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Abstract

Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The
Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-
mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel
proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1
and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit
differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into
the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited
reduced PM H+-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We
also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity.
These results indicate that the Arabidopsis protein RIN4 functions with the PM H+-ATPase to regulate stomatal apertures,
inhibiting the entry of bacterial pathogens into the plant leaf during infection.
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Introduction

Plants are continuously exposed to a variety of microorganisms.

In order to successfully avoid infection, they have evolved a series

of defense mechanisms that work in concert to limit pathogen

invasion and multiplication [1]. Unlike vertebrates, plants lack an

adaptive immune system and rely on their innate immune system

to recognize and restrict pathogenic microbes. Conceptually, there

are two primary branches of plant innate immunity. One branch

employs extracellular receptors to recognize conserved microbial

features termed pathogen-associated molecular patterns (PAMPs),

resulting in PAMP-triggered immunity (PTI). The second branch

uses intracellular plant resistance (R) proteins to recognize

pathogen effectors delivered inside host cells during infection,

resulting in effector-triggered immunity (ETI). Despite the

importance of plant innate immunity, how pathogen perception

activates immune responses and signaling overlap between PTI

and ETI remain elusive.

PAMPs are conserved microbial features, such as bacterial

flagellin or fungal chitin, which fulfill a function crucial to the

lifestyle of the organism. PAMPs are perceived by pattern-

recognition receptors resulting in PTI. The activation of PTI leads

to the induction of mitogen-activated protein kinase (MAPK)

signaling, transcriptional reprogramming, production of reactive

oxygen species, and callose deposition, which serves as a physical

barrier at infection sites (reviewed in [2]).

In order to colonize plants, virulent microorganisms need to

overcome PTI. Plant pathogenic bacteria use the type III secretion

system to deliver 20–30 effector proteins into the plant cell during

pathogenesis. Collectively, these effectors are required for virulence

and individual effectors have been shown to inhibit PTI through a

variety of mechanisms [3]. The most well-studied bacterial effectors

come from P. syringae pv. tomato (Pst), the causal agent of bacterial

speck on Arabidopsis and tomato. In susceptible plant genotypes

effectors enhance pathogen virulence and can inhibit PTI and ETI;

in resistant plant genotypes effectors are recognized, culminating in

an inhibition of pathogen growth [4,5]. Despite the wide range of

pathogens recognized, the majority of R genes can be grouped into

one large family encoding proteins with a nucleotide-binding site

(NB) and C-terminal leucine rich repeat (LRR) domains [6]. Several

plant R proteins can detect effectors indirectly by monitoring for

effector-induced perturbations of key host proteins.

To date, RIN4 (At3g25070) is the only known protein that can

regulate both branches of the plant immune system. RIN4
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overexpression lines exhibit decreased callose deposition after

PAMP treatment as well as enhanced growth of virulent and type

III secretion-deficient Pst, indicating a reduction in PTI [7]. rin4

knockout lines exhibit increased callose deposition after PAMP

treatment and decreased Pst growth, consistent with enhanced PTI

signaling [7]. These data indicate that RIN4 is a negative regulator

of PTI. In addition, two R proteins, RPM1 (At3g07040) and RPS2

(At4g26090), monitor RIN4. RPM1, RPS2, and RIN4 are all

localized to the plasma membrane [8–10]. In the absence of

pathogen perception, RIN4 acts as a negative regulator of RPM1

and RPS2. When the P. syringae effectors AvrRpm1 or AvrB are

delivered to the plant cell, RIN4 is hyper-phosphorylated, which

in turn leads to the activation of RPM1-mediated resistance [8].

Another P. syringae effector, AvrRpt2, is a protease that directly

targets RIN4, leading to the activation of RPS2-mediated

resistance [11–14]. Investigation of the Arabidopsis–P. syringae

interaction has identified RIN4 is a point of convergence for the

regulation of both PTI and ETI. However, a mechanistic

understanding of how RIN4 negatively regulates PTI remains

elusive.

Many pathogenic bacteria can proliferate as epiphytes on the

plant leaf surface, but in order to infect a plant they must colonize

host tissues. Bacterial pathogens gain entry inside plant leaves

through wounds or natural openings like stomata. Stomatal pores,

located on the aerial epidermis, permit gas exchange between

plants and the atmosphere. A pair of guard cells surrounds

stomatal pores. Guard cells respond to diverse stimuli in order to

regulate stomatal apertures including: blue light, temperature,

humidity, CO2, plant hormones, and pathogen inoculation [15–

17]. Stomatal pores operate as osmotic machines that open when

the PM H+-ATPase of guard cells is allowed to be active. The

activity of this proton pump generates a large transmembrane

electrochemical gradient that drives the uptake of charged solutes

and, as a consequence, water, which in turn causes the cells to

swell and the pore between them to open. Stomatal closure is

initiated upon depolarization of the guard cell plasma membrane

by inhibiting the PM H+-ATPase.

Historically, stomata were thought to be passive ports of entry,

but recent evidence reveals that stomatal closure is induced by

both PTI and ETI in an attempt to restrict bacterial invasion

[15,18,19]. Upon perception of PAMPs, stomata will close within

1 h. However, virulent bacteria are able to re-open stomata after

3 h, facilitating their entry into the plant leaf. For example,

virulent Pst secretes the polyketide toxin coronatine, which

stimulates the plant to re-open their stomata [15,20]. Several

other pathogenic microorganisms also act to regulate stomatal

apertures during infection [19,21–23]. One particularly well-

characterized example is the toxin fusicoccin, produced by the

fungal pathogen Fusicoccum amygdali [24]. Fusicoccin is a strong

activator of the plasma membrane H+-ATPase and rapidly

induces stomatal opening, presumably in order to facilitate fungal

penetration [25–27]. Taken together, these data highlight the

importance of stomatal pores and guard cell signaling during

pathogen infection.

In this study, we report the identification and characterization

of the Arabidopsis RIN4 protein complex. We were able to purify

several associated proteins by immunoaffinity chromatography

and identify them by mass spectrometry. We identified the PM

H+-ATPases AHA1 (At2g18960) or AHA2 (At4g30190), whose

interaction we characterized in greater detail. The C-terminal

regulatory domain of AHA1 and AHA2 interact with RIN4 by

yeast two-hybrid and we can detect a specific interaction between

AHA1/AHA2 and RIN4 in planta using bimolecular fluorescence

complementation (BiFC). RIN4 overexpression enhanced PM H+-

ATPase activity, while the rin4 knockout line exhibited decreased

PM H+-ATPase activity. Importantly, we demonstrate that the

rin4 knockout cannot re-open its stomata in response to virulent

Pst. We also show that RIN4 is expressed in guard cells along with

other PTI and ETI signaling components. Our findings are

consistent with a model in which RIN4 associates with the C-

terminal autoinhibitory domain of the PM H+-ATPase to regulate

leaf stomata in response to PAMPs.

Results

Purification and Identification of the RIN4 Protein
Complex

In order to gain a more comprehensive understanding of the

proteins involved in plant immune signaling, we investigated the

components of the RIN4 protein complex in Arabidopsis thaliana.

We used affinity-purified antibody recognizing RIN4 to purify

associated proteins by immunoaffinity chromatography (Figure

S1). The rps2-101c mutant complemented with the RPS2

transgene containing a C-terminal fusion to the hemagglutinin

(HA) epitope was used for RIN4 purifications. This line is

biologically relevant because RPS2:HA is expressed from its native

promoter, can complement the rps2-101c mutation, and confers

resistance to Pst expressing AvrRpt2 [11]. RPS2 associates with

RIN4 in planta, and we used this association to troubleshoot

purification conditions. Because the rin4 knockout is lethal in the

presence of RPS2, we used the rps2/rin4 double mutant line to

control for nonspecific protein binding [13]. Multiple purification

protocols were tested in order to identify conditions that would

enable us to detect the presence of both RIN4 and RPS2 by mass

spectrometry. We found that wash conditions containing more

than 150 mM NaCl eliminated most nonspecific protein binding,

but also eliminated our ability to copurify RPS2 in the positive

controls. Protein complex purifications were also conducted after

plasma membrane fractionation, but this eliminated our ability to

copurify RPS2 (unpublished data). Therefore, we used whole leaf

protein extracts and mild wash conditions to purify RIN4

associated proteins across three biological replicates. Proteins

from each sample were analyzed directly using high performance

liquid chromatography coupled to tandem mass spectrometry

(MS; Figure S1). Proteins were identified using the MASCOT

algorithm to search the Arabidopsis genome. All experiments

captured native, biologically relevant levels of RIN4 and

associated proteins.

