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Abstract Citrate-containing wastewater is used as electron
donor for sulfate reduction in a biological treatment plant
for the removal of sulfate. The pathway of citrate conversion
coupled to sulfate reduction and the microorganisms
involved were investigated. Citrate was not a direct electron
donor for the sulfate-reducing bacteria. Instead, citrate was
fermented to mainly acetate and formate. These fermentation
products served as electron donors for the sulfate-reducing
bacteria. Sulfate reduction activities of the reactor biomass
with acetate and formate were sufficiently high to explain the
sulfate reduction rates that are required for the process. Two
citrate-fermenting bacteria were isolated. Strain R210 was
closest related to Trichococcus pasteurii (99.5% ribosomal
RNA (rRNA) gene sequence similarity). The closest relative
of strain S101 was Veillonella montepellierensis with an
rRNA gene sequence similarity of 96.7%. Both strains had a
complementary substrate range.
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Introduction

The biological sulfur cycle plays an important role in
nature. In addition, the biological sulfur cycle can be
applied in biotechnology to remove and recover sulfur from
wastewater and gas (Buisman et al. 1989; Janssen et al.
1995a, 2001; Lens et al. 1998; Muyzer and Stams 2008).
Chemolithotrophic sulfide-oxidizing bacteria oxidize sulfide
to sulfate, but under oxygen-limiting conditions, mainly
elemental sulfur is formed (Janssen et al. 1995a). This
property of sulfide-oxidizing bacteria is applied to convert
hydrogen sulfide in biogas or natural gas to elemental sulfur
(Janssen et al. 2001). Presently, about 100 of such full-scale
installations are in operation worldwide. Biological pro-
cesses can also be applied for the removal of sulfate from
wastewater (Buisman et al. 1989; Johnson 2000; Lens et al.
1998). The sulfate-containing stream is led into an anaerobic
bioreactor, in which, by the activity of dissimilatory sulfate-
reducing bacteria, hydrogen sulfide is formed. In a second
micro-aerobic bioreactor, sulfide-oxidizing bacteria then
oxidize sulfide to elemental sulfur. This biological sulfate
removal process is an attractive and economical feasible
alternative for the well-known lime process for flue gas
desulfurization, in which gypsum is formed (Hulshoff Pol
et al. 2001; Janssen et al. 2001). Presently, a full-scale
biological sulfate removal installation is in operation with a
capacity to produce 12 t of sulfur per day (www.paques.nl).
The biological process is operated at low temperature, and a
citrate-containing wastewater stream is used as electron
donor for biological sulfate reduction.
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Dissimilatory sulfate-reducing bacteria are able to use a
wide variety of organic compounds as electron donor for
sulfate reduction (Hansen 1994; Muyzer and Stams 2008;
Widdel and Hansen 1992). Hydrogen, formate, lactate,
malate, and ethanol are well known substrates for Desulfo-
vibrio, Desulfomicrobium, and Desulfotomaculum species.
In general, these bacteria oxidize organic compounds
incompletely to acetate. Short chain and long chain fatty
acids are substrates for different genera of sulfate-reducing
bacteria like Desulfobulbus, Desulfococcus, Desulfosarcina,
and Desulfonema. Acetate is only a good electron donor for
some specialized bacteria like Desulfobacter postgatei and
Desulfobacca acetoxidans (Dar et al. 2007; Oude Elferink
et al. 1994, 1999). Hydrogen-rich gas is being used as
electron donors for biological sulfate reduction at low
temperature at full scale (Van Houten et al. 2006; Weijma
et al. 2002), while at moderately thermophilic conditions
(65°C), methanol was found to be an excellent electron
donor for biological sulfate reduction as well (Weijma and
Stams 2001; Weijma et al. 2000).

In a recent study, methanogenesis and sulfate reduction
with citrate was studied (Gamez et al. 2008), but citrate is
not a known common substrate for sulfate-reducing bacteria.
In fact, citrate is rarely tested as growth substrate for newly
isolated species. Desulfovibrio oxamicus is able to grow
with citrate (Lopez-Cortés et al. 2006), while Desulfomi-
crobium apsheronum was tested but was not able to grow
with citrate (Rozanova et al. 1988). The aim of the present
study was to elucidate the pathway of citrate conversion
coupled to sulfate reduction in the above-mentioned full-
scale bioreactor and to identify the microorganisms in-
volved. We mainly focused our research on the conversion of
citrate and the microorganisms involved. The sulfate-
reducing community of the starting sludge had been
analyzed previously (Dar et al. 2007). This sludge contained
different types of sulfate-reducing bacteria, including
bacteria from the genera Desulfovibrio/Desulfomicrobium,
Desulfobulbus, and Desulfobacca.

