identification of secondary metabolites and their biosynthetic
genes. DHN-melanin is a well-characterized secondary metabo-
lite that is required for rice infection. Unexpectedly, identification
and analysis of the biosynthetic genes showed that three groups
of secondary metabolites (TeA, nectriapyrones, and pyriculols)
are not required for rice infection. Nectriapyrones, pyriculols,
and penicillin G show antibacterial activity and are predicted to
be involved in the interactions with bacteria. Control of plant
pathogenic fungi is important in agriculture. Elucidating the roles
of secondary metabolites in plant pathogenic fungi will help in
the development of agrochemicals.
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