We reproducibly identified RIN4 and RPS2 as well as six novel

RIN4-associated proteins across three biological replications

(Tables 1, S1, and S2). In order to be classified as a RIN4-

associated protein, the protein had to be identified by a minimum

of two unique peptides and be present in all three replications of

Author Summary

Plants are continuously exposed to microorganisms. In
order to resist infection, plants rely on their innate immune
system to inhibit both pathogen entry and multiplication.
We investigated the function of the Arabidopsis protein
RIN4, which acts as a negative regulator of plant innate
immunity. We biochemically identified six novel RIN4-
associated proteins and characterized the association
between RIN4 and the plasma membrane H+-ATPase
pump. Our results indicate that RIN4 functions in concert
with this pump to regulate leaf stomata during the innate
immune response, when stomata close to block the entry
of bacterial pathogens into the leaf interior.

RIN4 Regulates Stomata during Infection
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the positive control, but never identified in the negative control

rps2/rin4. Although we were able to identify RPS2 and RIN4 by

mass spectrometry, we did not identify two additional proteins that

are known to interact with RIN4: NDR1 (At3g20600) and the R

protein RPM1 [8,28]. Both proteins have been demonstrated to

interact by yeast two-hybrid and co-immunoprecipitation. Our

inability to detect RPM1 could be because only a small percentage

of RPM1 interacts with RIN4 in the plant, indicating that these

two proteins may transiently interact during ETI [8]. Alternative-

ly, our mass spectrometry analysis may have only identified the

most abundant RIN4 associated proteins. In contrast to RIN4,

which is easily detected by western blot, RPM1 and NDR1 are

expressed at very low levels, making them difficult to identify by

mass spectrometry.

A MATH domain protein, two Jacalin domain proteins, ERD4,

a remorin, and the PM H+-ATPases AHA1 and/or AHA2 were

identified by mass spectrometry (Tables 1 and S1). The MATH

domain is broadly represented in eukaryotes [29]. Proteins

containing MATH domains, primarily the well-characterized

TNF Receptor Associated Factor family, are involved in human disease

resistance signaling through their regulation of inflammation and

apoptosis responses [30]. MATH domains are thought to act as

protein adapters, transferring signals to intracellular signaling

pathways. Proteins containing MATH domains are prevalent

throughout the plant kingdom, but have not been characterized or

implicated in plant disease resistance. Jacalins are lectins, which

have been shown to be induced in response to the hormone methyl

jasmonate [31]. ERD4 (Early Responsive to Dehydration 4) was

originally identified because it is rapidly induced during drought

stress [32]. Microarray analysis has revealed that ERD4 is also

induced in response to multiple biotic and abiotic stresses,

although its function remains elusive (unpublished data). Remorins

are plasma membrane associated proteins of unknown function

with C-terminal coiled-coiled domains. Multiple remorins possess

an N-terminal domain with similarity to viral movement proteins

[33]. All of these proteins are predicted to be membrane-localized,

which is where RIN4 resides [8].

We also identified the PM H+-ATPase (AHA), the proton pump

responsible for energization of the plasma membrane. We were

unable to distinguish between the highly homologous AHA1 and

AHA2 proteins by mass spectrometry in two out of three biological

replications. We were able to identify AHA1 specific peptides in

the first MS run (Table S2). There are 11 AHA genes in Arabidopsis,

which pump H+ from the cytosol to the apoplast in an ATP-

dependent manner. AHA1, AHA2, and AHA5 are the major

transcripts found in guard cells [34]. AHA1 and AHA2 are

predicted to have molecular masses of 104.2 and 104.4 kDa,

respectively, and share 94% amino acid identity. In light of recent

data implicating AHA1 in stomatal regulation and the role of

stomatal closure in the innate immune response, we decided to

analyze the association between RIN4 and AHA1/AHA2 in

greater detail [15,35].

The PM H+-ATPase Interacts with RIN4 by Yeast Two-
Hybrid and In Planta

In order to validate the RIN4 AHA1/AHA2 association

detected by mass spectrometry, we subjected them to BiFC and

yeast two-hybrid analyses. AHA1 and AHA2, which are negatively

regulated by their C termini, possess multiple transmembrane

domains (reviewed in [36]). Therefore, we employed the

hydrophilic C-terminal regulatory domain of AHA1 and AHA2

in our yeast two-hybrid analyses. As shown in Figure 1A, we

detected an interaction between RIN4 and the C termini of both

AHA1837–950 and AHA2837–949, when compared with the negative

control T-antigen/Lamin-C using the Matchmaker system. We

were unable to detect any interaction between RPS2, AHA1837–

950, or AHA2837–949 by yeast two-hybrid (unpublished data). We

verified that RIN4, AHA1837–950, and AHA2837–949 are expressed

in yeast and do not autonomously activate His auxotrophy

(Figures 1A and S2). We also tested beta-galactosidase activity, but

could only detect a faint blue color (unpublished data). These

results indicate that RIN4 can weakly interact with the C terminus

of AHA1 and AHA2 by yeast two-hybrid.

To provide additional evidence for the AHA and RIN4

interaction, we investigated the association between AHA1,

AHA2, and RIN4 in planta using a BiFC approach to directly

visualize protein interactions in living cells. A specific interaction

between either AHA1 or AHA2 and RIN4 was detected in

Nicotiana benthamiana leaves (Figure 1B, a, b). The yellow fluorescent

protein (YFP) fluorescence was clearly localized to the plasma

membrane, where RIN4, AHA1, and AHA2 have been previously

shown to be located. The background fluorescence of chloroplasts

in the green channel is due to the excitation at 488 nm.

Meanwhile, we were unable to detect any YFP fluorescence

between AHA1 or AHA2 and RPS2 (Figure 1B, d, e). As a

negative control we co-expressed each protein with the auxin

influx carrier AUX1 (At2g38120), an integral plasma membrane

protein. None of the proteins were able to induce YFP

fluorescence in the presence of the negative control, indicating a

Table 1. Members of the RIN4 protein complex identified by mass spectrometry.

Protein Gene Identifier Accession Number (IPI) rps2 RPS2:HA (1) rps2 RPS2:HA (2) rps2 RPS2:HA (3)

RIN4 At3g25070 IPI00517440 7 9 8

RPS2 At4g26090 IPI00547830 0 3 2

AHA1 or AHA2 At2g18960 At4g30190 IPI00526113 13 8 4

ERD4 At1g30360 IPI00526219 5 4 2

Remorin At3g61260 IPI00539947 2 3 2

MATH domain At3g28220 IPI00528031 2 6 12

Jacalin domain At1g52000 IPI00531879 2 2 2

Jacalin domain At3g16420 IPI00543838 2 6 6

Counts are the sum of three biological replications (except RPS2, identified in only two replications). Protein identification required p,0.05 (MOWSE algorithm),
minimum two peptides. We were unable to differentiate between AHA1 and AHA2 by mass spectrometry during runs 2 and 3, two PM H+-ATPases. The number of
unique peptides identified for each protein is listed. None of these proteins were identified in the negative control (rps2-101c/rin4 knockout line).
doi:10.1371/journal.pbio.1000139.t001
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Figure 1. RIN4 and AHA interact in planta and in yeast. (A) RIN4 interacts with the C terminus of both AHA1 and AHA2 using the Matchmaker
yeast two-hybrid system (Clontech). BD, binding domain vector (pGBKT7); AD, activation domain vector (pGADT7); SD-3, synthetic dextrose media
lacking leucine, tryptophan, and histidine; YPDA, yeast potato dextrose agar. AHA1 and AHA2 were cloned into the AD vector. (B) AHA1 and AHA2
associate with RIN4 in vivo. We were able to detect a specific interaction between AHA1 and AHA2 with RIN4 by BiFC across three replications. The
experiments to detect BiFC fluorescence with AHA1 and AHA2 were conducted independently. N. benthamiana leaves co-expressing either AHA1 or
AHA2 and RIN4 results in detectable GFP fluorescence on the membrane (upper panel, a–b). No interaction with RPS2 (lower panel, d–e) or AUX1 (c, f)
could be detected. YFP fluorescence was excited at 488 and imaged at 518–540 nm by confocal microscopy, except for b and e (used excitation 512
and emission 525–540 nm). Chlorophyll emission was detected at 618 nm.
doi:10.1371/journal.pbio.1000139.g001
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specific interaction between AHA1/AHA2 and RIN4 in planta. In

order to ensure that the proteins used as negative controls indeed

were expressed, expression of AUX1 was detected by western

blotting employing the His tag included in the construct

(unpublished data) and expression of RPS2 was tested by

observation of cell death 48 h after infiltration (unpublished data).