Materials and methods
Reactor sludges

The samples originate from a biological sulfate reduction
installation at Yixing (People’s Republic of China). The
sulfate-reducing bioreactors were started up with sludge
from a sulfate-reducing bioreactor from a chemical plant
located at Emmen, The Netherlands. The installation is
operated at low temperature. The wastewater to be treated
is mixed with a citrate-containing waste stream and fed to
three anaerobic bioreactors, in which sulfate is reduced to
sulfide. The granular sludge bed reactors are equipped with
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internal settlers for biomass retention. They are operated at
a hydraulic retention time of approximately 6 h and an
influent flow rate of around 800 m®/h, depending on the
availability of the wastewater. The total reactor volume was
approximately 5,000 m>. There is no active sludge
management (e.g., sludge harvesting) as the slow growth
rate of anaerobic bacteria results in a small biomass
production. The biomass entered with the feed stream and
was washed-out with the effluent. Consequently, a reliable
sludge age cannot be determined. The effluent sulfide
concentration of the anaerobic bioreactors is maintained at
150 mg/l or higher. Methanogenesis did not occur. In the
overall process, the dissolved sulfide is converted into
elemental sulfur in an aerobic bioreactor with air as oxidation
agent. The elemental sulfur is removed from the liquid by
gravity settling. These two steps are not of relevance for this
study.

Two sludges from the full-scale reactors were used in
this study; sludge S was taken near the influent point of the
reactor, while sludge R was from the central part of the
reactor. The biomass in the reactor was not homogeneous in
appearance. Sludge R had a more compact structure than
sludge S. The dry weight content of sludge R and sludge S
was about 3.9% and 0.8%, respectively, and the volatile
suspended solids (VSS, a measure of organic carbon) content
was about 3.0% and 0.2%, respectively. The differences in
dry weight and VSS content of the sludges corresponded
rather well with the difference in cell numbers determined
by direct counting by microscopy. The cell numbers were
about 3.10'" and 5.10'° cells per milliliter for sludge R and
S, respectively.

Media and growth conditions

A bicarbonate-buffered mineral medium supplemented with
0.05 g/l yeast extract was prepared as described previously
(Stams et al. 1993). This medium was used for the activity
tests with the sludges and for the enrichment and
description of the bacteria. Routine cultivation of the strains
was carried out in 117-ml serum bottles with 50 ml medium
or in 28-ml tubes with 10 ml medium, and a N,/CO, (80:20)
gas phase at a pressure of 170 kPa. Organic substrates were
supplied at a concentration of 10 or 20 mM and where
indicated sulfate at a concentration of 20 mM. Incubations
were done statically at 30°C.

Substrate conversion by sludges

To determine the sulfate reduction activity, 0.5-ml sludge R
was inoculated in duplo in 50 ml medium with 20 mM
sulfate and different organic substrates. In time, samples
were taken to determine the sulfide concentrations.
Controls were included without electron donor and without
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sulfate. Conversion and product formation from citrate was
determined using 0.05 ml of sludge R in 50 ml medium
with and without sulfate. Samples were taken in time and
analyzed for organic acids. To get an impression of the
abundance of different groups of bacteria, serial dilutions of
suspensions of sludge R and sludge S were made in media
with different substrates. The sludges were suspended by
taking a sample by syringe and pressing the sample
repeatedly back into the bottle with medium using needles
with different sizes. The growth tests were done in 28-ml
tubes. The incubation temperature was 30°C.

Isolation and characterization of strains

Strain R210 was isolated from the above enrichment of
sludge R with 10 mM citrate without sulfate. Strain S101
was isolated from the highest dilution with growth of
sludge S in media with 10 mM citrate without sulfate. Pure
cultures were obtained by repeated dilution in citrate-media
using, each time, the highest dilution with growth. These
incubations were done in 28-ml tubes with 10 ml medium
and 1 ml of different dilutions of inoculum. Dilutions were
made in tubes containing 9 ml medium without substrate or
sulfate. Purity was confirmed by microscopic observation
after growth with different substrates. When grown with
citrate, strain R210 and strain S101 formed typical crooked
chains of cocci. When grown with sugars, strain R210
consisted of cocci and duplo-cocci.