RIN4 Overexpression and Knockout Lines Exhibit
Differential H+-ATPase Activities

RIN4 can interact with the C-terminal regulatory domains of

AHA1 and AHA2. Therefore, we investigated the hypothesis that

RIN4 can regulate H+-ATPase activity. Because it is not possible

to measure the biochemical activity of single PM H+-ATPase

isoforms in planta, we analyzed PM H+-ATPase activity as a

whole, even though RIN4 may only affect a subset of ATPases.

Plasma membrane vesicles were purified from Col 0, dexameth-

asone (Dex) inducible RIN4 overexpression [7], rpm1/rps2, and

rpm1/rps2/rin4 leaf tissue by aqueous two-phase partitioning. We

have used the rpm1/rps2/rin4 triple mutant for experiments to

avoid the weak activation of RPM1 that occurs in the absence of

RIN4 [37]. PM H+-ATPase activity was subsequently measured on

inside-out plasma membrane vesicles as described by Palmgren

and colleagues [38]. In this assay, the PM H+-ATPase hydrolyzes

ATP and pumps H+ into vesicles, which creates a pH gradient

across the membrane. The pumping activity was measured by

quenching of the DpH probe acridine orange at an absorbance of

495 nm. H+ transport measured from plasma membrane vesicles

purified from wild-type Col 0 leaves demonstrated that these

vesicles were both transport competent and highly enriched for

plasma membrane (Figure S3). In rpm1/rps2/rin4 leaves, H+-

ATPase activity was 30% lower than Col 0 (p,0.001, Figure 2A

and 2C). In RIN4 overexpression lines, H+-ATPase activity was

65% higher than Col 0 (Figure 2B and 2D). We also noticed that

the rpm1/rps2 double mutant exhibited slightly higher H+-ATPase

activity than Col 0 (7%–13%) across independent plasma

membrane isolations (p,0.05, Figure 2A and 2C). Because both

RPS2 and RPM1 interact with RIN4, this line may possess more

RIN4 protein that can interact with the H+-ATPase, thus

increasing its activity. RIN4 overexpression was induced by

spraying the Dex:RIN4 line with 20 mM Dex and harvesting tissue

48 h later (Figure 2E). We also found that Dex treatment itself

slightly inhibited the H+-ATPase enzymatic activity in Col 0. This

is not surprising, because previous studies have revealed that Dex

treatment alone can lead to significant changes in gene expression

[39]. Nevertheless, when comparing to Col 0 and Dex:RIN4 lines

after treating with Dex, it is clear that RIN4 overexpression leads

to enhanced PM H+-ATPase activity. These results are consistent

with the hypothesis that RIN4 can act to regulate H+-ATPase

activity at the plasma membrane. On the basis of these results,

RIN4 acts as a positive regulator of AHA1/AHA2, as RIN4

overexpression lines exhibit enhanced AHA activity and the rin4

knockout exhibits decreased AHA activity.

To test the in vitro effect of RIN4 on H+ pumping, recombinant

RIN4 protein was purified from E. coli and added directly to H+

transport assays. H+ transport activity in vesicles isolated from the

rpm1/rps2/rin4 knockout was increased in the presence of 3 mg of

RIN4 (Figure 3). No effect on H+ transport was observed when

recombinant RIN4 protein was added to vesicles isolated from

wild-type Col 0 plants (Figure 3).

Constitutively Active PM H+-ATPase Mutants Exhibit
Enhanced Sensitivity to Pst Spray Inoculation

In order to determine if altering the activity of AHA1 or AHA2

could lead to changes in PTI or ETI, we first analyzed aha1

(salk_118350) and aha2 (salk_022010) knockout lines. We were

unable to detect any obvious morphological or altered disease

phenotypes in either knockout line (unpublished data). We were

unable to generate an aha1/aha2 double mutant by crossing

salk_118350 and salk_022010, a result that has been reported

previously [40]. These results suggest that knocking out both

AHA1 and AHA2 is a lethal combination, indicating that that

AHA1 and AHA2 may be functionally redundant in Arabidopsis.

Therefore, we analyzed ost2-1D and ost2-2D, which possess point

mutations of P68S and L169F/G867S in AHA1, respectively, and act

as dominant activation mutations [35]. The ost2-1D mutant

background is in the Landsberg erecta (Ler) ecotype and the ost2-

2D is in the Col 0 ecotype.

The ost2-1D and ost2-2D mutants were originally identified based

on their open stomata phenotype [35]. Because stomata can serve as

ports of entry for microbial pathogens, we hypothesized that these

mutants may facilitate enhanced bacterial entry inside leaves. We

were unable to detect a difference between Col 0, Ler, and ost2-1D

or ost2-2D after syringe infiltration with virulent Pst DC3000 or

avirulent Pst DC3000 expressing the effector AvrRpt2, which

induces ETI (Figure 4A and 4B). Col 0 and Ler exhibited clear

bacterial speck symptoms by 4–5 d after spray inoculation.

However, the leaves of ost2-2D lines were completely collapsed by

4 d after spray inoculation. Therefore, all growth curves were

performed at 3 d post-inoculation, when disease symptoms were

clearly visible on ost2-1D and ost2-2D (Figure 4D). When we spray-

inoculated with Pst DC3000 or Pst DC3000 (AvrRpt2), the bacteria

were able to grow 5- to 10-fold more in the ost2-1D and ost2-2D

mutant lines compared to Ler and Col 0 and displayed enhanced

disease symptoms (Figure 4A, 4B, and 4D). These results show that

AHA1 activation can facilitate Pst entry into the plant leaf interior.

Our genetic analysis suggests that AHA1 and AHA2 are

functionally redundant. Therefore, we hypothesized that AHA2

overexpression lines would also enable enhanced bacterial entry

into the leaf interior. AHA2 regulation has been well-studied in

vitro, and the C terminus acts as a negative regulator of the PM H+-

ATPase [36,41,42]. Removing the C terminus induces strong auto-

activation in vitro and in planta [41,43]. We generated an AHA2

overexpression line in Col 0 by transforming a truncated version of

AHA2 (amino acids 1–837) without its C-terminal inhibitory domain

under the control of the cauliflower mosaic virus 35S promoter.

Because of the small leaf size of the 35S:AHA21–837 line, we were

unable to syringe inoculate or harvest large quantities of leaf tissue

necessary for PM H+-ATPase enzymatic analysis. The resulting

transgenic plants were dwarf with pronounced leaf chlorosis,

decreased germination rates, and possessed enhanced AHA2

expression (Figure S4). Pst DC3000 was able to grow 20-fold more

in this line compared to Col 0 after spray inoculation (Figure 4C).

However, the 35S:AHA21–837 line did not have a constitutively open

stomata phenotype like ost2-1D and ost2-2D mutants (unpublished

data). The pleotropic phenotypes generated by overexpressing

AHA21–837 in Col 0 are not surprising because strong constitutive

activation of plasma membrane H+-ATPase(s) can result in a

nonspecific expression in different cell types, profound changes in

plasma membrane potential, and will affect multiple biological

processes [43]. For these reasons, we did not investigate the

35S:AHA21–837 line further and concentrated our analyses on the

AHA1 activation mutants.

The ost2-1D and ost2-2D mutants were previously reported as

lesion-mimic mutants and displayed salicylic acid-induced necrosis

on leaflets [35]. Under standard growth conditions for pathogen

inoculation, we did not observe this phenotype on any of the lines

exhibiting enhanced PM H+-ATPase activity (Figure 4D). How-

ever, we were able to visualize leaflet necrosis on both lines when

RIN4 Regulates Stomata during Infection
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they were grown under conditions to promote flowering

(140 mmol/sec/m2, 16-h days, 23uC). The phenotypes of lesion-

mimic mutants can be variable and sensitive to variations in

growth conditions [44]. Lesion-mimic mutants are often associated

with mutations in ion channels [44,45]. As the AHA family is an

important regulator of multiple cellular processes, spatial and

temporal regulation of PM H+-ATPases inside mesophyll cells may

also be an important component of plant immune signaling.

In order to test the hypothesis that enhanced bacterial growth

on ost2 mutant leaves is due to their increased ability to gain entry

into the leaf interior via open stomata, we inoculated wild-type

Arabidopsis and ost2 mutant lines with the nonmotile Pst flagellin

mutant flaA [46]. The flaA mutant grew to similar levels as wild-

type Pst when syringe infiltrated in Col 0 leaves (Figure 5A). We

were unable to detect enhanced growth of the flaA mutant after

spray inoculation onto ost2-1D and ost2-2D, indicating that these

mutant plants promote bacterial colonization of the leaf by

allowing bacteria to gain entry by swimming through their

stomatal apertures (Figure 5B). Interestingly, we noticed that

growth of the flaA mutant was decreased in ost2 mutants after spray

inoculation, but not syringe infiltration (Figure 5B). This may be

due to an inability of the flaA mutant to swim away from

Figure 2. Plasma membrane H+-ATPase enzymatic activity is altered in RIN4 overexpression and knockout lines. Plant leaf plasma
membranes were purified by an aqueous polymer two-phase system. The H+-pumping activity assay was conducted on inside-out plasma membrane
vesicles as described in the Materials and Methods. In this assay, the plasma membrane H+-ATPase hydrolyzes ATP and pumps H+ into vesicles, which
creates the pH gradient across the membrane. The pumping activity was measured by the pH probe acridine orange quenching at an absorbance of
495 nm. (A) and (C) H+-pumping activity decreased in the RIN4 mutant line rpm1/rps2/rin4, but not in rpm1/rps2 plants. (B) and (D) RIN4
overexpression results in an increase in H+-pumping activity in comparison to Col 0. (C) and (D) The initial slope of acridine orange absorbance
quenching was graphed from (A) and (B) respectively. H+-pumping activity is reported as DA495nm/mg protein/min. Dexamethasone (Dex) inducible
RIN4 lines and Col 0 were sprayed with water and 0.025% silwett or 20 mM Dex in 0.025% silwett. Leaf tissue was harvested after 48 h, and plasma
membranes were immediately purified. (E) RIN4 immunoblot showing RIN4 expression levels in Col 0 (1), Dex:RIN4 (2), and rpm1/rps2/rin4 mutant
lines (3) 48 h after Dex treatment. Each experiment was repeated two times with independent plasma membrane isolations. Statistical differences
were detected by Fisher’s LSD [74] alpha = 0.05 for (C) and a two-tailed t-test for (D).
doi:10.1371/journal.pbio.1000139.g002
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unfavorable microenvironments (such as low pH) near stomatal

openings with enhanced PM H+-ATPase activity.

The Stomata of rin4 Mutant Plants Cannot Be Re-Opened
by Virulent Pst DC3000

Lines exhibiting increased AHA1 activity are more susceptible

to bacterial inoculation due to their open stomata phenotype

(Figures 4 and 5). Previously, Melotto and colleagues showed that

upon perception of PAMPs, Col 0 stomata will close within 1 h

[15]. Virulent Pst can re-open stomata after 3 h through the

production of coronatine, facilitating pathogen entry. Because

RIN4 can interact with the C-terminal regulatory domain of

AHA1 and AHA2 (Figure 1), we investigated the stomatal

response in the rin4 knockout line after pathogen inoculation.

Leaf epidermal peels from Col 0, rpm1/rps2, and rpm1/rps2/rin4

were floated on 16108 colony-forming unit (CFU)/ml Pst DC3000

and their stomatal apertures were measured in response to

pathogen inoculation. Stomatal apertures from all genotypes

closed after 1 h (Figure 6A). Importantly, we observed that Pst

DC3000 could not re-open the stomata in rpm1/rps2/rin4 after 3h

(Figure 6B). The stomata of rpm1/rps2 lines were open after 3 h,

indicating that this phenotype is solely due to the lack of RIN4

(Figure 6B). We also tested ndr1-1 mutant plants for a defect in

stomatal response to PAMPs, but ndr1-1 lines were still able to re-

open their stomata 3 h after exposure to Pst DC3000 (unpublished

data), indicating that NDR1 is not required for the RIN4-mediated

stomatal phenotype. These observations are consistent with RIN4

being a negative regulator of plant innate immunity. These results

also support the hypothesis that RIN4 and AHA1/AHA2 work

together to regulate stomatal apertures in response to PTI.

Previously, the rpm1/rps2/rin4 triple mutant was shown to be

more resistant than rpm1/rps2 after spray inoculation with Pst

DC3000 [7]. In addition, rin4 knockout lines exhibit enhanced

callose deposition in response to PTI, whereas RIN4 overexpres-

sion lines display the opposite phenotype [7]. Therefore, RIN4

may play a role in PTI signaling in both guard cells and

mesophyll cells. In order to test this hypothesis, we inoculated

rpm1/rps2 and rpm1/rps2/rin4 plants grown under the same

conditions by both spray inoculation and syringe infiltration.

Spray inoculation always resulted in a significant decrease of 4-

to 9-fold in bacterial growth on the rpm1/rps2/rin4 mutant when

compared to rpm1/rps2 (Figure 6C). We were also able to detect

a slight decrease (2- to 4-fold) in bacterial growth on the rpm1/

rps2/rin4 mutant after syringe infiltration. These results indicate

that RIN4 contributes significantly to PTI signaling in guard cells

and has a subtle phenotype with respect to PTI in mesophyll

cells. Because rin4 knockout lines do not re-open their stomata

after inoculation with Pst, this may be the reason why lines

lacking RIN4 exhibit increased resistance to virulent bacteria

after spray inoculation.

RIN4 Is Expressed in Both Guard Cells and Mesophyll Cells
Our observation that virulent Pst cannot re-open stomata in rin4

knockout lines led us to investigate what cell types express RIN4.

We investigated RIN4’s expression pattern in intact leaves and

guard cells. Guard cell protoplasts were isolated from Col 0,

visually inspected for purity, and analyzed for the presence of

RIN4 (Figure 7A). We used the expression of phosphoenolpyruvate

carboxylase 2 (ATPPC2, At2g42600), which has low-level expres-

sion in guard cells and high-level expression in mesophyll cells, as a

control to verify guard cell protoplast purity [47]. Each batch of

purified guard cell protoplasts was divided in two for extraction of

RNA and protein. Our reverse transcriptase (RT)-PCR analysis

showed that RIN4 was expressed in both Col 0 guard cells as well

as intact leaves (Figure 7A). Guard cells make up less than 2% of

the leaf epidermal cells, which highlights the expression of RIN4

within guard cells. Next, we performed immunoblot analysis on

leaf and guard cell protoplast protein extracts (30 mg) with the anti-

RIN4 antibody. RIN4 protein was detected in Col 0 guard cells as

well as in the intact leaf (Figure 7B). Given the abundance of

mesophyll cells in the leaf sample, this result indicates that RIN4 is

strongly expressed in guard cells.

Figure 3. RIN4 positively regulates plasma membrane H+-
ATPase enzymatic activity in vitro. Purified recombinant RIN4
protein (3 mg) or elution buffer (EB) were added in the assay medium
and pre-incubated at 25uC for 10 min. The same activity assay is
performed as in Figure 2. (A) RIN4 recombinant protein enhanced H+-
pumping activity in the rpm1/rps2/rin4 mutant in vitro, but not in wild-
type Col 0. The assays with EB served as the control. (B) The initial slope
of acridine orange absorbance quenching was graphed from (A). H+-
pumping activity is reported as DA495nm/mg protein/min. (C) An SDS-
PAGE gel stained with coomassie blue demonstrating the purity of the
recombinant RIN4 protein. Each experiment was repeated two times
with independent plasma membrane isolations. Results are shown as
the mean (n = 3), including standard deviation from plasma membrane
vesicles isolated at one time point. Statistical differences were detected
with a two-tailed t-test.
doi:10.1371/journal.pbio.1000139.g003
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AHA1 expression in guard cells was previously demonstrated

[35]. On the basis of our interaction studies we therefore tested if

AHA2 is also expressed in guard cells. Transgenic plants expressing

an AHA2 promoter:GUS construct clearly demonstrated AHA2

expression in guard cells (Figure S4C) supporting the hypothesis

that both AHA1 and AHA2 interact with RIN4 and that this

interaction is physiologically relevant.

Given the importance of guard cells in regulating bacterial

invasion, we investigated if additional immune signaling compo-

nents were present in guard cells. Like Melotto and colleagues

[15], we were able to detect the flagellin PAMP receptor FLS2

(unpublished data). We detected expression of the EF-Tu PAMP

receptor EFR and the chitin PAMP receptor CERK1 in Col 0

guard cell protoplasts by RT-PCR (Figure 7C). We were also able

to detect the expression of EDS1, PAD4, and NDR1, which are

involved in the manifestation of ETI (Figure 7C). By mining

publicly available microarray data from Yang and colleagues [48],

we analyzed the expression of the following genes in both guard

cell and mesophyll cell protoplasts: FLS2, EFR, CERK1, EDS1,

PAD4, NDR1, RPS2, RPM1, and RIN4. With the exception of

CERK1, all genes were expressed at a detectable level in both

guard cells and mesophyll cells (unpublished data).