Substrate tests were done in 28-ml tubes with 10 ml
medium. Growth substrates were tested at the indicated
concentrations. Growth was determined by the increase in
optical density at 660 nm, substrate conversion, and product
formation. Electron acceptor utilization was tested by
determination of product formation from citrate, and in the
case of iron (III), by color change of the medium.

For phylogenetic analysis of the isolated strains, cells of
10-ml cultures were concentrated by centrifugation. Genomic
DNA was extracted from the cells using the Ultraclean Soil
DNA Extraction kit (Mo Bio Laboratories, West Carlsbad,
CA, USA) according to the manufacturer’s instructions. The
nearly complete 16S ribosomal RNA (rRNA) gene was
amplified using primers GM3F and GM4R (Muyzer et al.
1995). Polymerase chain reaction products were purified and
sequenced by a commercial company (BaseClear, Leiden,
The Netherlands). The sequences were first compared to
sequences stored in the GenBank using the blastn algorithm
(http://www.ncbi.nlm.nih.gov/BLAST). Subsequently, they
were imported into the ARB database (Ludwig et al. 2004),
aligned, and added to a phylogenetic tree using the
QUICK_ADD_TO_EXISTING TREE tool. The alignment
was further corrected by eye, and a tree was calculated using
the neighbor-joining algorithm with Felsenstein correction.
The rRNA gene sequences of strain R210 and S101 are

deposited in GenBank/EMBL/DDBJ under the accession
numbers FJ374769 and FJ374768, respectively.

Analytical methods

Organic acids were measured by high-performance liquid
chromatography, and hydrogen and methane were mea-
sured by gas chromatography, as described previously
(Stams et al. 1993). Formate was analyzed colorimetrically
using the method described by (Lang and Lang 1972).
Sulfide was analyzed by the method of (Triiper and Schlegel
1964). The VSS content of the sludges was determined
from the difference in dry weight (drying overnight at
105°C) and ash content (2 h at 600°C).

Results
Sulfate reduction activity of the reactor sludge

The physical appearance of sludge samples at the influent
point of the reactor and in the central part of the reactor
suggested that citrate degradation and sulfate reduction
were not directly coupled. When incubated unfed sludge R
had a higher sulfate-reducing activity than sludge S (results
not shown). The sulfate reduction activity of sludge R from
the anaerobic reactor was determined with different
substrates over a period of 3 days. The initial sulfide
production activity of that sludge without added substrates
was 18+3 mmol/g VSS-day. In the absence of sulfate, no
sulfide production was observed (<2.5 mmol/g VSS-day).
The following sulfide production activities (in mmol/g
VSS-day) were measured when substrates were added: citrate
(59+9), formate (50+7), acetate (58+8), propionate (76+
21), butyrate (33+£17), and lactate (116+22). The activity
was highest with lactate, while the activity with butyrate was
lowest.

The effect of sulfate on citrate conversion by sludge R
was determined. Rapid growth and citrate conversion was
observed both in the presence (not shown) and in the
absence of sulfate (Fig. 1). In both cases, acetate and
formate were formed as main products. The incubations
were continued, and after 2 weeks, products were analyzed
again. In the incubation without sulfate, still, 19.5 mM
acetate was present, while in the incubation with sulfate, the
acetate concentration had decreased to 8.5 mM. In this
latter incubation, the sulfide concentration was about
18 mM (results not shown).

Serial dilutions of sludges R and S were made in media
with citrate as substrate. Sludge R showed growth with
citrate till the 10° dilution, while sludge S showed growth
till the 107 dilution. The VSS content of sludge R and S
was 3% and 0.2% (w/v), respectively. This shows that the
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Fig. 1 Citrate degradation and product formation in media without
sulfate inoculated with sludge R. In the presence of sulfate, the pattern
was similar. Symbols: citrate (©), acetate (®), formate (A ), and optical
density (OD) at 660 nm (O)

relative number of citrate-degrading bacteria in sludge S is
about 1,000 times higher than in sludge R. The cell
numbers enumerated in the dilutions in media with and
without sulfate were the same. The results that were
obtained in these initial studies indicated that citrate was
not a direct substrate for sulfate reducers, but that citrate
was first fermented, and that the fermentation products
were the substrates for the sulfate-reducing bacteria. As the
sulfate-reducing bacteria of the inoculum were analyzed
previously (Dar et al. 2007), we focused our further research
on bacteria responsible for citrate fermentation.