The Stomata of ost2-1D and ost2-2D Do Not Respond to
PTI-Mediated Stomatal Closure

The stomata of ost2 mutants are ABA insensitive, but do

respond to other stimuli such as CO2 and blue light, indicating

that individual PM H+-ATPases may exhibit defined biological

roles [35]. Therefore, we investigated the ability of ost2 mutant

lines to respond to PTI-mediated stomatal closure. We floated

epidermal peels of Ler, Col 0, and ost2 mutant lines on 16108

CFU/ml Pst DC3000 and measured their stomatal apertures in

response to pathogen inoculation. Pst could not induce stomatal

closure in ost2-1D or ost2-2D, while 80% of the stomata from Col 0

and Ler were closed after 1 h (Figure 8A, 8B). Epidermal peels

from ost2 mutants were also incubated with the flg22 peptide of

flagellin and lipopolysaccharide (LPS), which are recognized as

bacterial PAMPs. We clearly observed that incubation with 10

nM/ml flg22 or 100 mM LPS can induce stomatal closure in either

Ler or Col 0 plants, but not in ost2-1D or ost2-2D (Figure 8C),

suggesting that AHA1 inactivation contributes to stomatal closure

during PTI signaling.

PTI induces an oxidative burst within minutes after pathogen

perception, and treatment with reactive oxygen species, such as

H2O2 and nitric oxide (NO) results in stomatal closure [49]. We

Figure 4. Constitutively active AHA1 lines display enhanced susceptibility to spray but not syringe inoculation with P. syringae pv.
tomato strain DC3000. (A) 4-wk-old Arabidopsis plants were inoculated by syringe infiltration or spray inoculation with Pst DC3000 and subjected to
growth curve analysis 3 d post-inoculation. (B) Arabidopsis plants were inoculated by syringe infiltration or spray inoculation with Pst DC3000 (AvrRpt2)
and subjected to growth curve analysis 3 d post-inoculation. (C) The 35S:AHA2(1–837) overexpression line displays enhanced susceptibility to spray
inoculation with Pst DC3000. (D) Disease symptoms in ost2-2D, ost2-1D, Col 0, and Landsberg (Ler) 3 d after spray inoculation with Pst DC3000 (bottom
panel). Experimental control plants were sprayed with water (top panel). All syringe inoculations were performed at a concentration of 0.56105 CFU/ml;
spray inoculations were performed at a concentration of 16109 CFU/ml. Results are shown as the mean (n = 6), including standard deviation.
doi:10.1371/journal.pbio.1000139.g004
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were interested in determining if stomata from plants with

enhanced AHA1 activity would respond to the presence of

reactive oxygen species. In Figure S5, we treated plants with

0.2 mM H2O2 and 100 mM sodium nitroprusside (SNP, an NO

donor). Neither H2O2 nor SNP could induce closure in ost2-1D

and ost2-2D, but could rapidly induce stomatal closure in wild-type

Arabidopsis. These results demonstrate that the stomata of ost2

mutants, which exhibit enhanced AHA1 activity, do not close in

response to PTI, therefore enabling virulent bacteria to gain entry

into the plant apoplast. Melotto and colleagues also demonstrated

that PAMP-induced stomatal closure required the OST1 protein

kinase, a key component of the ABA signaling pathway [15].

Discussion

Recognition of pathogens by the host innate immune system is a

critical component controlling survival and fitness of both animals

and plants. We investigated the function of RIN4, an Arabidopsis

protein that acts as a negative regulator of both PTI and ETI

[7,8,11,13]. Here, we have identified six novel RIN4 associated

proteins. We have investigated the association between RIN4 and

PM H+-ATPases AHA1 and AHA2 in detail. These data are

consistent with the model of RIN4 acting in concert with the PM

H+-ATPases AHA1 and AHA2 to regulate stomatal apertures in

response to pathogen attack in resistant genotypes (Figure 9).

Stomata are surrounded by a pair of two guard cells, whose

turgor controls opening and closure of the aperture. Changes in the

turgor of guard cells are strongly influenced by the activity of PM

H+-ATPase. Activation of PM H+-ATPase can lead to hyperpolar-

ization of the plasma membrane and subsequent induction of

inward K+ channels resulting in an increase in turgor due to

concomitant entry of water and stomatal opening. In contrast,

inhibiting the PM H+-ATPase and anion channel activation initiate

plasma membrane depolarization, resulting in the activation of

Figure 5. Constitutively active AHA1 lines do not exhibit
enhanced susceptibility to nonmotile P. syringae pv. tomato.
(A) Col 0 plants were inoculated by syringe infiltration with 0.56105

CFU/ml Pst DC3000 and the nonmotile flagellin mutant Pst DC3000
flaA2. Bacterial growth was measured 3 d post-inoculation. (B)
Constitutively active AHA1 mutants and corresponding wild-type
Arabidopsis ecotypes were inoculated by syringe infiltration and spray
inoculation with Pst DC3000 flaA2 and subjected to growth curve
analysis 3 d post-inoculation. All syringe inoculations were performed
at a concentration of 0.56105 CFU/ml; spray inoculations were
performed at a concentration of 16109 CFU/ml. Results are shown as
the mean (n = 6), including standard deviation.
doi:10.1371/journal.pbio.1000139.g005

Figure 6. rin4 knockout lines do not re-open their stomata after
exposure to virulent Pst DC3000. Pst DC3000 induces stomatal
closure at 1 h (A) and re-opening after 3 h (B) on Col 0 but not rin4
knockout lines. (C) The rpm1/rps2/rin4 mutant displays enhanced
resistance to spray inoculation with Pst DC3000. 4-wk-old rpm1/rps2
and rpm1/rps2/rin4 plants were syringe infiltrated or spray inoculated
with Pst DC3000 and leaves were subjected to growth curve analyses
4 d post-inoculation. Bacterial growth curve results are shown as the
mean (n = 6), including standard deviation. These experiments are
representative of at least three independent replicates. In this and all
other figures, results are shown as the mean (n = 50–80) stomata 6SEM
and statistical differences were detected with a two-tailed t-test.
doi:10.1371/journal.pbio.1000139.g006
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outward rectifying K+ channels [50,51]. These ion effluxes result in

a loss of guard cell turgor and stomatal closure. A number of

secondary messengers are important for initiating membrane

depolarization, including reactive oxygen species and Ca2+.

We have demonstrated that the RIN4 protein acts in concert

with PM H+-ATPases to regulate stomatal apertures during PTI.

Importantly, the rin4 knockout line does not re-open its stomata in

response to virulent Pst (Figure 6). This result solidifies the

importance of RIN4 in regulating stomatal apertures in response

to pathogen attack. Previously, RIN4 was found to be a negative

regulator of both PTI and ETI [7,8,11,13]. Our results were

consistent with these findings and suggest that RIN4’s association

with AHA1 and AHA2 is an important component of RIN4

function. Autoactive AHA1 mutants display increased susceptibility

to virulent Pst, because of the bacteria’s enhanced ability to gain

access to the plant interior via open stomata (Figures 4 and 5).

RIN4 overexpression lines exhibit enhanced disease susceptibility

and increased PM H+-ATPase activity. Conversely, rin4 knockout

lines exhibit decreased disease susceptibility and lower PM H+-

ATPase activity (Figures 2 and 6C). These results can now explain

how RIN4 acts to regulate plant innate immunity at the level of

pathogen invasion.

Despite the importance of RIN4 in plant innate immunity, the

pattern of RIN4 expression remained unknown. Using a

combination of RT-PCR, western blotting, and microarray

analyses we were able to demonstrate that RIN4 is expressed in

guard cells (Figure 7). These results highlight the importance of

RIN4 in PTI-induced stomatal closure. We were also able to detect

the expression of multiple PAMP receptors, R genes, and innate

immune signaling components in guard cells at the RNA level,

emphasizing the importance of this cell type in the innate immune

response (Figure 7).

Inhibition of the PM H+-ATPase is one of the first steps

required to induce stomatal closure. These data are consistent with

a model in which RIN4 acts in concert with AHA1 and/or AHA2

to regulate stomatal apertures in response to pathogen attack

during PTI (Figure 9). Perception of the flagellin flg22 peptide

during PTI was found to inhibit both inward and outward

rectifying K+ channels [52]. Therefore, flagellin perception can

not only induce stomatal closure, but can inhibit stomatal opening

[15,52]. Because stomata serve as points of entry for multiple

bacterial, fungal, and oomycete pathogens, it is not surprising that

several different classes of pathogens have evolved to manipulate

stomatal apertures during pathogenesis. For example, the polyke-

tide toxin coronatine, produced by several strains of P. syringae, can

induce stomatal opening after PTI-mediated closure [15].

Coronatine can reverse the inhibition of inward rectifying K+

channels, leading to stomatal opening [52]. Xanthomonas campestris

employs a small diffusible signal molecule, which can also induce

stomatal opening on compatible hosts [19]. The most well-

characterized example of stomatal manipulation by a pathogen is

the toxin fusicoccin, produced by the fungal pathogen F. amygdali,

the causal agent of almond and peach canker [24]. Fusicoccin is a

potent activator of the PM H+-ATPase and strongly induces

stomatal opening by binding to and stabilizing an activated H+-

ATPase/14-3-3 complex [25,27,53]. These studies highlight the

importance of stomatal regulation during plant innate immunity,

as components of the signaling pathways controlling stomatal

apertures can be regulated by the plant immune system as well as

by virulent pathogens.

What is the mechanism RIN4 uses to regulate PM H+-ATPase

activity? PM H+-ATPase regulation has been well studied over the

last 20 years (reviewed in [54]). Both crystallographic data and

homology modeling of the PM H+-ATPase indicate that it

possesses a similar structure to other P-type ATPases [55,56].

The PM H+-ATPase also possesses an extended C terminus [57],

which is lacking in other P-type ATPases [57] and is involved in

negative regulation of pump activity [58]. Activation of the PM

H+-ATPase can be achieved by phosphorylation of the penulti-

mate threonine residue. Phosphorylation of this residue leads to

subsequent binding of regulatory 14-3-3 proteins, which displace

the autoinhibitory C-terminal domain. This apparently induces

Figure 7. RIN4 is expressed in guard cells. Guard cell protoplasts (GCPs) were purified from Col 0 leaves and visually inspected for purity by light
microscopy. Half of the GCP sample was used for RNA extraction and half for total protein extraction. (A) RNA was isolated from entire Arabidopsis
leaves or GCPs and subjected to RT-PCR. RIN4 mRNA is highly expressed in guard cells. The expression of phosphoenolpyruvate carboxylase 2
(ATPPC2, At2g42600), which has low-level expression in guard cells and high-level expression in mesophyll cells served a control for guard cell
protoplast purity [47]. Actin (AtACT2) served as a loading control. (B) Anti-RIN4 immunoblots detected RIN4 protein expression in both Col 0 leaf
tissue and GCPs. Thirty mg of total protein extract was loaded per lane. (C) RNA samples from (A) were subjected to RT-PCR to detect the expression of
additional innate immune signaling components. EDS1, PAD4, RPS2, NDR1, EFR, and CERK1 transcript levels were detected in GCPs and leaf tissue after
a 28-cycle amplification. +, RT-PCR, 2, no-RT control.
doi:10.1371/journal.pbio.1000139.g007
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the formation of a dodecamer consisting of six H+-ATPase and six

14-3-3 molecules in the PMA2 H+-ATPase isoform from N.

plumbaginifolia [54,56]. Additional phosphorylated residues have

recently been identified that can contribute to both positive and

negative regulation of the PM H+-ATPase, highlighting the

complexity of this pump’s regulation [59–61].

Data presented in this manuscript are consistent with RIN4

being a positive regulator of the PM H+-ATPases AHA1 and

AHA2. Previous studies have demonstrated that RIN4 is

phosphorylated in planta [8,62]. It will be interesting to test if

the phosphorylation status of RIN4 plays a role in regulating PM

H+-ATPase activity. Future research investigating if RIN4 is

transcriptionally or posttranslationally modulated during the

guard cell response to PAMPs and Pst DC3000 may help elucidate

the mechanism employed by RIN4 to regulate the PM H+-

ATPase. In addition, RIN4 homologs can be detected in many

plants where substantial DNA sequences are available. In the

future, it will be important to determine the role of RIN4 as well as

RIN4-associated proteins across different species. For example,

stomatal closure in response to PTI occurs in multiple plants

[15,18]. Does the association of RIN4 with PM H+-ATPases act to

regulate stomatal apertures in other species?

It will also be important to elucidate how innate immune

complexes change in response to pathogen attack and if complex

constituents are the same between different cell types. It is

plausible that components of the innate immune complexes exist

in distinct pools within each cell, with each pool controlling

different aspects of PTI and ETI. There is evidence for RIN4

existing in different cellular pools within plant leaves based on data

obtained from co-immunoprecipitation experiments [8,11,13]. In

this study, we were able to elucidate members of the RIN4

complex in the absence of pathogen infection. An in-depth

investigation how the RIN4 complex assembles and changes

during PTI, ETI, and after pathogen-induced modification in

different cell types (e.g., guard cells and mesophyll cells) and plant

genotypes will greatly facilitate our understanding of innate

immune signaling.

Materials and Methods

Plant Materials
Arabidopsis plants, Columbia (Col 0), Landsberg erecta (Ler), and

the mutants derived from them as indicated in the figures were

sown in soil and stratified at 4uC for 2 d. In the text, the rps2, rpm1,

and rin4 mutants refer to rps2-101c, rpm1-3, and the rin4 T-DNA

knockout [8,9,63]. Dex:RIN4 lines were previously described, and

all figures refer to line 31 [7]. Plants were grown in controlled

environment chamber at 24uC with a 10-h light/14-h dark

photoperiod under a light intensity of 85 mE/m2/s. For all the

experiments, 4–5 wk old plants were used. 35S:AHA2(1–837)

transgenic lines were generated by following the standard floral

dip transformation procedure [64]. The AHA2 (1–837) fragment

was cloned into the BamH I/Xho I site of binary vector pMD-1

and transgenic plants were screened on 50 mg/ml kanamycin.

Two independent T3 lines were used for bacterial inoculation.

Bacterial Strains and Inoculations
Pst DC3000, Pst DC3000 (AvrRpt2), and the flagellin deficient

mutant Pst DC000 flaA2 were grown on NYG plates for 30 h,

then cultured at 28uC in NYG media for 48 h [46]. Pst DC3000

(AvrRpt2) expressed AvrRpt2 from the broad-host range vector

pDSK519 [65]. Antibiotics were used for plate selection at the

following concentrations: 25 mg/ml kanamycin, 100 mg/ml rifam-

picin, and 35 mg/ml chloramphenicol. For spray inoculation,

Arabidopsis leaves were sprayed until runoff with a Preval sprayer

containing 16109 CFU/ml bacteria in 10 mM MgCl2 with

0.025% silwett L-77. Inoculated plants were left uncovered for

30 min and then covered with a plastic dome for 2 d. For syringe

infiltration, bacteria were resuspended in 10 mM MgCl2 and

inoculated at a concentration of 0.56105 CFU/ml with a

needleless syringe. Leaves were surface sterilized for 30 s in 70%

ethanol, and bacterial populations were determined by growth

curve analysis as described by Kim and colleagues [7]. All

experiments were repeated at least three times, with a minimum of

three biological replicates per time point.

Stomatal Aperture Measurements
Stomatal aperture measurements were conducted according to a

published procedure [15]. Plants were induced to open stomata

under white light for 2 h. Epidermal peels were floated on a 16108

CFU/ml of Pst in water or purified PAMPs. For PAMP treatments,

Figure 8. AHA1 constitutively active mutant lines are insensi-
tive to PTI-mediated stomatal closure. Stomatal apertures were
measured in epidermal peels of wild-type Col 0 and Ler, as well as the
AHA1 mutants ost2-2D and ost2-1D after incubation with water or
16108 CFU/ml Pst DC3000 for 1 h (A) and 3 h (B). (C) Arabidopsis
epidermal peels were floated on MES buffer containing the flagellin
peptide Flg22 (5 mmol/l) and LPS 100 ng/ml). Stomatal apertures were
measured after 3h. MES served as a control.
doi:10.1371/journal.pbio.1000139.g008
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epidermal peels were floated on 5 mM flg22 peptide (synthesized by

GenScript) in MES buffer (10 mM KCl, 0.2 mM CaCl2, 10 mM

MES-KOH [pH 6.15]), 100 ng/ml LPS (Sigma) in MES buffer or

MES buffer alone as a negative control. Stomatal apertures were

analyzed by microscopy with a digital camera and measured with

SPOT4.1 software (Diagnostic Instruments) at 0-h, 1-h, and 3-h

timepoints. All experiments were repeated at least three times, with

a minimum of three biological replicates per time point.