Properties of isolated strains

Upon microscopic observation of sludge R and sludge S
and the enrichment of sludge R in media with citrate,
coccoid cells were observed which formed twisted chains.
Two citrate-fermenting bacteria were isolated: strain R201
from sludge R and strain 101 from sludge S. The two
strains were coccoid, but strain S101 was somewhat smaller
in size than strain R201. Both strain R210 and strain S101
degraded citrate mainly to acetate and formate (Table 1 and
Table 2). Strain S101 formed less formate than strain R210,
but it formed some hydrogen. The substrate spectrum of the
two strains was different. Strain R210 was able to ferment
sugars to acetate, formate, ethanol, and lactate. Lactate was
not degraded by this strain. By contrast, strain S101 did not
ferment sugars but was able to ferment lactate and some
other organic acids to acetate, formate, propionate, and
hydrogen. Taking into account the expected formation of
bicarbonate, the carbon and electron balances fitted rather
well with the expected balances.

Strain R210 and strain S101 did not show growth by
respiration. Both strains formed formate as a main product
of citrate fermentation. However, strain S101 formed less
formate in the presence of nitrate or crotonate. With these
electron acceptors, about 4 mM formate was formed during
growth with 10 mM citrate, while, in the controls, about
5.6 mM was formed. Strain S101 was able to grow with
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Table 1 Substrate utilization, growth as indicated by the optical
density (OD), and product formation by strain R210

Formate  Acetate  Ethanol Lactate OD 660

No Substrate <0.5 <0.02
10 citrate 8 20.5 0.71
8 20.5 0.60

20 malate 18.9 9.5 10 0.41
16.9 8.6 9.8 0.34

20 pyruvate 15.9 18.5 1 0.36
15.6 18.4 2.3 0.41

10 glucose 6.8 23 4.5 12.4 0.71
5.7 2.1 4.6 9.9 0.67

10 fructose 7.4 2.6 53 12.2 0.69
10 mannitol 14 2 12.9 0.2 0.70
10 arabinose 12.9 7.6 7.5 0 0.49
10 mannose 7.3 2.6 53 11.1 0.79
5 maltose 8.8 33 6 8.4 0.78
5 cellobiose 13.5 5.8 8.7 32 0.19
5 sucrose 6.5 2.4 4.8 10.6 0.72

Cultures were inoculated with a citrate-grown culture (1% inoculum
size) and incubated statically at 30°C. The concentrations of
compounds are in millimolar (mM)

fumarate. This compound was fermented to mainly formate,
acetate, and propionate. When strain S101 was grown with
a mixture of citrate and fumarate, the concentration of
products was similar to the sum of products formed with
citrate and fumarate, separately. Oxygen was not used by
the strains, but they could be grown (two transfers) in
nitrogen-flushed media in which the reductant and sulfur
source sodium sulfide was replaced by sodium sulfate.
Growth in sulfide-reduced media under air was possible but
not when the cultures were shaken.

Comparative analysis of the 16S rRNA gene sequences of
the two strains showed that strain R210 was affiliated to
members of the genus Trichococcus, while strain S101 was
affiliated to members of the genus Veillonella (Fig. 2). Strain
R210 was closest related to Trichococcus pasteurii (99.5%
rRNA gene sequence similarity). The closest relative of strain
S101 was Veillonella montepellierensis with an rRNA gene
sequence similarity of 96.7%. Unfortunately, strain S101 was
lost upon storage. Strain R210 is deposited in the German
collection of microorganisms and cell cultures (DSMZ) as
Trichococcus sp. R210 (accession number DSM 22150).

Discussion
Citrate is clearly not the direct substrate for the sulfate-

reducing bacteria in the bioreactor that was studied.
Recently, (Gamez et al. 2008) found a rapid fermentation
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Table 2 Substrate utilization,

growth as indicated by the Formate Acetate Propionate Hydrogen OD 660

optical density (OD), and

product formation by strain No substrate <0.5 <0.02

S101 10 citrate 5 20.7 0 ND 0.30
4.7 20.4 0 0.3 0.30

20 malate 2.1 7.9 12.4 ND 0.28

2 8.2 13.6 0.0 0.22

Cultures were inoculated with a

citrate-grown culture (1% 20 pyruvate 9.2 17.3 1.8 ND 0.39

inoculum size) and incubated 7.4 14.4 1.6 0.15 0.34

statically at 30°C. The concen- 20 fumarate 2.4 8.1 11.5 0 0.31

trations of compounds are in 25 lactate 4.4 1.8 13.8 32 0.36

millimolar (mM)