Plasma Membrane H+-ATPase Activity Assays
Arabidopsis plants were grown as described above for 5 wk in soil

at a pH of 7.5. To determine the effect of overexpressing RIN4,

Dex:RIN4 and Col 0 leaves were sprayed with water and 0.025%

silwett or 20 mM Dex in 0.025% silwett. Leaf tissue was harvested

after 48 h. For all experiments, plasma membranes were

immediately purified after harvesting leaf tissue. Arabidopsis leaves

(30 g) were homogenized with a blender in 200 ml ice-cold buffer

containing 50 mM MOPS (pH 7.0), 0.33M sucrose, 5 mM

EDTA, 2 mM DTT, 1.5 mM ascorbate, 0.2% (w/v) insoluble

polyvinylpolypyrrolidone, 1 mM phenylmethylsulfonyl fluoride,

1 mg/ml leupeptin, and 1 mg/ml pepstain A. Plasma membranes

were purified from the microsomal fraction (10,000 g to 50,000 g

pellet) by partitioning at 4uC in an aqueous polymer two-phase

system as described previously [66]. The final plasma membrane

pellet was suspended in re-suspension buffer (5 mM potassium

phosphate buffer [pH 7.8], 0.33 M sucrose, 10% (v/v) glycerol,

50 mM KCl, 0.1 mM EDTA, 2 mM DTT, 1 mg/ml leupeptin,

and 1 mg/ml pepstain A). H+-pumping activity was detected by a

decrease of acridine orange absorbance at 495 nm [38]. The assay

buffer contained 20 mM MES-KOH (pH 7.0), 140 mM KCl,

3 mM ATPNa2, 30 mM acridine orange, 0.05% Brij 58, and

50 mg of plasma membrane protein in a total volume of 1 ml.

Membranes were pre-incubated at 25uC for 5 min in assay buffer.

The assay was initiated by the addition of 3 mM MgSO4. To

determine if purified RIN4 protein could alter H+-pumping

activity in vitro, 3 mg of purified recombinant RIN4 protein was

added to the assay medium and pre-incubated at 25uC for 10 min

before the addition of MgSO4. Recombinant RIN4 protein was

expressed in E. coli and purified by Ni+ affinity chromatography as

described previously [14].

The Bradford assay was used to calculate total plasma

membrane protein content [67]. Each experiment was repeated

two times with independent plasma membrane isolations.

Yeast Two-Hybrid
The yeast strain AH109, containing the HIS3 and lacZ reporter

genes, was used for yeast two-hybrid analyses (Matchmaker,

Clontech). The coding sequence of RIN4, AHA1(837–950), and

AHA2(837–949) fragments were obtained by PCR amplification and

sequenced. The RIN4 PCR product was cleaved and cloned into the

BamH I/Pst I site of the pGBKT7 vector (binding domain).

AHA1(837–950) and AHA2(837–949) PCR products were cloned into the

EcoR I/Xho I sites of pGADT7 vector (activation domain).

pGBKT7-RIN4, pGADT7-AHA1(837–950), pGADT7-AHA2(837–949),

the positive control pGAL4 and the negative control pGBKT7 vector

were all transformed into the yeast strain AH109 following the

manufacturer’s protocol. Protein expression was detected in

transformed strains by immunoblotting. Transformants were dilution

plated onto yeast potato dextrose agar (YPDA) and synthetic dextrose

lacking leucine/tryptophan/histidine (SD-3). Yeast growth was

examined as previously described [28].

Bimolecular Fluorescence Complementation
Constructs used for BiFC experiments. AHA1, AHA2,

RIN4, RPS2, and AUX1 were amplified by PCR. The PCR

products included no stop codons and a CACC overhang in the 59

Figure 9. Model of PAMP-induced stomatal closure. RIN4 acts in concert with AHA1 and/or AHA2 to regulate stomatal apertures in response to
pathogen attack during PTI. (A) Virulent pathogens are able to overcome PTI and induce stomata to re-open 3 h after pathogen perception.
Activation of the PM H+-ATPase can lead to hyperpolarization of the plasma membrane and subsequent induction of inward K+ channels. These
events lead to an increase in guard cell turgor and stomatal opening. (B) RIN4 is a negative regulator of plant innate immunity. In resistant genotypes,
pathogens are not able to overcome PTI and stomata remain closed after pathogen perception. Pathogen PAMPs are detected by pattern recognition
receptors (PRRs) and the induction of PTI induces stomatal closure. Posttranslational modification of RIN4 (elimination or possibly phosphorylation)
inhibits the association between RIN4 and AHA1/AHA2, resulting in inactivation of the PM H+-ATPase.
doi:10.1371/journal.pbio.1000139.g009
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end for directional cloning into the pENTR/D-TOPO vector.

The entry clones were sequenced and cloned into gateway

compatible BiFC vectors by LR reactions. RIN4 was made with

an N-terminal fusion resulting in cCFP-RIN4 (pMP2869) and

nYFP-RIN4 (pMP2870). RPS2, AHA1, AHA2, and AUX1 were

made with C-terminal fusions resulting in the following constructs:

RPS2-nYFP (pMP2872), AHA1-nYFP (pMP2317), AHA2-cCFP

(pMP2256), AHA2-nYFP (pMP2457), AUX1-cCFP (pMP2879).

Transient expression of BiFC constructs in N.

benthamiana. For introduction of constructs into N.

benthamiana leaves, Agrobacterium strain C58C1 was transformed

by electroporation and transformants were selected on YEP plates

containing 25 mg/ml gentamycin and 50 mg/ml spectinomycin.

Transient expression in tobacco epidermal cells was performed as

described by Sparkes et al. [68]. YFP fluorescence was monitored

24–48 h after infiltration.

Confocal microscopy. A Leica TCS SP2/MP confocal

laser-scanning microscope with a 2060.7 numerical aperture

water-immersion objective was used. YFP was excited at 488 nm

and fluorescent emissions were measured at 518–540 nm.

Chlorophyll emission was detected at 618 nm. For Figure 1B, b

the settings were as follows: 1060.7 numerical aperture water-

immersion objective, YFP was excited at 512 nm, and fluorescent

emissions were measured at 525 to 540 nm.

Western Blotting
SDS-PAGE and subsequent immunoblotting were performed

according to standard procedures [69]. RIN4 immunoblots were

performed with affinity purified rabbit polyclonal anti-RIN4 at a

concentration of 1:1,000. AHA immunoblots were performed with

rabbit polyclonal anti-AHA antisera at a concentration of 1:5,000.

The AHA antibody was raised against a C-terminal peptide of

AHA2 (amino acids 852–949) [41]. Secondary goat anti-rabbit

IgG-HRP conjugate (Biorad) was used at a concentration of

1:3,000 for detection via enhanced chemiluminescence (Pierce).

Protein Complex Purification
Protein complexes from nproRPS2:HA in rps2-101c and the rps2-

101c/rin4 negative control were purified three separate times for

identification by mass spectrometry. For protein complex

purifications, all steps were carried out on ice or at 4uC. 5 g of

leaf tissue were ground in liquid N2 and resuspended in 15 ml IP

buffer (50 mM HEPES, 50 mM NaCl, 10 mM EDTA, 0.2%

Triton X-100, pH 7.5). Debris was removed from the lysate by

centrifugation at 10,000g, 10 min. The supernatant was filtered

through a 0.45-mm low-protein binding filter (Millipore) and

incubated with 0.5 ml of affinity-purified RIN4 antisera coupled to

Protein A beads (GE Healthcare). RIN4 antiserum was affinity

purified according to standard protocols and 2 mg of antibody was

coupled per ml of Protein A with dimethylpimelimidate [69]. The

mixture was incubated end-over-end in batch format for 3 h then

poured into a 20-ml glass column. Immunocomplexes were

washed twice with 20 ml of wash buffer A (50 mM HEPES,

50 mM NaCl, 10 mM EDTA, 0.1% Triton X-100, pH 7.5), then

twice with wash buffer B (50 mM HEPES, 150 mM NaCl,

10 mM EDTA, 0.1% Triton X-100, pH 7.5). Immunocomplexes

were then washed with 5 ml of phosphate buffer (10 mM

Na2PO4, 50 mM NaCl [pH6.8]) and eluted in 361 ml of low

pH buffer (50 mM Glycine-Cl [pH2.5], 50 mM NaCl, 0.1%

Triton X-100). The eluted proteins were neutralized, concentrated

to a final volume of 30 ml with StrataClean resin (Stratagene), and

loaded onto a single lane on a 10% SDS-PAGE gel. Proteins were

run 5 mm into the separating gel and stained with colloidal

coomassie blue. The resulting gel blobs were excised from the

SDS-PAGE gel using a sterile blade.

Mass Spectrometry and Protein Identification
Mass spectrometry. Proteins were submitted to the

Genome Center Proteomics Core at the University of California,

Davis, for mass spectrometry (LC MS/MS)-based protein

identification. Proteins were reduced and alkylated according to

previously described procedures [70], and digested with

sequencing grade tryspin per manufacturer’s recommendations

(Promega). Protein identification was performed using an Eksigent

Nano LC 2-D system (Eksigent) coupled to an LTQ ion trap mass

spectrometer (Thermo-Fisher) through a New Objectives Picoview

Nano-spray source. Peptides were loaded onto a Agilent nano trap

(Zorbax 300SB-C18, Agilent Technologies) at a loading flow rate

of 5 ml/min. Peptides were then eluted from the trap and

separated by a nano-scale 75 mm615 cm New Objectives

picofrit column packed in house with Michrom Magic C18 AQ

packing material. Peptides were eluted using a 60-min gradient of

2%–80% buffer B (buffer A = 0.1% formic acid, buffer B = 95%

acetonitrile, 0.1% formic acid). The top ten ions in each survey

scan were subjected to automatic low energy CID.

Database searching. Tandem mass spectra were extracted

by BioWorks version 3.3. Charge state deconvolution and

deisotoping were not performed. All MS/MS samples were

analyzed using Mascot (Matrix Science, version 2.1.03) and X!

Tandem (www.thegpm.org; version 2006.04.01.2). X! Tandem

was set up to search a subset of the IPI_arabipodsis_20060916

database also assuming the digestion enzyme trypsin. Mascot was

set up to search the IPI_arabipodsis_20061202 database (unknown

version, 34,983 entries) assuming the digestion enzyme trypsin.

Mascot and X! Tandem were searched with a fragment ion mass

tolerance of 0.60 Da and a parent ion tolerance of 2.0 Da.

Iodoacetamide derivative of cysteine was specified in Mascot and

X! Tandem as a fixed modification. Oxidation of methionine was

specified in Mascot and X! Tandem as a variable modification.

Criteria for protein identification. Scaffold (version

Scaffold_2_01_02, Proteome Software Inc.) was used to validate

MS/MS-based peptide and protein identifications. Peptide

identifications were accepted if they could be established at

greater than 95.0% probability as specified by the Peptide Prophet

algorithm [71]. Protein identifications were accepted if they could

be established at greater than 95.0% probability and contained at

least two identified peptides. Protein probabilities were assigned by

the Protein Prophet algorithm [72]. Proteins that contained similar

peptides and could not be differentiated based on MS/MS analysis

alone were grouped to satisfy the principles of parsimony.

RT-PCR
Total RNA was extracted by a QIAGEN RNeasy Plant Mini kit

and subjected to Dnase I digestion (Invitrogen). The first strand

cDNA was synthesized by using 5 mg of total RNA with a cDNA

synthesis kit (Promega) in a 20-ml reaction, and the reaction

without reverse transcriptase served as a non-RT control. The

expression level of the following genes RIN4 (AT3G25070), EDS1

(AT3G48090), PAD4 (AT3G52430), NDR1 (AT3G20600), EFR

(AT5G20480), and CERK1 (AT3G21630) were normalized to the

expression of Actin2 (AT3G18780). RT-PCR was run for 28

cycles. The primers for all genes are listed in Table S3.

Guard Cell Protoplast Purification
Guard cell protoplasts were isolated enzymatically from the

lower leaf epidermis according to a previously described method

[73]. 100–150 rosette leaves were used. Purified guard cells were
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visually inspected for purity by light microscopy. Guard cells were

immediately used for RNA and protein extraction. Cellulose R-10

and Macerozyme R-10 were purchased from Yakult Honsha

Corporation. Nylon meshes were purchased from Spectrum

Laboratories, Inc.

GUS Reporter Gene Analysis
The AHA2:GUS construct contained a 2,000-bp AHA2

promoter fragment cloned into pCAMBIA 1303. AHA2 localiza-

tion in the roots of the plant lines are previously described [60].

Supporting Information

Figure S1 Purification of the RIN4 Complex. (A) Affinity-

purified RIN4 antibody was coupled to protein A and used to

capture associated proteins in batch format. After 3 h, crude

protein extract was loaded onto a glass column, contaminating

proteins were removed with a high salt wash (150 mM NaCl), and

the complex was eluted by low pH. (B) Anti-RIN4 immunoblot of

the complex purification detecting RIN4 in the protein input and

elution, but not in the column flowthrough (FT) or in the negative

control (rps2/rin4 mutant line). (C) Representative amino acid

coverage of RIN4. Peptides identified in one replication are

highlighted in yellow. Green indicates methionine oxidation and

pPro-cmC modifications that are frequently introduced during

sample processing for mass spectrometry.

Found at: doi:10.1371/journal.pbio.1000139.s001 (0.47 MB TIF)

Figure S2 Expression of RIN4, AHA1(837–950), and
AHA2(837–949) proteins in yeast. RIN4 expression was

detected by anti-RIN4 immunoblot, while AHA1/AHA2 expres-

sion was detected by anti-HA immunoblot.

Found at: doi:10.1371/journal.pbio.1000139.s002 (0.10 MB TIF)

Figure S3 Vesicles isolated from wild-type plants are
enriched for plasma membrane. Plasma membrane vesicles

were isolated by two-phase partitioning from the leaves of 4-wk-

old wild-type Col 0 plants. H+-pumping activity assays were

performed as described in the Materials and Methods. (A) When

added at the start of the reaction, 100 mM vanadate (a plasma

membrane H+-ATPase inhibitor) reduced pH formation 96%,

while 5 mg/ml gramicidin D (an ionophore) caused the established

pH gradient to completely collapse. (B) The H+-pumping activity

was activated by 3 mM fusicoccin (FC) in the reaction solution. (C)

When added after the pH formation reached steady state, 1 mM

NH4Cl (an uncoupler) dissipated the existing pH gradient.

Found at: doi:10.1371/journal.pbio.1000139.s003 (0.17 MB TIF)

Figure S4 Phenotypes of AHA2 overexpression lines. (A)

The 35S:AHA2(1–837) overexpression line has a dwarf phenotype

and displays leaflet chlorosis. Multiple independently transformed

lines exhibited this phenotype. Plants are 4 wk old and were grown

under the following conditions: light intensity 85 mMol/sec/m2,

10-h days, 24uC. (B) RT-PCR indicates that AHA2 is overex-

pressed. (C) AHA2 is expressed in guard cells. GUS staining of

transgenic plants demonstrating expression of native promoter

AHA2:GUS in Arabidopsis guard cells.

Found at: doi:10.1371/journal.pbio.1000139.s004 (0.82 MB TIF)

Figure S5 AHA1 constitutively active mutant lines are
insensitive to reactive oxygen species and nitric oxide-
mediated stomata closure. The epidermal peels of Col 0, Ler,

ost2-2D, and ost2-1D were floated on the 0, 0.2, 0.5 mM H2O2 (A),

and 100 mM sodium nitroprusside (SNP, an NO donor) (B) for

2 h, and the stomatal aperture was recorded.

Found at: doi:10.1371/journal.pbio.1000139.s005 (0.14 MB TIF)

Table S1 LC–MS/MS data for all biological replicates.
This is a summary of all the raw data from three positive and three

negative replicates. Protein identification required a minimum of

two peptides. These data were exported using Scaffold Viewer.

Percentage indicates protein ID probability and the number of

unique peptides identified per protein are in parentheses.

Found at: doi:10.1371/journal.pbio.1000139.s006 (0.08 MB XLS)

Table S2 Unique peptides identified from RIN4 associ-
ated proteins by LC-MS/MS across three biological
replicates. Amino acids flanking the sequenced peptides are

shown in parentheses. We were unable to differentiate between the

plasma membrane H+-ATPases AHA1 and AHA2 in replications

2 and 3. AHA1 specific peptides are underlined in replication 1.

Found at: doi:10.1371/journal.pbio.1000139.s007 (0.02 MB XLS)

Table S3 Primers for RT-PCR analysis.

Found at: doi:10.1371/journal.pbio.1000139.s008 (0.02 MB XLS)
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