of citrate by sulfate-reducing and methanogenic sludges. In
our study, citrate is first fermented to mainly acetate and
formate, and the sulfate-reducing bacteria subsequently use
these compounds as substrates. Sludge taken from the
bioreactor had a high sulfate reduction activity with several
organic compounds, including formate, acetate, propionate,
and lactate. The actual rate of sulfate reduction in the
bioreactor at the time of sampling was about 4 mmol
sulfate/g VSS-day. The high sulfate reduction rates with the
different substrates suggest that the sludge in the reactor
could accommodate higher loading rates. However, our
activity tests were done at low initial sulfide concentrations.
It might be that at the ambient sulfide concentrations of
about 10 mM, sulfate reduction rates are lower.

Citrate can be fermented in different ways leading to the
formation of a variety of products including formate, acetate,
propionate, and succinate (Antranikian and Giffhorn 1987,
Bott 1997). The two bacteria that we have isolated formed
mainly acetate, formate, and presumably, bicarbonate from
citrate. The two strains were able to ferment a set of others
substrates as well. Strain R210 fermented sugars. With these
substrates, it formed, besides acetate and formate, also
ethanol and lactate as products. Strain S101 was not able to
grow with sugars, but it was able to ferment some substrates,
including lactate and malate, forming propionate as product.

Fig. 2 Neighbor-joining tree

based on nearly complete 16S

ribosomal RNA gene sequences

showing the phylogenetic

affiliation of strain R210 and

S101. The bar indicates 1%

sequence difference o

The products that are formed by the two strains are direct
substrates for the sulfate-reducing bacteria that were previ-
ously detected in the sludge that was used to start up the
bioreactor (Dar et al. 2007). This may have been beneficial
for the rapid start-up of the process.

Strain R210 was a Trichococcus strain. (Scheff et al.
1984) isolated a filamentous bacterium from bulking
sludge. This bacterium was described as Trichococcus
flocculifomis and is able to grow with citrate, pyruvate,
and a variety of sugars and polyols. Other Trichococcus
species have been described like 7. pasteurii (former
Lactosphaera pasteurii) and Trichococcus palustris (former
Ruminococcus palustris; Liu et al. 2002; Janssen et al.
1995b; Zhilina et al. 1995). There are differences in the
substrate spectrum of the different 7Trichococcus species,
but the pattern of fermentation products that we obtained
with strain R210 for citrate fermentation and sugar fermenta-
tion is characteristic for Trichococcus species. Strain S101
was closest related to V. montepellierensis; the TRNA gene
sequence similarity was 96.7%. V. montepellierensis was
isolated from clinical samples (Jumas-Bilak et al. 2004). It is
able to ferment lactate and succinate to propionate, while it
does not ferment sugars. Citrate was not tested as substrate
of that strain. In general, members of the genus Veillonella
ferment lactate, but they are unable to ferment sugars. The

strain R210 (FJ374769)
[ Trichococcus pasteurii (X87150)

Trichococcus palustris (AJ296179)

Carnobacterium maltaromaticum (M58825)
{i Carnobacterium gallinarum (AJ387905)

Carnobacterium pleistocenium (AF450136)

{ Alkalibacterium iburiense (AB188092)
M

arinilactibacillus piezotolerans (AB247277)

strain S101 (FJ374768)

Veillonella montpellierensis (AY244769)
Veillonella dispar (AY995770)

Veillonella ratti (AF186071)

Dialister propionicifaciens (AY850120)
Anaeroglobus geminatus (AF338413)

0.10
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substrate spectrum of strain S101 is similar as described for
other Veillonella species, though citrate utilization was rarely
tested (Kolenbrander 1992). However, Veillonella alcales-
cens is able to ferment citrate (De Vries et al. 1977).

The substrate spectrum of the two citrate-fermenting
bacteria is rather complementary. By the combined activity
of these two bacteria, a wide variety of substrates is
fermented to products that are excellent substrates for the
sulfate-reducing bacteria present in the sludge. In this way,
complex waste streams represent and excellent source of
electron donors for sulfate reduction in industrial processes.
Interestingly, lactate can be fermented by strain S101 and
can be degraded by a number of sulfate reducers. As shown
by (Laanbroek et al. 1983), the lactate concentration and the
prevailing conditions determine which of the bacteria
preferentially degrades lactate.
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